

Verification and Validation of Automated Systems’ Safety and Security

Final Detailed Description of

Improved Process Workflows

Document Type Report

Document Number D4.8

Primary Author(s) Thomas Bauer (FRAUNHOFER IESE)

Document Date 2022-10-25

Document Version 1.0 Final

Dissemination Level Public (PU)

Reference DoA 2022-03-03

Project Coordinator Behrooz Sangchoolie, behrooz.sangchoolie@ri.se,

RISE Research Institutes of Sweden

Project Homepage www.valu3s.eu

JU Grant Agreement 876852

This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 876852. The JU
receives support from the European Union’s Horizon 2020 research and innovation programme and Austria, Czech Republic,

Germany, Ireland, Italy, Portugal, Spain, Sweden, Turkey.

mailto:behrooz.sangchoolie@ri.se
http://www.valu3s.eu/

Final Detailed Description of Improved Process Workflows

2 ECSEL JU, grant agreement No 876852.

Disclaimer

The views expressed in this document are the sole responsibility of the authors and do not necessarily

reflect the views or position of the European Commission. The authors, the VALU3S Consortium, and

the ECSEL JU are not responsible for the use which might be made of the information contained in here.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 3

Project Overview

Manufacturers of automated systems and the manufacturers of the components used in these systems

have been allocating an enormous amount of time and effort in the past years developing and

conducting research on automated systems. The effort spent has resulted in the availability of

prototypes demonstrating new capabilities as well as the introduction of such systems to the market

within different domains. Manufacturers of these systems need to make sure that the systems function

in the intended way and according to specifications which is not a trivial task as system complexity rises

dramatically the more integrated and interconnected these systems become with the addition of

automated functionality and features to them.

With rising complexity, unknown emerging properties of the system may come to the surface making

it necessary to conduct thorough verification and validation (V&V) of these systems. Through the V&V

of automated systems, the manufacturers of these systems can ensure safe, secure and reliable systems

for society to use since failures in highly automated systems can be catastrophic.

The high complexity of automated systems incurs an overhead on the V&V process making it time-

consuming and costly. VALU3S aims to design, implement, and evaluate state-of-the-art V&V methods

and tools in order to reduce the time and cost needed to verify and validate automated systems with

respect to safety, cybersecurity and privacy (SCP) requirements. This will ensure that European

manufacturers of automated systems remain competitive and that they remain world leaders. To this

end, a multi-domain framework is designed and evaluated with the aim to create a clear structure

around the components and elements needed to conduct V&V process through identification and

classification of evaluation methods, tools, environments, and concepts that are needed to verify and

validate automated systems with respect to SCP requirements.

In VALU3S, 13 use cases with specific safety, security and privacy requirements will be studied in detail.

Several state-of-the-art V&V methods will be investigated and further enhanced in addition to

implementing new methods aiming for reducing the time and cost needed to conduct V&V of

automated systems. The V&V methods investigated are then used to design improved process

workflows for V&V of automated systems. Several tools will be implemented supporting the improved

processes which are evaluated by qualification and quantification of safety, security and privacy as well

as other evaluation criteria using demonstrators. VALU3S will also influence the development of safety,

security and privacy standards through an active participation in related standardisation groups.

VALU3S will provide guidelines to the testing community including engineers and researchers on how

the V&V of automated systems could be improved considering the cost, time and effort of conducting

the tests.

VALU3S brings together a consortium with partners from 10 different countries, with a mix of industrial

partners (25 partners) from automotive, agriculture, railway, healthcare, aerospace and industrial

automation and robotics domains as well as leading research institutes (6 partners) and universities (10

partners) to reach the project goal.

Final Detailed Description of Improved Process Workflows

4 ECSEL JU, grant agreement No 876852.

Consortium

RISE RESEARCH INSTITUTES OF SWEDEN AB RISE Sweden

STAM SRL STAM Italy

FONDAZIONE BRUNO KESSLER FBK Italy

KNOWLEDGE CENTRIC SOLUTIONS SL - THE REUSE COMPANY TRC Spain

UNIVERSITA DEGLI STUDI DELL'AQUILA UNIVAQ Italy

INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO ISEP Portugal

UNIVERSITA DEGLI STUDI DI GENOVA UNIGE Italy

CAMEA, spol. s r.o. CAMEA Czech

IKERLAN S. COOP IKER Spain

R G B MEDICAL DEVICES SA RGB Spain

UNIVERSIDADE DE COIMBRA COIMBRA Portugal

VYSOKE UCENI TECHNICKE V BRNE - BRNO UNIVERSITY OF TECHNOLOGY BUT Czech

ROBOAUTO S.R.O. ROBO Czech

ESKISEHIR OSMANGAZI UNIVERSITESI ESOGU Turkey

KUNGLIGA TEKNISKA HOEGSKOLAN KTH Sweden

STATENS VAG- OCH TRANSPORTFORSKNINGSINSTITUT VTI Sweden

UNIVERSIDAD DE CASTILLA - LA MANCHA UCLM Spain

FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN

FORSCHUNG E.V.
FRAUNHOFER Germany

SIEMENS AKTIENGESELLSCHAFT OESTERREICH SIEMENS Austria

RULEX INNOVATION LABS SRL RULEX Italy

NXP SEMICONDUCTORS GERMANY GMBH NXP-DE Germany

PUMACY TECHNOLOGIES AG PUMACY Germany

UNITED TECHNOLOGIES RESEARCH CENTRE IRELAND, LIMITED UTRCI Ireland

NATIONAL UNIVERSITY OF IRELAND MAYNOOTH NUIM Ireland

INOVASYON MUHENDISLIK TEKNOLOJI GELISTIRME DANISMANLIK SANAYI VE

TICARET LIMITED SIRKETI
IMTGD Turkey

ERGUNLER INSAAT PETROL URUNLERI OTOMOTIV TEKSTIL MADENCILIK SU

URUNLER SANAYI VE TICARET LIMITED STI.
ERARGE Turkey

OTOKAR OTOMOTIV VE SAVUNMA SANAYI AS - OTOKAR AS OTOKAR Turkey

TECHY BILISIM TEKNOLOJILERI DANISMANLIK SANAYI VE TICARET LIMITED

SIRKETI - TECHY INFORMATION TECHNOLOGIESAND CONSULTANCY LIMITED

COMPANY

TECHY Turkey

ELECTROTECNICA ALAVESA SL ALDAKIN Spain

INTECS SOLUTIONS SPA INTECS Italy

LIEBERLIEBER SOFTWARE GMBH LLSG Austria

AIT AUSTRIAN INSTITUTE OF TECHNOLOGY GMBH AIT Austria

E.S.T.E. SRL ESTE Italy

NXP SEMICONDUCTORS FRANCE SAS NXP-FR France

BOMBARDIER TRANSPORTATION SWEDEN AB BT Sweden

QRTECH AKTIEBOLAG QRTECH Sweden

CAF SIGNALLING S.L CAF Spain

MONDRAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S

COOP
MGEP Spain

INFOTIV AB INFOTIV Sweden

BERGE CONSULTING AB BERGE Sweden

CARDIOID TECHNOLOGIES LDA CARDIOID Portugal

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 5

Executive Summary

This deliverable is part of WP4, which focusses on designing and implementing tailored V&V process

workflows and documents the final results from Task 4.2 “Initial detailed description of improved

process workflows”. Task 4.2 developed specific workflows and solution patterns for verification and

validation that address the challenges and goals stated by the industrial use cases. The goal is to bring

partner-specific and tool-specific workflows and contributions into a holistic and integrated verification

and validation process.

Within the scope of Task 4.2 and deliverable D4.8, KPI-4 of the project proposal is being addressed,

which deals with the development of at least 13 novel tailored V&V workflows that will improve the

time and cost of V&V processes. Finally, 42 workflows have been modelled for the VALU3S use cases.

As a result, the deliverable D4.8 describes the final results from the analysis and modelling activities of

the verification and validation workflows. It is an update of D4.6 [1], which contained the intermediate

version of the V&V workflows. Parts of the content of the document remain unchanged compared to

D4.6, while other sections have been newly created.

Parts of the workflows reference virtual validation and virtual prototyping solutions, which have been

addressed in D4.3 [2]. The workflows contained in D4.8 apply tools that are being developed in Task

4.3 and described in D4.9 - Final implementation of V&V tools suitable for the improved process workflows.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 7

Contributors

Matt Luckcuck NUIM Thomas Bauer FRAUNHOFER IESE

Georgios Giantamidis UTRCI Metin Ozkan ESOGU

Stylianos Basagiannis UTRCI Unai Muñoz IKER

Gürol Çokünlü

Muharrem Saral

Ömer Şahabaş

OTOKAR

OTOKAR

OTOKAR

 Xabier Mendialdua

José Proença

Martin Hrubý

IKER

ISEP

BUT

Rupert Schlick AIT Manuel Schmidt NXP

José Luis de la Vara UCLM Giovanni Giachetti UCLM

Luis Alonso TRC Arturo García UCLM

Hamid Ebadi

Ugur Yayan

Thorsten Tarrach

INFOTIV

IMTGD

AIT

 Martin Karsberg

Mustafa Karaca

Jack Jensen

INFOTIV

IMTGD

BERGE

Aleš Smrčka BUT Thanh Bui RISE

Lukáš Maršík CAMEA Joakim Rosell RISE

Mateen Malik RISE Peter Folkesson RISE

Cem Baglum

Marie Farrell

Oisin Sheridan

Rosemary Monahan

IMTGD

NUIM

NUIM

NUIM

 Alim Kerem Erdogmus

Bernhard Fischer

Martin Matschnig

Ricardo Ruiz

IMTGD

SIEMENS

SIEMENS

RGB

Beáta Davidová ROBO Aitor Agirre MGEP

Katia Di Blasio INTECS Mikel Aldalur IKER

Maytheewat Aramrattana VTI Juan Manuel Morote UCLM

Bernd Bredehorst PUMACY Zain Shahwar PUMACY

Sina Borrami Alstom Wolfgang Herzner AIT

Reviewers

Mustafa Karaca IMTGD 2022-04-06

Alim Kerem Erdogmus IMTGD 2022-04-05; 2022-04-14; 2022-09-30

Cem Baglum IMTGD 2022-04-05; 2022-04-14; 2022-10-03

Wolfgang Herzner AIT 2022-04-04; 2022-04-19; 2022-10-07, 2022-10-13

Ali Sedaghatbaf RISE 2022-04-05; 2022-04-14; 2022-10-04; 2022-10-13

Behrooz Sangchoolie

Bob Hruska

RISE

LLSG

2022-04-24; 2022-10-25

2022-10-14

Final Detailed Description of Improved Process Workflows

8 ECSEL JU, grant agreement No 876852.

Revision History

Version Date Author (Affiliation) Comment

0.1 2022-09-26 Thomas Bauer

(FRAUNHOFER IESE)

First version created

0.2 2022-10-12 Thomas Bauer

(FRAUNHOFER IESE)

Chapter 2 updated; workflow figures in chapter 3

updated; comments from 1st review incorporated;

0.3 2022-10-20 Thomas Bauer

(FRAUNHOFER IESE)

Workflow descriptions updated; comments from

2nd review incorporated;

0.4 2022-10-24 Behrooz Sangchoolie

(RISE)

Review of the first final draft of the deliverable

while making minor formatting changes and

leaving additional comments to be addressed.

0.5 2022-10-25 Thomas Bauer

(FRAUNHOFER IESE)

Final format changes; conclusion updated

0.6 2022-10-25 Behrooz Sangchoolie

(RISE)

Review of the final draft of the deliverable while

making minor formatting changes.

1.0 2022-10-25 Behrooz Sangchoolie

(RISE)

Report to be submitted.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 9

Table of Contents

Table of Contents.. 9

List of Figures ... 12

List of Tables ... 16

1 Introduction .. 21

1.1 Scope ... 21

1.2 Document Structure ... 21

2 V&V Workflow Modelling Languages ... 23

2.1 Diagram Types .. 23

2.1.1 V&V Method Definition .. 23

2.1.2 V&V Workflow Definition .. 24

3 VALU3S V&V Workflows ... 27

3.1 V&V Workflow of UC1 CAMEA .. 27

3.1.1 Artifacts used in UC1_CAMEA .. 28

3.1.2 V&V Workflows of V&V of Machine Learning-Based Systems Using Simulators 29

3.1.3 V&V Workflows of Model-Based Threat Analysis .. 33

3.1.4 V&V Workflows of Assessment of Implementation of Network Communication 36

3.2 V&V Workflow of Use Case 2 ROBO .. 39

3.2.1 Artifacts used in UC2_ROBO .. 40

3.2.2 V&V Workflows of UC2 ROBO V&V Workflow ... 42

3.2.3 V&V Workflows of Simulated Fault-Injection of a Network Link .. 43

3.2.4 V&V Workflows of Simulation-Based Fault and Attack Injection at System-level Improved46

3.2.5 V&V Workflows of UC2 Daily Regression Test ... 50

3.3 V&V Workflow of Use Case 3 NXP ... 52

3.3.1 Artifacts used in UC3_NXP ... 52

3.3.2 V&V Workflows of Use Case 3 Radar Systems for ADAS .. 54

3.3.3 V&V Workflows of Doppler Division Multiplexing Access (DDMA) 57

3.4 V&V Workflow of Use Case 4 PUMACY .. 59

3.4.1 Artifacts used in UC4_PUMACY ... 61

3.4.2 V&V Workflows of Combined Virtual Validation and Failure Detection Diagnosis 62

3.4.3 V&V Workflows of Failure Detection Diagnosis.. 63

3.4.4 V&V Workflows of Virtual Validation .. 65

Final Detailed Description of Improved Process Workflows

10 ECSEL JU, grant agreement No 876852.

3.5 V&V Workflow(s) of UC5 UTRCI .. 68

3.5.1 Artifacts used in UC5_UTRCI ... 70

3.5.2 V&V Workflows of Verifying and Refactoring Formalised Requirements 71

3.5.3 V&V Workflows of Model-implemented Fault and Attack Injection with Pre-Injection

Analysis ... 73

3.5.4 V&V Workflows of SiLVer (SimuLation-based Verification) ... 75

3.6 V&V Workflow of Use Case 6 ESTE .. 78

3.7 V&V Workflow of Use Case 7 ALDAKIN ... 79

3.7.1 Artifacts used in UC7_ALDAKIN .. 79

3.7.2 V&V Workflows of MGEP V&V Workflow .. 80

3.8 V&V Workflow of Use Case 8 RGB .. 85

3.8.1 Artifacts used in UC8_RGB ... 88

3.8.2 V&V Workflows of Tailored Model-Based Assurance and Certification 90

3.8.3 V&V Workflows of Model Based Safety Analysis FLA ... 92

3.8.4 V&V Workflows of Compliance-Aware Extended Knowledge-Centric System Artefact

Quality Analysis ... 94

3.8.5 V&V Workflows of Extended Knowledge-Centric System Traceability Management 96

3.8.6 V&V Workflows of Single Experiment .. 97

3.8.7 V&V Workflows of TC Automated Experimenting ... 99

3.8.8 V&V Workflows of TC Management ... 100

3.9 V&V Workflow of Use Case 9 CAF .. 102

3.9.1 Artifacts used in UC9_CAF ... 103

3.9.2 V&V Workflows of Overall UC9 Method ... 103

3.9.3 V&V Workflows of Simulation-Based V&V of Computer Vision System 105

3.10 V&V Workflow of Use Case 10 BT ... 108

3.10.1 Artifacts used in UC10_BT .. 110

3.10.2 V&V Workflows of UC10 Overall Method ... 111

3.10.3 V&V Workflows of Model Checking Families of Real-Time Specifications 114

3.10.4 V&V Workflows of Optimize Fault Injection Experiments Using Model-Based Mutation

Testing ... 116

3.10.5 V&V Workflows of Behaviour-Driven Model Development and Test-Driven Model Review .

 ... 118

3.11 V&V Workflow of Use Case 11 OTOKAR... 120

3.11.1 Artifacts used in UC11_OTOKAR .. 122

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 11

3.11.2 V&V Workflows of Model-Based Formal Specification and Verification of Robotic Systems ..

 ... 123

3.11.3 V&V Workflows of Penetration Testing .. 127

3.11.4 V&V Workflows of Simulation-Based Verification .. 129

3.11.5 V&V Workflows of Vulnerability Analysis of FPGA Based Cryptographic Modules Against

Hardware-Based Attacks .. 131

3.12 V&V Workflow of Use Case 13 SIEMENS .. 135

3.12.1 Artifacts used in UC13_SIEMENS .. 136

3.12.2 V&V Workflows of UC13 - SIEMENS .. 138

3.12.3 V&V Workflows of Model-Based Mutation Testing .. 141

3.12.4 V&V Workflows of Monitoring Enriched Test Execution .. 143

3.12.5 Mutation-Driven Model-Based Test Case Generation ... 144

3.13 V&V Workflow of Use Case 14 CARDIOID ... 146

3.13.1 Artifacts used in UC14_CARDIOID ... 148

3.13.2 V&V Workflows of Biometric Model Performance and Privacy Validation 150

3.13.3 V&V Workflows of Hardware in the Loop Validation & Verification 152

3.13.4 V&V Workflows of Safe Generation and Instrumentation of Runtime Verification

Architectures ... 153

3.13.5 V&V Workflows of Software-Implemented Fault Injection ... 155

3.13.6 V&V Workflows of Verification of Driver Monitoring Models ... 156

4 Conclusion ... 159

References ... 161

Final Detailed Description of Improved Process Workflows

12 ECSEL JU, grant agreement No 876852.

List of Figures

Figure 2.1 Visual representation of the Method definition diagram and its elements structure 23

Figure 3.1 Method Definition of V&V of machine learning-based systems using simulators defined for

UC1_CAMEA ... 27

Figure 3.2 Method Definition of Model-Based Threat Analysis defined for UC1_CAMEA.................... 28

Figure 3.3 Method Definition of Assessment of implementation of network communication defined for

UC1_CAMEA ... 28

Figure 3.4 Workflow Definition diagram of V&V of machine learning-based systems using simulators -

Workflow used in UC1_CAMEA ... 31

Figure 3.5 Workflow Definition diagram of Model-Based Threat Analysis - Workflow used in

UC1_CAMEA ... 35

Figure 3.6 Workflow Definition diagram of Assessment of implementation of network communication

used in UC1_CAMEA.. 37

Figure 3.7 Method Definition of ROBO V&V defined for UC2_ROBO .. 39

Figure 3.8 Method Definition of Simulated fault-injection of a network link defined for UC2_ROBO . 39

Figure 3.9 Method Definition of ComFASE_RISE_VTI_Improve defined for UC2_ROBO 40

Figure 3.10 Workflow Definition diagram of UC2_ROBO Workflow used in UC2_ROBO 42

Figure 3.11 Workflow Definition diagram of Simulated fault-injection of a network link used in

UC2_ROBO ... 45

Figure 3.12 Workflow Definition diagram of Simulation-Based Fault and Attack Injection at System-

level with additional fault and attack models valid for multiple inter-vehicle communication (IVC)

layers used in UC2_ROBO .. 48

Figure 3.13 Workflow Definition diagram of Regression tests workflow used in UC2_ROBO 51

Figure 3.14 Method Definition of Use Case 3 defined for UC3_NXP ... 52

Figure 3.15 Workflow Definition diagram of d Use Case 3 Radar systems for ADAS used in UC3_NXP

 .. 55

Figure 3.16 Workflow Definition diagram of Doppler Division Multiplexing Access (DDMA) used in

UC3_NXP .. 58

Figure 3.17 Method Definition of Combined Virtual Validation and Failure Detection Diagnosis defined

for UC4_PUMACY ... 59

Figure 3.18 Method Definition of Failure Detection Diagnosis defined for UC4_PUMACY 60

Figure 3.19 Method Definition of Virtual Validation defined for UC4_PUMACY 60

Figure 3.20 Workflow Definition diagram of Combined Virtual Validation and Failure Detection

Diagnosis used in UC4_PUMACY... 62

Figure 3.21 Workflow Definition diagram of Failure Detection Diagnosis used in UC4_PUMACY 64

Figure 3.22 Workflow Definition diagram of Virtual Validation used in UC4_PUMACY 66

Figure 3.23 Method Definition of SILVER_UTRCI defined for UC5_UTRCI .. 68

Figure 3.24 Method Definition of MIFI_MIAI_RISE (pre-injection) defined for UC5_UTRCI 69

Figure 3.25 Method Definition of Verifying and Refactoring Formalised Requirements defined for

UC5_UTRCI .. 69

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 13

Figure 3.26 Workflow Definition diagram of Verifying and Refactoring Formalised Requirements used

in UC5_UTRCI .. 71

Figure 3.27 Workflow Definition diagram of MIFI_MIAI_RISE used in UC5_UTRCI 74

Figure 3.28 Workflow Definition diagram of SiLVer (SimuLation-based Verification) used in UC5_UTRCI .. 76

Figure 3.29 Method Definition of UC6_ESTE defined for UC6_ESTE .. 78

Figure 3.30 Method Definition of MGEP-2 UC7 defined for UC7_ALDAKIN .. 79

Figure 3.31 Method Definition of MGEP V&V Workflow used in UC7_ALDAKIN 83

Figure 3.32 Method Definition of TC Management defined for UC8_RGB ... 85

Figure 3.33 Method Definition of TC Automated experimenting for UC8_RGB 85

Figure 3.34 Method Definition of Single Experiment for UC8_RGB ... 86

Figure 3.35 Method Definition of Model based Safety Analysis FLA defined for UC8_RGB 86

Figure 3.36 Method Definition of Tailored Model-based Assurance and Certification defined for

UC8_RGB .. 87

Figure 3.37 Method Definition of Compliance-Aware Extended Knowledge-Centric System Artefact

Quality Analysis defined for UC8_RGB ... 87

Figure 3.38 Method Definition of Extended Knowledge-Centric System Traceability Management

defined for UC8_RGB .. 88

Figure 3.39 Model-Based Assurance and Certification used in UC8_RGB .. 91

Figure 3.40 Workflow Definition diagram of Model Based Safety Analysis FLA used in UC8_RGB 93

Figure 3.41 Workflow Definition diagram of Compliance-Aware Extended Knowledge-Centric System Artefact

Quality Analysis used in UC8_RGB ... 95

Figure 3.42 Workflow Definition diagram of Extended Knowledge-Centric System Traceability Management

used in UC8_RGB .. 96

Figure 3.43 Workflow Definition diagram of Single Experiment used in UC8_RGB... 98

Figure 3.44 Workflow Definition diagram of TC Auto Experiment used in UC8_RGB 99

Figure 3.45 Workflow Definition diagram of TC Management used in UC8_RGB ... 100

Figure 3.46 Method Definition of Overall UC9 workflow defined for UC9_CAF 102

Figure 3.47 Method Definition of Simulation based V&V of Computer Vision System defined for

UC9_CAFs ... 102

Figure 3.48 Workflow Definition diagram of UC9_VV_Method used in UC9_CA ... 104

Figure 3.49 Workflow Definition diagram of Simulation based V&V of Computer Vision used in

UC9_CAF_Submethods .. 106

Figure 3.50 Method Definition of UC10 Overall Method defined for UC10_BT 108

Figure 3.51 Method Definition of Model Checking Families of Real Time Systems - Method defined for

UC10_BT .. 109

Figure 3.52 Method Definition of Optimize Fault Injection Experiments Using Model-Based Mutation

Testing defined for UC10_BT ... 109

Figure 3.53 Behaviour-driven model development and test-driven model review 110

Figure 3.54 Workflow Definition diagram of UC10 Overall Method Workflow used in UC10_BT 112

Figure 3.55 Workflow Definition diagram of Model Checking Families of Real Time Systems used in

UC10_BT .. 115

Figure 3.56 Workflow Definition diagram of Optimize Fault Injection Experiments Using Model-Based

Mutation Testing used in UC10_BT ... 117

Final Detailed Description of Improved Process Workflows

14 ECSEL JU, grant agreement No 876852.

Figure 3.57 Workflow Definition diagram of Behaviour-driven model development and test-driven

model review used in UC10_BT ... 118

Figure 3.58 Method Definition of UC11_OTOKAR_2_Penetration_testing defined for UC11_OTOKAR

 .. 120

Figure 3.59 Method Definition of Model-Based Formal Specification and Verification of Robotic Systems

defined for UC11_OTOKAR ... 121

Figure 3.60 Method Definition of Simulation-based Verification defined for UC11_OTOKAR 121

Figure 3.61 Method Definition of Vulnerability Analysis of Cryptographic Modules Against Hardware-

Based Attacks defined for UC11_OTOKAR ... 122

Figure 3.62 Workflow Definition diagram of MBF used in UC11_OTOKAR .. 125

Figure 3.63 Workflow Definition diagram of Penetration Testing used in UC11_OTOKAR 128

Figure 3.64 Workflow Definition diagram of Simulation-based Verification - Workflow used in

UC11_OTOKAR ... 130

Figure 3.65 Workflow Definition diagram of Vulnerability Analysis of FPGA Based Cryptographic

Modules Against Hardware-Based Attacks used in UC11_OTOKAR ... 133

Figure 3.66 Method Definition of UC13 - SIEMENS defined for UC13_SIEMENS 135

Figure 3.67 Method Definition of Model-Based Mutation Testing defined for UC13_SIEMENS 135

Figure 3.68 Method Definition of Monitoring Enriched Test Execution defined for UC13_SIEMENS 136

Figure 3.69 Method Definition of Mutation-Driven Model-Based Test Case Generation defined for

UC13_SIEMENS ... 136

Figure 3.70 Workflow Definition diagram of UC13 - SIEMENS used in UC13_SIEMENS 139

Figure 3.71 Workflow Definition diagram of Model-Based Mutation Testing - Workflow used in

UC13_SIEMENS ... 142

Figure 3.72 Workflow Definition diagram of «Method» Monitoring Enriched Test Execution used in

UC13_SIEMENS .. 143

Figure 3.73 Workflow Definition diagram of Mutation-Driven Model-Based Test Case Generation used

in UC13 .. 144

Figure 3.74 Method Definition of Biometric Model Performance and Privacy Validation defined for

UC14_CARDIOID .. 146

Figure 3.75 Method Definition of Hardware in the Loop Validation & Verification defined for

UC14_CARDIOID .. 147

Figure 3.76 Method Definition of Verification of Driver Monitoring Models defined for

UC14_CARDIOID .. 147

Figure 3.77 Method Definition of Safe Generation and Instrumentation of Runtime Verification

Architectures defined for UC14_CARDIOID ... 148

Figure 3.78 Method Definition of Software-Implemented Fault Injection defined for UC14_CARDIOID

 .. 148

Figure 3.79 Workflow Definition diagram of Biometric Model Performance and Privacy Validation used

in UC14_CARDIOID .. 151

Figure 3.80 Workflow Definition diagram of Hardware in the Loop Validation & Verification used in

UC14_CARDIOID .. 152

Figure 3.81 Workflow Definition diagram of Safe Generation and Instrumentation of Runtime

Verification Architectures used in UC14_CARDIOID .. 154

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 15

Figure 3.82 Workflow Definition diagram of Software Implemented Fault Injection used in

UC14_CARDIOID .. 156

Figure 3.83 Workflow Definition diagram of Verification of Driver Monitoring Models used in

UC14_CARDIOID .. 157

Final Detailed Description of Improved Process Workflows

16 ECSEL JU, grant agreement No 876852.

List of Tables

Table 2.1 VVML Method Definition Elements ... 24

Table 2.2 VVML Workflow Definition Elements ... 25

Table 3.1 List of artifact types used in UC1_CAMEA ... 29

Table 3.2 List of activities performed by V&V of machine learning-based systems using simulators .. 32

Table 3.3 List of activities performed by Model-Based Threat Analysis .. 36

Table 3.4 List of activities performed by Assessment of implementation of network communication . 37

Table 3.5 List of artifact types used in UC2_ROBO ... 40

Table 3.6 List of activities performed by UC2 ROBO V&V Workflow ... 43

Table 3.7 List of activities performed by Simulated fault-injection of a network link 45

Table 3.8 List of activities performed by Simulation-Based Fault and Attack Injection at System-level

Improved ... 49

Table 3.9 List of activities performed by UC2 Daily regression test ... 51

Table 3.10 List of artifact types used in UC3_NXP .. 52

Table 3.11 List of activities performed by Use Case 3 Radar systems for ADAS 56

Table 3.12 List of activities performed by Doppler Division Multiplexing Access (DDMA) 58

Table 3.13 List of artifact types used in UC4_PUMACY .. 61

Table 3.14 List of activities performed by UC4_Combined Virtual Validation and Failure Detection

Diagnosis ... 63

Table 3.15 List of activities performed by Failure Detection Diagnosis ... 64

Table 3.16 List of activities performed by Virtual Validation .. 66

Table 3.17 List of artifact types used in UC5_UTRCI .. 70

Table 3.18 List of activities performed by Verifying and Refactoring Formalised Requirements 72

Table 3.19 List of activities performed by Model-implemented fault/attack injection with pre-injection

analysis .. 75

Table 3.20 List of activities performed by SiLVer (SimuLation-based Verification) 77

Table 3.21 List of artifact types used in UC7_ALDAKIN ... 79

Table 3.22 List of activities performed by MGEP V&V Workflow .. 84

Table 3.23 List of artifact types used in UC8_RGB .. 88

Table 3.24 List of activities performed by Tailored Model-Based Assurance and Certification 91

Table 3.25 List of activities performed by Model Based Safety Analysis FLA .. 94

Table 3.26 List of activities performed by Compliance-Aware Extended Knowledge-Centric System

Artefact Quality Analysis .. 95

Table 3.27 List of activities performed by Extended Knowledge-Centric System Traceability

Management ... 97

Table 3.28 List of activities performed by Single Experiment .. 98

Table 3.29 List of activities performed by TC Automated Experimenting ... 99

Table 3.30 List of activities performed by TC Management ... 100

Table 3.31 List of artifact types used in UC9_CAF .. 103

Table 3.32 List of activities performed by Overall UC9 Method ... 104

Table 3.33 List of activities performed by Simulation based V&V of Computer Vision System 106

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 17

Table 3.34 List of artifact types used in UC10_BT ... 110

Table 3.35 List of activities performed by UC10 Overall Method ... 112

Table 3.36 List of activities performed by Model Checking Families of Real-Time Specifications 115

Table 3.37 List of activities performed by Optimize Fault Injection Experiments Using Model-Based

Mutation Testing .. 117

Table 3.38 List of activities performed by Behaviour-driven model development and test-driven model

review .. 119

Table 3.39 List of artifact types used in UC11_OTOKAR ... 122

Table 3.40 List of activities performed by Model-Based Formal Specification and Verification of Robotic

Systems .. 126

Table 3.41 List of activities performed by Penetration Testing .. 128

Table 3.42 List of activities performed by Simulation-based Verification .. 130

Table 3.43 List of activities performed by Vulnerability Analysis of FPGA Based Cryptographic Modules

Against Hardware-Based Attacks .. 133

Table 3.44 List of artifact types used in UC13_SIEMENS ... 137

Table 3.45 List of activities performed by UC13 - SIEMENS ... 140

Table 3.46 List of activities performed by Model-Based Mutation Testing .. 142

Table 3.47 List of activities performed by Monitoring Enriched Test Execution 143

Table 3.48 List of activities performed by Mutation-Driven Model-Based Test Case Generation 145

Table 3.49 List of artifact types used in UC14_CARDIOID .. 149

Table 3.50 List of activities performed by Biometric Model Performance and Privacy Validation 151

Table 3.51 List of activities performed by Hardware in the Loop Validation & Verification 153

Table 3.52 List of activities performed by Safe Generation and Instrumentation of Runtime Verification

Architectures ... 154

Table 3.53 List of activities performed by Software-Implemented Fault Injection 156

Table 3.54 List of activities performed by Verification of Driver Monitoring Models 157

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 19

Acronyms

ACC Adaptive Cruise Control

ADAS Advanced Driver-Assisted System

COTS Commercial off-the-shelf

CV Computer Vision

DSL Domain-Specific Language

FDD Failure Detection Diagnosis

ISO International Organization for Standardization

KPI Key Performance Indicator

MBT Model-based Testing

ML Machine Learning

NMT NeuroMuscular Transmission

RADAR RAdio Detection And Ranging

SCP Safety, Cybersecurity, and Privacy

SoC System on a Chip

SUT System under Test

VaV Verification and Validation; used for names in tools, where the symbol ‘&’ cannot be used

V&V Verification and Validation

VVML Verification and Validation Workflow Modelling Language

WP Work Package

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 21

1 Introduction

The efficient conducting of software development and quality assurance activities in complex projects

require their systematic description and modelling (including their sub-activities, execution steps, and

work products that they process and produce) and the provision of appropriate tool support for

executing the activities.

In WP4, a generic V&V workflow design approach and modelling language has been developed to

easily visualize V&V-oriented workflows in industrial use cases and concrete tool chains and facilitate

the understanding, analysis, and improvement of these workflows. The solution has paved the way

towards the efficient evaluation and optimization of V&V workflows and tool chains for selected quality

properties. The development of the V&V workflow design approach has been performed in close

connection with the V&V method library to support the systematic description, extension, and gap

analysis of V&V methods. In the next step, the V&V workflows will be transferred to the web-based

repository as project artifacts.

1.1 Scope

Within VALU3S, WP4 deals with the design and implementation of tailored V&V process workflows in

different industrial domains. Task 4.2 develops specific workflows and solution patterns for verification

and validation that address the challenges and goals stated by the industrial use cases. The goal is to

bring partner-specific and tool-specific workflows and contributions into a holistic and integrated

verification and validation process. One solution item of Task 4.2 is the systematic and tool-supported

analysis and modelling of V&V workflows. A further strategy is the virtualization of the V&V process

by exploitation models, prototypes, and digital twins for dedicated product and process aspects to

improve and accelerate quality assurance processes.

The outcomes presented in D4.8 focus on the final detailed description of improved process workflows.

The document describes the tool-supported modelling language VVML (Verification and Validation

Modelling Language) and the final set of V&V workflows for the VALU3S use cases. The results and

information from the interim version of V&V workflows (D4.6 [1]) have been used as inputs.

1.2 Document Structure

This document is structured as follows: The modelling language for verification and validation

workflows VVML is introduced in Chapter 2, which is slightly updated from D4.6 [1]. The final set of

V&V workflows designed for VALU3S use cases are presented in Chapter 3, which contains an adapted

structure and new content. Most of the content has been generated from Enterprise Architect, which

was used as the modelling framework for V&V workflows. Chapter 4 provides a summary and

conclusion of the work done and results achieved in Task 4.2.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 23

2 V&V Workflow Modelling Languages

In modelling languages such as UML, it is possible to represent the same idea in many ways. While the

flexibility that the language offers, is a positive aspect, it also brings problems in communicating ideas

effectively. Not everyone is a UML expert or knows every feature that the modelling language offers.

By creating a DSL which clearly specifies what diagrams and elements can be used in creating a V&V

method definition or its workflow, everyone follows a common standardized language. Modelling V&V

workflows falls into a specialized domain that requires a tailored modelling approach for activity

models. To meet such requirements, it was decided to develop a UML profile for V&V Modelling

Language – shortly VVML profile – introducing a set of model constructs and deploy the UML profile

with other extension mechanisms as a modelling framework enabling rapid modelling of V&V

workflows. The tool environment, in which VVML is implemented, is Enterprise Architect (EA), a UML

modelling tool by Sparx Systems.

In the following, essential VVML aspects are introduced to ease reading of the diagrams used in Chapter

3. A detailed description of VVML, in particular rules and guidelines for its usage will be given in an

own VVML-handbook, which is currently being prepared and will be made available to the community

at the end of the VALU3S project.

2.1 Diagram Types

Two diagram types are distinguished in VVML, corresponding to two modelling levels:

• V&V Method Definition

• V&V Workflow Specification

2.1.1 V&V Method Definition

This diagram type serves for specifying global properties of a VVML method applied in the project.

Figure 2.1 shows an example of a method definition diagrams with its main elements.

Figure 2.1 Visual representation of the Method definition diagram and its elements structure

Final Detailed Description of Improved Process Workflows

24 ECSEL JU, grant agreement No 876852.

The V&V method definition enables the design of the base elements of the workflow. The modelling

element Method is a unit that represents a process workflow dedicated to a specific V&V phase. It has a

defined method type, which is used to represent the automation level. Three automation levels are

considered here: automated, semi-automated, or manual. An Artifact is an object that is exchanged

between methods and its environment (or activities within methods, see next clause). It has a dedicated

type and represents either an information object or an active unit, i.e., program code or executable.

Every method owns a set of MethodArtifacts, which represent the method interfaces for the artifacts that

they consume or produce. Table 2.1 describes the elements of VVML method definition diagrams.

Table 2.1 VVML Method Definition Elements

Element Description

Method Represents a high-level definition of a «Method». It organizes and specifies the participation

of subordinate behaviours, such as sub-Activities, to reflect the control and «Artifact» flow of

a process.

The icon in the top left corner indicates the automation level which can be one of the following:

• Manual , Automated , Semi-automated

A method has parameter, called «MethodArtifacts» (which are of type «Artifact»).

Besides MethodArtifacts, in the body of the method box the activities contained in the

methods workflow are listed, as well as other methods called within its workflow.

MethodArtifact A «MethodArtifact» is an «Artifact» exposed to the method environment with a defined flow

direction (in or out). This element indicates which artifacts are provided or required by a

method.

Artifact Represents a data object, document either produced (output) or consumed (input) or a

functional (active) unit used by a «Method» / «Activity» (depending on the level of

abstraction). The icon in the top left corner indicates the artifact type which can be one of the

following:

• Information , Active Unit

2.1.2 V&V Workflow Definition

The actual implementation of the workflow within a V&V method (V&V Workflow) is specified by the

V&V workflow definition diagram. Its main purpose is to organize and specify the composition of

activities, to reflect their sequential dependencies and the internal flow of artifacts while executing the

method. Table 2.2 presents the elements of the V&V workflow definition and implementation.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 25

Table 2.2 VVML Workflow Definition Elements

Element Symbol Description

Start Workflow

Node that initiates the beginning of a workflow

Stop Workflow

Node that indicates the end of a workflow

Activity

Atomic action that is not further decomposed into steps

Decision Activity

Combination of Activity and Gateway. Appropriate if the decision needs

input and/or activity, but produces no output besides the decision.

Call Behaviour

Invocation of another method (with another method workflow diagram)

Activity Artifact

Activity interface for its input and output artifacts

Gateway

Branching of sequence flow based on condition

Fork / Join Enables parallel sub-paths of sequence and artifact flows

Sequence Flow Sequential connection of VVML activities

Artifact Flow

Exchange of artifacts between activities or from/to method interfaces

A workflow defines Control Flows and Artifact Flows. A Control Flow is defined by sequences of

Activities that are executed in a defined order. Branches in the Control Flow are supported by Gateways.

Quasi parallel execution is realized by Fork and Join Elements. Start and End Nodes indicate beginning

and ending of a workflow. Activities can exchange Artifacts through their interfaces, which define the

Artifact Flow of the workflow. The internal Artifact Flow is defined between activities, whereas the

external Artifact Flow is defined from the method interfaces to the activities for method inputs or from

the activities to the method interfaces for method outputs.

For examples on how V&V-workflows are modelled with these elements, see the Chapter 3.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 27

3 VALU3S V&V Workflows

This chapter elaborates on the interim set of V&V workflows that have been modelled for industrial use

cases in VALU3S. Partners directly modelled their V&V workflows in Enterprise Architect and

generated the content for the following sections. Due to the difference in focus and technical setup of

the use cases, the workflow figures and descriptions differ in the level of detail. Note that the provider

of use case 12 left the consortium in the end of 2020. The following subchapters are entitled after the use

cases, with the name of the use case provider in square brackets.

3.1 V&V Workflow of UC1 CAMEA

UC1_CAMEA package contains the following workflow(s):

• V&V of machine learning-based systems using simulators

• Model-Based Threat Analysis

• Assessment of implementation of network communication

Figure 3.1 shows the V&V of machine learning-based systems using simulator Method Definition

diagram type of the V&V workflow UC1_CAMEA.

Figure 3.1 Method Definition of V&V of machine learning-based systems using simulators defined for UC1_CAMEA

Figure 3.2 shows the Model-Based Threat Analysis Method Definition diagram type of the V&V

workflow UC1_CAMEA.

V&V of machine learning-based systems using

simulators

tags

Type = Semi-automated

Perform activities

Allocate and validate ML requirements :

Define Data Requirements :

Extract descriptions of ML components :

Generate ML Data from Simulator :

Generate report :

Instantiate ML Data Argument Pattern :

Instantiate ML Verification Argument Pattern :

Validate ML Data :

Verify ML Model :

CAMEA System

description:

SystemDescription

CAMEA System

description:

SystemDescription

System requirements:

Requirements

System requirements:

Requirements

V&V report: ReportV&V report: Report

Final Detailed Description of Improved Process Workflows

28 ECSEL JU, grant agreement No 876852.

Figure 3.2 Method Definition of Model-Based Threat Analysis defined for UC1_CAMEA

Figure 3.3 shows the Assessment of implementation of network communication Method Definition

diagram type of the V&V workflow UC1_CAMEA.

Figure 3.3 Method Definition of Assessment of implementation of network communication defined for UC1_CAMEA

Details on the workflow(s) are given in the following subsections.

3.1.1 Artifacts used in UC1_CAMEA

Table 3.1 lists the artifacts used for the workflow(s) defined for UC1_CAMEA.

Model-Based Threat Analysis

tags

Type = Semi-automated

Perform activities

Build/Update Cyber Security Architecture Model :

Assure conformance of model with SUT :

Classify Threats - Risk Evaluation :

Derive Threats (Update) :

Generate Threat Report :

Identify unacceptable (and not mitigated) risks :

Identify/Design Mitigations (for unacceptable risks) :

Link Architecture and Requirements :

Threat Analysis (ThreatGet) :

Complete Threat

Analysis Report: Threat

Analysis Report

Complete Threat

Analysis Report: Threat

Analysis Report

Final Threat Model:

Threat Model

Final Threat Model:

Threat Model

Optional: SUTOptional: SUT

System Architecture:

SystemDescription

System Architecture:

SystemDescription

System Requirements:

Requirements

System Requirements:

Requirements

System Architecture and

Requirements including

Mitigations: Requirements

System Architecture and

Requirements including

Mitigations: Requirements

Assessment of implementation of network communication

tags

Type = Semi-automated

Perform activities

 : Simulated fault-injection of a network link

Generate Report :

Implementation :

Static Code Analysis :

(from ASINC)

:Requirements:Requirements

:SystemDescription:SystemDescription
:Report:Report

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 29

Table 3.1 List of artifact types used in UC1_CAMEA

Name Description

Report (Information) A written document that consolidates analysis results from an

activity

Requirements (Information) A requirement describes a condition or capability to which a

system/component must conform

SUT (Active Unit) Principally, this method is intended to be executed before the

SUT is designed. If, however, it exists already, it should be

modified according to the findings during method execution.

System Description (Information) Descriptions and architecture of a system

Threat Analysis Report (Information) The output of the method is a report that describes the output

of the analysis.

Threat Model (Information) The model is an architecture diagram of the system.

3.1.2 V&V Workflows of V&V of Machine Learning-Based Systems

Using Simulators

Machine learning is a critical enabling technology for many of the highly automated applications today.

Typical examples include intelligent transport systems (ITS) where ML solutions are used to extract a

digital representation of the traffic context from the highly dimensional sensor inputs. Unfortunately,

the ML models are opaque in nature (stochastic and data driven with limited output interpretability),

while functional safety requirements are strict and require a corresponding safety case. Furthermore,

development of systems that rely on deep learning introduces new types of faults. To meet the

increasing needs of trusted ML-based solutions, numerous V&V approaches have been proposed.

Simulators can be used to support system testing as part of V&V of SCP requirements. An ideal

simulator to test perception, planning and decision-making components of an autonomous system must

realistically simulate the environment, sensors and their interaction with the environment through

actuators. Simulated environments bring several benefits to V&V of ML-based systems, particularly

when (i) data collection or data annotation is difficult, costly or time consuming, (ii) real-world testing

is endangering human safety, (iii) coverage of collected data is limited, and (iv) Reproducible and

scalability are important.

The major bulk of system-level testing of autonomous features in the automotive industry is carried out

through on-road testing or using naturalistic field operational tests. These activities, however, are

expensive, dangerous, and ineffective. A feasible and efficient alternative is to conduct system-level

testing through computer simulations that can capture the entire self-driving vehicle and its operational

environment using effective and high-fidelity physics-based simulators. There is a growing number of

public-domain and commercial simulators that have been developed over the past few years to support

realistic simulation of self-driving systems, e.g., TASS/Siemens PreScan [3], CARLA [4], LGSVL [5], and

BeamNG [6]. Simulators will play an important role in the future of automotive V&V, as simulation is

recognized as one of the main techniques in ISO/PAS 21448 [7]. As the possible input space when testing

automotive systems is practically infinite, attempts to design test cases for comprehensive testing over

the space of all possible simulation scenarios are futile. Hence, search-based software testing has been

advocated as an effective and efficient strategy to generate test scenarios in simulators. Another line of

Final Detailed Description of Improved Process Workflows

30 ECSEL JU, grant agreement No 876852.

research proposes techniques to generate test oracles, i.e., mechanisms for determining whether a test

case has passed or failed. Related to the oracle problem, several authors proposed using metamorphic

testing of ML-based perception systems, i.e., executing transformed test cases while expecting the same

output. Such transformations are suitable to test in simulated environments, e.g., applying filters on

camera input or modifying images using generative adversarial networks.

Inspired by AMLAS [8] process, the method "V&V of machine learning-based systems using simulators"

is designed to work with ITS surveillance domain. The process starts with allocating the system

requirements to ML-component requirements, and subsequently requirements for verification data. The

Scenario Generator tool, realizing different algorithms (such as search-based testing) to generate test

case scenarios that can later be imported into a realistic simulator (that can either be open-source

solutions or proprietary ones). The simulator will then synthetize sensor responses of these scenarios to

build the verification data that fulfill the data requirements. The V&V results of the process consist of

test cases results and instantiated arguments.

Figure 3.4 shows the workflow specification diagram of V&V of machine learning-based systems using

simulators.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 31

Figure 3.4 Workflow Definition diagram of V&V of machine learning-based systems using simulators - Workflow used in

UC1_CAMEA

V&V of machine learning-based systems using simulators

CAMEA System description:

SystemDescription

CAMEA System description:

SystemDescription

System

requirements:

Requirements

System

requirements:

Requirements

V&V report: ReportV&V report: Report

Define Data Requirements

Data

Requirements

Data

Requirements

Data

Requirements

Justification

Report: Report

Data

Requirements

Justification

Report: Report

ML Data Argument

Pattern: Argument

Pattern

ML Data Argument

Pattern: Argument

Pattern

Generate ML Data from

Simulator

Synthetized

Verification Data:

Verification Data

Synthetized

Verification Data:

Verification Data

Validate ML Data

ML Data Validation

Results: V&V Results

ML Data Validation

Results: V&V Results

Synthetized

Verification Data:

Verification Data

Synthetized

Verification Data:

Verification Data

Instantiate ML

Data Argument

Pattern

ML Data Argument:

Argument

ML Data Argument:

Argument

Verify ML Model

ML RequirementsML Requirements

Verification Data:

Verification Data

Verification Data:

Verification Data

ML Model: ML ModelML Model: ML Model

ML Verification

Results: V&V

Results

ML Verification

Results: V&V

Results

Verification Log:

Log

Verification Log:

Log

Instantiate ML Verification

Argument Pattern

ML Verification

Argument

Pattern:

Argument

Pattern

ML Verification

Argument

Pattern:

Argument

Pattern

ML Verification

Argument: Argument

ML Verification

Argument: Argument

Allocate and validate ML requirements

System Requirements:

Requirements

System Requirements:

Requirements

ML Requirements: RequirementsML Requirements: Requirements

ML Requirements Argument Parttern:

Argument Pattern

ML Requirements Argument Parttern:

Argument Pattern

ML Verification Argument Pattern: Argument PatternML Verification Argument Pattern: Argument Pattern

Extract descriptions of ML

components

CAMEA System description:

SystemDescription

CAMEA System description:

SystemDescription

ML Model: ML ModelML Model: ML Model

Generate report

ML Data Validation

Results: V&V Results

ML Data Validation

Results: V&V Results

ML Data Argument: ArgumentML Data Argument: Argument

Data Requirement Justification Report: ReportData Requirement Justification Report: Report
V&V report: ReportV&V report: Report

Final Detailed Description of Improved Process Workflows

32 ECSEL JU, grant agreement No 876852.

Table 3.2 lists the activities of the workflow V&V of machine learning-based systems using simulators.

Table 3.2 List of activities performed by V&V of machine learning-based systems using simulators

Name Type Description

Allocate and validate ML

requirements

Manual (a) Allocate ML Requirements from System Requirements;

(b) Validate the ML requirements against the system

architecture and operational environment (such as sensor

mounting positions, operational weather conditions...); (c)

Formulate Argument Patterns with GSN structure, where

the top claim is that the allocated ML requirements are

satisfied in the defined environment.

Define Data Requirements Manual Develop data requirements, specify the required

characteristics of synthesized data must have to ensure that

the ML model meets the allocated requirements. These

characteristics include relevance, completeness, accuracy

and balance of data. The data requirements shall also

include made assumptions regarding system operation

environments.

Extract descriptions of ML

components

Manual Extract description, roles, and scope of ML components

within the system and related interfaces.

Generate ML Data from

Simulator

Semi-automated This activity takes as input the data requirements and uses

the simulator to synthesize datasets meeting these

requirements. Generated data includes separate datasets:

Test data and Verification data.

The simulator (Berge simulator) will be

developed/configured against the system description and

the operational environment, which include the following:

- 3D scene description and required parameterization (e.g.

number of lanes/direction etc.)

- Sensor specification and parameterized mounting

positions (to ensure that the simulator outputs accurately

simulate sensor responses as in real world settings)

- Parameterized lighting and weather conditions

- Ability to run pre-defined scenarios from generated

scenario scripts.

Scenario Generator will generate traffic scenario scripts

containing vehicle trajectories complying with data

requirements. The generated trajectories will be used as

input to the simulator to generate the datasets.

Generate report Manual This activity consolidates different output artifacts of

previous activities into a V&V report

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 33

Name Type Description

Instantiate ML Data

Argument Pattern

Manual This activity takes as input the ML Data Argument Pattern

and other data related artifacts to create ML Data Argument

Instantiate ML Verification

Argument Pattern

Manual This activity creates ML Verification Argument from the

Verification Argument Pattern and previously generated

artifacts.

Validate ML Data Semi-automated The ML data validation activity checks that the generated

data sets are sufficient to meet the ML data requirements.

The results of the data validation activity will be explicitly

documented.

Data validation considers the relevance, completeness, and

balance of the data sets. Discrepancies identified between

the data generated and the ML data requirement will be

justified. These justifications will be captured as part of the

data validation results.

Verify ML Model Semi-automated This activity takes as input the ML requirements, the

Verification Data and the ML model. The verification may

consist of two sub-activities: test-based verification and

formal verification. For each ML requirement, at least one

activity shall be undertaken. Verification results for each

requirement will be recorded in the ML verification results.

Verification log with document the verification measures to

ensure that the data used in verification was not exposed to

the development team (independent from the development

activities)

3.1.3 V&V Workflows of Model-Based Threat Analysis

Model-based threat analysis is a threat modelling approach that utilizes STRIDE model, which

categorizes different types of threats and simplifies the overall security conversations. It serves as means

to analyse systems for threats as well as failures, and consists of three major components:

1. A system model represents the system under consideration in its current status. This means that

the approach can be applied during the design phase where assumptions about the future

system are driving development, as well as during the implementation phase which reveals

shortcomings of the planned system and therefore results in an adaption of the system.

Moreover, model-based threat analysis can also be applied during the operational phase when

the system is already running. A component may fail and, therefore, requires replacement. The

system model is based on a data flow diagram. It holds all known security attributes of system

components as well as the connections between them.

2. A threat model represents a digital twin of known threats. It is constituted of rules that allow for

a later analysis of the system model. These rules are anti-patterns, which are basically system

Final Detailed Description of Improved Process Workflows

34 ECSEL JU, grant agreement No 876852.

configurations that are considered insecure and should therefore not be contained within the

system under consideration.

3. A threat analysis engine enables an automated analysis of the system. It compares each rule with

the system model to detect potentially insecure configurations and consequently threats the

system under consideration may be affected by.

The whole threat modelling process results in a catalogue depicting threats that the system suffers from

and, consequently, require treatment. The current rule sets were derived from UNECE WP29 [9], ETSI

and the ITU. The tool used is ThreatGet [10]. The described approach is an iterative process which allows

for consecutive analysis of the system with applied security measures that serve as threat mitigations.

Figure 3.5 shows the workflow specification diagram of Model-Based Threat Analysis.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 35

Figure 3.5 Workflow Definition diagram of Model-Based Threat Analysis - Workflow used in UC1_CAMEA

Table 3.3 lists the activities of the workflow Model-Based Threat Analysis.

Model-Based Threat Analysis

System Architecture and

Requirements including

Mitigations: Requirements

System Architecture and

Requirements including

Mitigations: Requirements

Final Threat Model: Threat ModelFinal Threat Model: Threat Model

Complete Threat

Analysis Report: Threat

Analysis Report

Complete Threat

Analysis Report: Threat

Analysis Report

Optional:

SUT

Optional:

SUT

System Requirements:

Requirements

System Requirements:

Requirements

System

Architecture:

SystemDescription

System

Architecture:

SystemDescription

Build/Update Cyber

Security Architecture

Model

Architecture:

Threat Model

Architecture:

Threat Model

Threat Analysis

(ThreatGet)

Architecture +

Threats: Threat

Model

Architecture +

Threats: Threat

Model

Classify Threats - Risk

Evaluation

Architecture +

Threats + Risk

Levels: Threat

Model

Architecture +

Threats + Risk

Levels: Threat

Model

Identify/Design

Mitigations (for

unacceptable risks)

System

Architecture

and

Requirements

extended with

Mitigations:

Requirements

System

Architecture

and

Requirements

extended with

Mitigations:

Requirements

Identify unacceptable (and

not mitigated) risks

Complete:

Threat Model

Complete:

Threat Model

Generate Threat

Report

SUT

available?

Assure conformance

of model with SUT
SUTSUT

Adapted ModelAdapted Model

Link Architecture

and Requirements

No

yes

All identified risks acceptable

Unacceptable risks

exist

Final Detailed Description of Improved Process Workflows

36 ECSEL JU, grant agreement No 876852.

Table 3.3 List of activities performed by Model-Based Threat Analysis

Name Type Description

Assure conformance of model

with SUT

Semi-automated If the SUT exists already, the architecture is checked against

it for conformance.

Build/Update Cyber Security

Architecture Model

Manual For the target system (SUT), an architecture model is

developed containing relevant elements and considering

security requirements. In iterations, it is adapted according

to mitigation proposals.

(For ThreatGet, a proper editor exists.)

Classify Threats - Risk

Evaluation

Manual Identified threats are evaluated with respect to their

criticality. Mitigation means of previous iterations are

considered.

Generate Threat Report Semi-automated Resulting test report is produced.

Identify unacceptable (and

not mitigated) risks

Manual If unacceptable risks were identified, they must be treated.

Identify/Design Mitigations

(for unacceptable risks)

Manual For unacceptable risks, mitigation means are elaborated.

Threat Analysis (ThreatGet) Automated The architecture model is examined with respect to

vulnerabilities against (cyber) attacks, using e.g., threat

models.

3.1.4 V&V Workflows of Assessment of Implementation of Network

Communication

Assessment of implementation of network communication consists of two analyses: static code and

dynamic analysis. At first, the code which deals with communication within the given system (e.g.,

connection of the camera to the cloud) must be implemented according to feature requests or bug

reports. The code is then inspected in static code analysis.

Static code analysis uses either general analysers which are available in well-known static analysis

frameworks (for instance, but not limited to, Infer or Frama-C). The targets for the analyses are general

software quality issues like memory related bugs, synchronization bugs, or general software

weaknesses. Static code analysis can also incorporate purpose-specific analysers which focus on, e.g.,

performance or cyber-security related problems. The results from static code analyses can be used not

just by developers to fix the code but it can sometimes be used to locate possible weakness which should

be further inspected by dynamic analysis during runtime. The execution of static analysis is fully

automated, but the results must be processed manually.

Dynamic analysis of a design and an implementation of communication of the system is based on

simulated fault-injection of a network link. The method requires one to clearly specify the

communication nodes, communication parts, and prioritize which parts of communication are sensitive

on communication link reliability, stability, and speed. The method incorporates a tool which can

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 37

automatically introduce faults on selected network flows which simulate connection loss, connection

delays, or man-in-the-middle attacks. The activity ends with generation of the overall report of the

assessment.

Figure 3.6 shows the workflow specification diagram of Assessment of implementation of network

communication.

Figure 3.6 Workflow Definition diagram of Assessment of implementation of network communication used in UC1_CAMEA

Table 3.4 lists the activities of the workflow Assessment of implementation of network communication.

Table 3.4 List of activities performed by Assessment of implementation of network communication

Name Type Description

Simulated fault-injection of a

network link (CallBehavior,

see Section 3.2.3)

Semi-automated Implementation of the system under test. The

implementation is based on the feature requests (e.g.,

requirements), or bug reports if a new version of the system

is required.

Generate Report Semi-automated Merging of the reports from static and dynamic analyses.

Implementation Manual Implementation of the system under test. The

implementation is based on the feature requests (e.g.,

requirements), or bug reports if a new version of the system

is required.

Final Detailed Description of Improved Process Workflows

38 ECSEL JU, grant agreement No 876852.

Name Type Description

Static Code Analysis Manual Static code analysis incorporates either general or purpose-

specific analyses. The analysis itself should be done fully

automatically.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 39

3.2 V&V Workflow of Use Case 2 ROBO

UC2_ROBO package contains the following workflow(s):

• UC2 ROBO V&V Workflow

• Simulated fault-injection of a network link

• Simulation-Based Fault and Attack Injection at System-level Improved

• UC2 Daily regression test

Figure 3.7 shows the ROBO V&V Method Definition diagram type of the V&V workflow UC2_ROBO.

Figure 3.7 Method Definition of ROBO V&V defined for UC2_ROBO

Figure 3.8 shows the Simulated fault-injection of a network link Method Definition diagram type of the

V&V workflow UC2_ROBO.

Figure 3.8 Method Definition of Simulated fault-injection of a network link defined for UC2_ROBO

UC2 ROBO VaV Workflow

tags

Type = Semi-automated

Perform activities

 : Assessment of Cybersecurity-Informed Safety

 : Simulated fault-injection of a network link

 : Simulation-Based Fault and Attack Injection at System-level

 : UC2 Daily regression test

Assessment of Cybersecurity-Informed Safety :

Commit :

Formalise requirements :

Implementation :

Merge results :

Output Analysis :

Penetration test : Penetration Testing

Software-Implemented Fault Injection :

System simulation :

:Results:Results

:System description:System description

:System requirements:System requirements

Simulated fault-injection of a network link

tags

Type = Semi-automated

Perform activities

Combinatorial Optimisation :

Input Space Partitioning :

Network Fault Injection :

Simulated Faults Selection :

Specification Analysis :

SUT Infrastructure Setup :

Test Case Execution Monitoring :
TestScenarios:

Test scenarios

TestScenarios:

Test scenarios

:System description:System description
PerfReport: ResultsPerfReport: Results

:System requirements:System requirements

Properties: Formal

properties

Properties: Formal

properties

Final Detailed Description of Improved Process Workflows

40 ECSEL JU, grant agreement No 876852.

Figure 3.9 shows the ComFASE_RISE_VTI_Improved Method Definition diagram type of the V&V

workflow UC2_ROBO.

Figure 3.9 Method Definition of ComFASE_RISE_VTI_Improve defined for UC2_ROBO

Details on the workflow(s) are given in the following subsections.

3.2.1 Artifacts used in UC2_ROBO

Table 3.5 lists the artifacts used for the workflows defined for UC2 by ROBO.

Table 3.5 List of artifact types used in UC2_ROBO

Name Description

Analysis results (Information) This is the database where the analysis results are stored. The

analysis results are based on the data logged in the output

database.

Fault and attack injected System model

(Active Unit)

Fault and Attack injected system models are the

representation of the impact that can be caused due to the

actual faults and attacks injected in the real environment of the

system under test.

Fault and Attack Model Library (Active

Unit)

The fault and attack model library is another input to the

execution flow. The library stores all the faults and attack

models the user could select and inject into the target system.

Formal properties (Information) Formalized properties of a system (e.g., functional

requirements).

Simulation-Based Fault and Attack Injection at System-level

tags

Type = Semi-automated

Perform activities

Analyse system under test (SUT) :

Analyze Fault and Attack Injection Results :

Configure Campaign :

End Inject Simulation :

Improve Fault/Attack Injection Campaign based on the analysis :

Inject Fault and Attack :

Perform Golden Run :

Post-injection analysis :

Pre-injection Analysis :

Reset Simulation :

Select/Create/Customize/Configure Scenario :

Start Inject Simulation :

Store simulation results :

:Analysis results:Analysis results

:Requirements:Requirements

:Fault and Attack

Model Library

:Fault and Attack

Model Library

:Scenario Database:Scenario Database

:Simulation System:Simulation System

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 41

Name Description

Information Gathering (Information) Information Gathering Description

Inject Fault and Attack (Active Unit) This is the activity in which the selected faults and attacks are

injected into the system under test

List of issues (Information) List of issues from prevision iteration

List of methods (Information) List of methods used in V&V process.

Output Database (Information) This is the output database where all the results of the test

campaign are stored where is later used for analysis.

Passed/Failed tests (Information) Results of test cases marked as passed or failed.

Post Exploitation (Information) Post exploitation description

Report (Information) Providing a detailed report of strategies to improve your

security

Requirements (Information) Requirements is yet another input to the execution flow

allowing the user to configure the tests and analyze the

results.

Reset Simulation (Information) This artifact represents resting the simulation in case of any

errors such as, if the simulation cashes.

Results (Information) Results from all used methods.

Scenario Database (Active Unit) The scenario database has a set of scenarios that are input to

the ComFASE execution flow. Each scenario defines the road

attributes, vehicle maneuvers and their interactions.

Simulation System (Active Unit) A simulation system is the input to the execution flow. This is

the system under test where the fault and attacks are injected

to analyze the behavior of the system to test the cybersecurity

and safety attributes of the system.

Start Inject Simulation (Active Unit) This activity represents the start of fault and attack campaign.

Store Simulation Result (Active Unit) A simulation system is the input to the execution flow. This is

the system under test where the fault and attacks are injected

to analyze the behavior of the system to test the cybersecurity

and safety attributes of the system.

System description (Information) Description of the verified and validated system. The

description may include diagrams, architecture, and/or its

behavior.

System requirements (Information) High-level requirements of the developed or improved system.

Test scenarios (Information) High-level description of test scenarios and test cases.

Vulnerability Analysis (Information) Vulnerability description

Final Detailed Description of Improved Process Workflows

42 ECSEL JU, grant agreement No 876852.

3.2.2 V&V Workflows of UC2 ROBO V&V Workflow

ROBO V&V process starts with logical system description and set of requirements. In case of the

transmission line reliability this might consist of the communication protocols and error handling

procedures. System requirements describe constrains that needs to be validated, e.g., state of the system

after connection timeout.

In the first phase of a V&V process, simulation of the system is performed, and potential critical faults

are identified with methods from our partners (Sim-based Fault and Attack Injection at System Level

and Assessment of Cybersecurity-informed safety). If simulation results pass all requirements, then

changes of the system are implemented and validated in the daily regression tests.

After passing regression tests, the system is tested with model-based methods from our partners

(Software implemented fault injection and penetration tests). For these methods exists testing setup of

a whole system. Results of all the methods are passed as output of the V&V process and used to alter

system description.

Figure 3.10 shows the workflow specification diagram of UC2 ROBO V&V Workflow.

Figure 3.10 Workflow Definition diagram of UC2_ROBO Workflow used in UC2_ROBO

UC2 ROBO VaV Workflow

:System description:System description

:System requirements:System requirements

:Results:Results

StartWorkflow

StopWorkflow

Implementation

:Source code:Source code

System simulation

Output Analysis

Analysis

results

Analysis

results

Tests

passed?

UC2 Daily regression test

Test report:

Test report

Test report:

Test report

Assessment of

Cybersecurity-Informed

Safety

Assessment

results

Assessment

results

Simulation-Based Fault and

Attack Injection at System-

level

FI resultsFI results

Penetration test

Pen.test

results

Pen.test

results
Simulated fault-injection of

a network link

::System

description

::System

description

PerfReport:

Results

PerfReport:

Results

Simulation

failure?

Formalise

requirements

:System

requirements

:System

requirements

PropsProps

Merge results

ActivityArtifactActivityArtifact

YES

Yes

NO

NoSimulation

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 43

Table 3.6 lists the activities of the workflow UC2 ROBO V&V Workflow.

Table 3.6 List of activities performed by UC2 ROBO V&V Workflow

Name Type Description

Activity: Simulated fault-

injection of a network link

(CallBehavior)

Semi-automated Implemented system is dynamically analyzed aiming at

network communication and overall performance. The

method checks if a developed system fulfills safety and

cybersecurity properties under different (faulty) network

conditions. The method results with a report about the

safety/cybersecurity performance of a system.

The method needs safety/cybersecurity requirements to be

monitored during system execution. The requirements must

be formalised in order to be run-time verified.

Activity: Simulation-Based

Fault and Attack Injection at

System-level Improved

(CallBehavior)

Semi-automated Simulation-Based Fault and Attack Injection at System-level

Activity: Assessment of

Cybersecurity-Informed

Safety (CallBehavior)

Semi-automated Assessment of Cybersecurity-Informed Safety

Activity: UC2 Daily

regression test (CallBehavior)

Automated Continuous tests run either periodically or based on events

of continuous development (e.g. a push of a new commit to

the repository).

Formalise requirements Manual System requirements are formalised in order to be used for

run-time verification of the developed system.

Implementation Manual Implementation (initial or incremental) of new features.

Merge results Semi-automated A simple activity that merges results from different analysis

methods.

Output Analysis Automated Analysis of outputs from previous activities

Penetration test: Penetration

Testing (CallBehavior)

Semi-automated Penetration tests of a system. Note that penetration tests

should take into account not just modified code but also

dependent code, since the whole architecture or hidden

behaviour may be affected by the code change.

System simulation Semi-automated

3.2.3 V&V Workflows of Simulated Fault-Injection of a Network Link

The activity starts with manual analysis of specification of the system under test (SUT). All the

requirements are considered with respect to system description in order to select possible

performance/security risks stemming from unexpected (temporary or permanent) network conditions.

Final Detailed Description of Improved Process Workflows

44 ECSEL JU, grant agreement No 876852.

These cases are described in a formal way from different points of view of which network conditions

are needed to be examined and how they relate to each other. The number of all possible combinations

of different network parameters will possibly be high so an optimised plan is required.

The optimisation of the fault injection plan (i.e., the plan which different faults aka. network conditions

are needed to be examined) is performed by combinatorial testing techniques (e.g., pair-wise testing).

Combinatorial optimisation is fully automated.

The optimised fault-injection plan needs to be performed. The next set of faults are selected (Simulated

Faults Selection) and configured (Network Fault Injection) in simulated network link(s), The test case is

setup (SUT Infrastructure Setup) with re-linking the original network link with simulated (fault-

injected) network link and the test case is executed while the SUT performance is automatically

monitored. If all the faults and their combinations are examined, the aggregated performance report is

being transferred as a result of the method.

Figure 3.11 shows the workflow specification diagram of Simulated fault-injection of a network link.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 45

Figure 3.11 Workflow Definition diagram of Simulated fault-injection of a network link used in UC2_ROBO

Table 3.7 lists the activities of the workflow Simulated fault-injection of a network link.

Table 3.7 List of activities performed by Simulated fault-injection of a network link

Name Type Description

Combinatorial Optimisation Automated Optimisation using combinatorial testing method will be

used (e.g., pair-wise coverage) to provide reduced number

of test conditions. Optimisation can be done automatically

using Combine tool (developed by BUT).

Simulated fault-injection of a network link

:System requirements:System requirements

TestScenarios:

Test scenarios

TestScenarios:

Test scenarios

PerfReport: ResultsPerfReport: Results

:System description:System description

Properties: Formal

properties

Properties: Formal

properties

Specification Analysis
RequirementsRequirements

NetworkStructureNetworkStructure

NetConstraintsNetConstraints

TargetEndpointsTargetEndpoints

StartWorkflow

Input Space Partitioning

NetConstraintsNetConstraints

FormalisedFaultInjectionPlanFormalisedFaultInjectionPlan

Combinatorial

Optimisation

InputSpacePartitionsInputSpacePartitions

OptimalPlanOptimalPlan

Network Fault Injection

FIPlanFIPlan

Simulated Faults Selection

FIPlanFIPlan

SUT Infrastructure Setup

TargetEndpointsTargetEndpoints

TestScenariosTestScenarios

Test Case Execution

Monitoring

PerformanceReportPerformanceReport

Reqs: System

requirements

Reqs: System

requirements

All faults examined?
StopWorkflow

no

yes

Final Detailed Description of Improved Process Workflows

46 ECSEL JU, grant agreement No 876852.

Name Type Description

Input Space Partitioning Manual Network conditions are categorised, partitioned, and

formalised as constraints for combinatorial optimisation.

Network Fault Injection Automated Selected faults are injected to the network infrastructure.

Faults are generated dynamically during system under test

(SUT) execution. The tool netloiter developed in BUT can be

used as automatic network fault injector.

SUT Infrastructure Setup Automated SUT infrastructure is setup. This contains main and

supplemental nodes (mocks or stubs can be used), network

connection between nodes together with network fault

injector.

Simulated Faults Selection Automated Network communication faults are selected for a single test

in order to systematically cover all network faults.

Specification Analysis Manual Requirements are considered with respect to system

description in order to select possible performance/security

risks stemming from unexpected (temporary or permanent)

network conditions.

Test Case Execution

Monitoring

Automated Execution of test case is monitored to provide the test

passed/failed feedback.

3.2.4 V&V Workflows of Simulation-Based Fault and Attack Injection at

System-level Improved

The workflow describes the application of the V&V method for Simulation-based fault and attack

injection. This method allows fault- and attack-injection mechanisms to evaluate the system’s

cybersecurity and safety properties e.g., by using simulator control commands during target system

simulations.

The workflow has four inputs: scenario database, test requirements, fault and attack model library and

a target simulation system. These inputs are described below.

The Scenario database has a set of scenarios that are inputs to the ComFASE execution flow. Each

scenario defines e.g., a network of roads, vehicle manoeuvres and their interactions. From the scenario

database, a specific scenario can be selected based on the test requirements.

An intrinsic part of this simulation method is its fault and attack model library, which stores all the

faults and attacks that could be modelled by the fault and attack injector. The user could then select a

model from the library and inject that into the target system.

The list of test requirements is another input to the execution flow allowing the user to configure the

tests and analyse the results. The requirements come from the test department, the stakeholders, or the

customers.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 47

The analyse system under test activity determines the fault and attack space structure and the details

of the system under test, such as the core components of the system, working methodology, protocols

used, and vulnerabilities if any. This information about the system could be used to perform pre-

injection analysis to reduce the fault and attack space. Following are the activities within the method

(i.e., Simulation-Based Fault and Attack Injection at System-level Improved).

After analysing the system, the scenario is selected and customized to perform the test campaigns.

After customizing a scenario, the golden run can be performed. The data logged during the golden run

may serve as a reference for analyses of the injections. As part of the activities performed within a golden

run, detailed traffic data generated from the simulation system is logged in a database for offline

analysis.

After executing the golden run activity, an attack injection campaign would need to be configured.

This activity consists of setting parameters such as the attack’s type, value, initiation time, and duration

for the specific scenario selected. The result of this activity is a test campaign that consists of a set of

attack injection experiments.

After the attack injection campaign is configured, the attack injection experiments are performed in the

target system according to the detailed configurations set in the test campaign. In case of simulation

crash during an experiment run, results are stored in a database for result analysis. The simulation is

then reset, and the test campaign continues by conducting the next experiment planned. In case of no

simulation crashes, the results of the experiments, including the traffic data logged during the

simulation are stored in a database for result analysis. Once the entire test campaign is finished, the

results stored in the database are analysed to evaluate the impact of attacks on the system.

Figure 3.12 shows the workflow specification diagram of Simulation-Based Fault and Attack Injection

at System-level Improved.

Final Detailed Description of Improved Process Workflows

48 ECSEL JU, grant agreement No 876852.

Figure 3.12 Workflow Definition diagram of Simulation-Based Fault and Attack Injection at System-level with additional

fault and attack models valid for multiple inter-vehicle communication (IVC) layers used in UC2_ROBO

Simulation-Based Fault and Attack Injection at System-level

:Analysis results:Analysis results

:Simulation System:Simulation System

:Requirements:Requirements

:Fault and Attack Model

Library

:Fault and Attack Model

Library

:Scenario Database:Scenario Database

Analyze Fault and

Attack Injection

Results

Additional

campaigns

planned?

ActivityFinal

Select/Create/Customize/Configure

Scenario

ActivityInitial

Configure Campaign

Start Inject Simulation

ActivityArtifactActivityArtifact

Inject Fault and Attack

:Inject Fault and

Attack

:Inject Fault and

Attack

Store simulation results

ActivityArtifact:

Store Simulation

Result

ActivityArtifact:

Store Simulation

Result

Campaign finished?

Perform Golden Run

Simulation crashed?

End Inject Simulation

ActivityArtifactActivityArtifact

Pre-injection Analysis

Post-injection analysis

:Store Simulation

Result

:Store Simulation

Result

Analyse system under test (SUT)

System information

Simulation results

Simulation results

Simulation

System

Yes

No

Scenario database

Yes

Reduced Fault and Attack Space

No

Requirements

Requirements

Simulation System

Simulation System

Fault and

Attack Model

Library

Requirements

Yes

No

Scenario

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 49

Table 3.8 lists the activities of the workflow Simulation-Based Fault and Attack Injection at System-level

Improved.

Table 3.8 List of activities performed by Simulation-Based Fault and Attack Injection at System-level Improved

Name Type Description

Analyse system under test

(SUT)

Manual The system under test is analyzed in this activity. The

analysis covers the information that can be gathered about

the system such as the component and sub-components of

the system, working methodology and any vulnerabilities

of the system that are known.

Post-injection analysis Manual The pre- and post-injection analysis helps to understand the

system and evaluate the system while it is under the

influence of faults and attacks. Moreover, the analysis also

helps to reduce the fault and attack space for the next

campaigns.

The Post Injection Analysis is mainly performed on the

stored simulation results of the fault and attack injection

campaign.

The post analysis results are stored in the result analysis

database.

The result database has not only the post injection analysis

results from the current from the current text campaigns,

but it also contains the post injection analysis of the previous

test campaigns which can be used to improve the upcoming

campaigns to validate the requirements.

The next test campaign can be optimized by analyzing the

previous test campaign results.

Analyse Fault and Attack

Injection Results

Semi-automated In the Analyse Fault and Attack Injection Results activity,

the monitored data obtained during simulations of the

golden run and faulty run is analysed based on the initial

test requirements to report the fault and attack injection

results of the campaign performed.

Configure Campaign Manual In the Configure Campaign activity, the test campaign is

configured by setting parameter values such as fault and

attack start time, end time, duration, and values.

End Inject Simulation Automated The End Inject Simulation activity represents the end of

fault and attack injection campaign.

Inject Fault and Attack Automated The Inject Fault and Attack activity represents the stage of

the test campaign where the faults and attacks are injected

in the system under test (SUT).

This step activates after each experiment is finished until the

whole test campaign is finished.

In case of a simulation crash during the campaign run,

the results are logged, and the simulation also resets.

Final Detailed Description of Improved Process Workflows

50 ECSEL JU, grant agreement No 876852.

Name Type Description

Perform Golden Run Automated Golden run is an experiment which is free from any faults

or attacks. This defined the ground truth of the system and

can be used to analyze fault and attack injection results.

Pre-injection Analysis Manual The Pre injection analysis is used to reduce the fault and

attack space to reduce the number of experimentation

efficiency without compromising the quality of the results.

The system information gathered during the system

analysis stage is initially used to perform pre-injection

analysis. Later the results from the post injection analysis

can improve the pre injection analysis for the next

campaign.

The inputs for the pre injection analysis are,

1- The results from the analysis performed on the system

under test.

2- The scenario that is selected based on the test needs.

3- Simulation results from the golden run.

4- The analysis results output from the post injection

analysis.

The fault and attack injection test campaign can then be

optimized based on the above points which could help to

reduce the fault and attack space.

Select/Create/Customize/Conf

igure Scenario

Manual Here the test scenario is selected after the system analysis.

The selected scenario can be further enhanced and

configured in this stage if needed.

Start Inject Simulation Automated The Start Inject Simulation activity represents the start of

fault and attack injection campaign.

Store simulation results Automated This activity (i.e., Store Simulation Results) represents the

logging of the fault and attack injection test campaign. The

simulation results log includes the simulation results

together with the test setup such as when the faulty

simulation run was initiated and ended.

3.2.5 V&V Workflows of UC2 Daily Regression Test

The workflow describes the daily regression test. Continuous tests run either periodically or based on

events of continuous development (e.g., a push of a new commit to the repository).

Once a new commit has been made, the system is automatically built (a program for remote station and

vehicle). Both programs are deployed and validated (with some sanity tests). The prescribed test

scenarios are run and evaluated. If an error occurs, the issue will be automatically reported (either for a

developer or to an issue tracker system - depends on where the tests are executed).

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 51

Figure 3.13 shows the workflow specification diagram of UC2 Daily regression test.

Figure 3.13 Workflow Definition diagram of Regression tests workflow used in UC2_ROBO

 Table 3.9 lists the activities of the workflow UC2 Daily regression test.

Table 3.9 List of activities performed by UC2 Daily regression test

Name Type Description

Build Semi-automated Building a system under test from a fresh commit.

Deploy remote station Automated Uploading a built remote station program.

Deploy vehicle Automated Uploading a new control system of a vehicle.

Evaluate test results Semi-automated Checking the results of tests.

Generate issues Automated Generation of issues from backtraces and logs.

Run test scenarios Automated Execution of test scenarios.

Validate deployment Automated Sanity tests whether deployment is correct.

UC2 Daily regression test

Issues: List of issuesIssues: List of issues

Test scenarios: Test scenariosTest scenarios: Test scenarios

Source code: Source codeSource code: Source code

Test report: Passed/Failed testsTest report: Passed/Failed tests

StartWorkflow

StopWorkflow

Build

:Source code:Source code

Deploy remote station

Deploy vehicle

Validate deployment

Run test scenarios

ActivityArtifactActivityArtifact

PassedFailedTestsPassedFailedTests

Evaluate test results

TestResultsTestResults

Failed testsFailed tests

Generate issues

ActivityArtifactActivityArtifact

Failed test?

Yes

No

Final Detailed Description of Improved Process Workflows

52 ECSEL JU, grant agreement No 876852.

3.3 V&V Workflow of Use Case 3 NXP

UC3_NXP package contains the following workflow:

• Use Case 3 Radar systems for ADAS

Figure 3.14 shows the Use Case 3 Radar systems for ADAS Method Definition diagram type of the V&V

workflow UC3_NXP.

Figure 3.14 Method Definition of Use Case 3 defined for UC3_NXP

Details on the workflows are given in the following subsections.

3.3.1 Artifacts used in UC3_NXP

Table 3.10 lists the artifacts used for the workflow(s) defined for UC3_NXP.

Table 3.10 List of artifact types used in UC3_NXP

Name Description

CouchBase (Active Unit) Couchbase Server is an open-source, distributed (shared-

nothing architecture) multi-model NoSQL document-oriented

database software package optimized for interactive

applications. These applications may serve many concurrent

users by creating, storing, retrieving, aggregating,

Use Case 3 Radar systems for ADAS

tags

Type = Semi-automated

Perform activities

Alter the signals based on the simulated targets :

Calculate the radar cube :

Evaluation :

improvement of UUT :

log the results :

Measurement :

Perform demultiplexing and save the samples in the specific virtual array memory location :

physical instrument configuration :

Radar under test configuration :

Read paramerization file :

Send the simulated radar taget data back to the receivers :

Simulate radar targets :

:testStand:testStand

:Customer Antenna Board:Customer Antenna Board

:Parameter file:Parameter file

:RSES:RSES

:LabVIEW:LabVIEW

MethodArtifact: MatlabMethodArtifact: Matlab

:Customer Antenna Board:Customer Antenna Board

:Radar Target Map

including target

parameters per target

(range, velocity, angle)

:Radar Target Map

including target

parameters per target

(range, velocity, angle)

:Jenkins:Jenkins

:Multiplexing algorithm:Multiplexing algorithm

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 53

Name Description

manipulating and presenting data. In VALU3S it is used as

smart test evaluation data base.

Customer Antenna Board

(Information)

The customer antenna board is the radar system used for

testing

data log (Information) The data are logged in the database

Jenkins (Active Unit) Jenkins is an open source automation server which enables

developers to reliably build, test, and deploy software.

Allows automated test execution and sandbox testing of newly

deployed SoC software execution. This reduces test time and

improves low cost error detection.

LabVIEW (Active Unit) LabVIEW is a graphical programming system from National

Instruments. The acronym stands for "Laboratory Virtual

Instrumentation Engineering Workbench". The first version

was released in 1986 for Macintosh computers. Today, the

development environment is also available for Windows and

Linux.

MATLAB (Active Unit) MATLAB is a proprietary multi-paradigm programming

language and numeric computing environment developed by

MathWorks. MATLAB allows matrix manipulations, plotting

of functions and data, implementation of algorithms, creation

of user interfaces, and interfacing with programs written in

other languages.

Multiplexing algorithm (Active Unit) Multiplexing algorithm enables the method DDMA

Parameter file (Active Unit) Descries the requirements for testing such as: target

parameters, test cases as well as scenarios

Python (Active Unit) Python is a general-purpose, commonly interpreted, higher-

level programming language. It claims to promote an easy-to-

read, concise programming style. For example, blocks are

structured by indentations rather than curly braces.

Python (Active Unit) Python is a general-purpose, commonly interpreted, higher-

level programming language. It claims to promote an easy-to-

read, concise programming style. For example, blocks are

structured by indentations rather than curly braces.

Radar Target Map including target

parameters per target (range, velocity,

angle) (Information)

The final output of the radar measurements. The comparison

between the expected and the real map indicates the quality of

the unit under test.

RSES (Active Unit) A target simulator for radar targets in real world driving

scenarios.

System Test Box (Active Unit) Is a test set up for laboratory

testStand (Active Unit) TestStand is a test management software suite from National

Instruments. TestStand is a software framework that adds

Final Detailed Description of Improved Process Workflows

54 ECSEL JU, grant agreement No 876852.

Name Description

value to test software developers. One of the most important

features it provides is a consistent look and feel for test

operators.

Unit under test (Active Unit) The unit under test is the chip which’ quality is measured.

3.3.2 V&V Workflows of Use Case 3 Radar Systems for ADAS

The "Radar system for ADAS" workflow tackles the need for new V&V methods and tools required due

to the higher complexity of modern ADAS systems. Some challenges in the V&V process cannot be

addressed with traditional methods.

One of the challenges is the necessity to include the verification and validation at system level, which

should cover the design and production phase of the IC components. The system-level validation must

include the interaction between the semiconductors and all the peripherals around the sensor to grant

the safety and reliability of the final system.

Thus, the environmental peripherals are introduced in the designed method to test the chip on a system

level and under simulated real-world conditions. To ensure reliable and valid testing, the chip-specific

thresholds are defined in advance, and all relevant test setups are listed in the test manual. After the

workflow is finished, the IC performance protocol highlights the IC performance.

The above-described activities lead to overall four artefact inputs and one output. Overall, the

programmed test environment, a test manual, predefined test parameters, a radar multi-target

simulator and the system test box are the requirements for the use case.

The input artefacts in the workflow defined for this use case are used to define test cases and design a

test plan for consequent and reliable test procedures following the test manual. The test plan is then

executed, and deviations from the expected thresholds are highlighted. Consequently, the chip is then

debugged until the performance in all test cases is appropriate. The final results are then captured in

the IC performance measurement protocol.

Figure 3.15 below shows the workflow specification diagram of Use Case 3 Radar systems for ADAS.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 55

Figure 3.15 Workflow Definition diagram of d Use Case 3 Radar systems for ADAS used in UC3_NXP

Table 3.11 lists the activities of the workflow Use Case 3 Radar systems for ADAS.

Use Case 3 Radar systems for ADAS

:Matlab:Matlab

:Parameter file:Parameter file

:Customer

Antenna Board

:Customer

Antenna Board

:Unit under test:Unit under test

:testStand:testStand

:LabVIEW:LabVIEW

:Jenkins:Jenkins

:System Test Box:System Test Box

:data log:data log

:CouchBase:CouchBase

:RSES:RSES

:Python:Python

:Matlab:Matlab

:Python:Python

all tests

completed?log the results

ActivityArtifactActivityArtifact

System test in

customer use

cases?

Measurement

radar target parameter

per target (velocity,

angle, resolution...)

radar target parameter

per target (velocity,

angle, resolution...)

radar target mapradar target map

improvement of UUT

target performance

reached?

Evaluation

evaluation

software

evaluation

software

StartWorkflow

StopWorkflow

Perform demultiplexing and

save the samples in the

specific virtual array

memory location

received multiplexed,

altered tranceiver

signals

received multiplexed,

altered tranceiver

signals

received multiplexed

signals from static radar

target

received multiplexed

signals from static radar

target

Alter the signals based on the

simulated targets

radar target

parameter

radar target

parameter
Send the simulated radar taget

data back to the receivers

altered radar

signals

altered radar

signals

Dopler Division Multiplexing

Access (DDMA)

signals with phase

shift values

signals with phase

shift values

Read paramerization file

test casestest cases

Radar under test

configuration test configurationtest configuration

test requierementstest requierements

physical instrument configuration

multiplexed

signals

multiplexed

signals

combine data

Simulate radar targets
hw test set uphw test set up

radar target

parmeter

radar target

parmeter

[No]

[No]

[Yes]

[No]

[Yes]

[Yes]

Final Detailed Description of Improved Process Workflows

56 ECSEL JU, grant agreement No 876852.

Table 3.11 List of activities performed by Use Case 3 Radar systems for ADAS

Name Type Description

Alter the signals based on the

simulated targets

Automated The RSES receives the radar target parameter as well as the

multiplexed transceiver signals. The signals are

consequently altered in a way as they would appear in the

real-world perception of radar targets (e.g. when driving in

a city).

Calculate the radar cube Automated The radar cube is a 3D point cloud of the received signals

which mirrors the perceived world

Evaluation Semi-automated The actual test results are compared against the target

performance parameters of the radar chip.

Measurement Semi-automated The performance of the radar chip in the radar system is

measured. Velocity, angle, resolution and fault detection are

among the most important performance parameters. The

target definition enables us to analyse radar imperfections

in linearity behaviour, signal to noise ratio, signal to

spurious ratio.

Perform demultiplexing and

save the samples in the

specific virtual array memory

location

Automated Demultiplexing enables the receiving chip to draw a radar

target map in form of a point cloud based on multiple

simultaneously received signals.

Radar under test

configuration

Semi-automated An UUT control enables the flawless execution of different

test cases in a single set up. The control is composed on the

HW set up (radar under test+ customer evaluation board)

and a software set-up which is developed with MATLAB

and Python. The device parameters are set using firmware

commands.

Read paramerization file Automated Instructions regarding test cases and target parameters

(velocity, angle, radar cross section.

Send the simulated radar

target data back to the

receivers

Automated After simulating the radar targets, the simulated signals are

sent back to the receivers.

Simulate radar targets Different radar targets are simulated based on the tests'

requirements. They do not only vary in the number of

targets, but they can also be moving targets or moving ego.

improvement of UUT Manual Actions are derived from the identified performance gaps

by the evaluation. The hardware and software of the tested

radar (unit under test) get iteratively improved until the

target parameters are reached. Jenkins as continuous

integration tool supports the software improvement.

log the results Automated The tests results are documented and saved for later use.

The generated data is logged in a database and can be

reused.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 57

Name Type Description

physical instrument

configuration

Semi-automated In the improved workflow, two new HW set-ups are used

to enable radar system testing. The RSES or the STB can be

used for system tests but have different use cases. The STB

measures the signals of one target in a laboratory

environment. The RSES can be used to simulate multiple

and moving targets as well as ego movement, which comes

along with a new array of possible faults which traditionally

could only be detected by system applicants such as OEMs.

Both radar system test set-ups are controlled by a newly

developed control software which is set up by a tool

combination (Python, MATLAB, LabVIEW, TestStand).

Doppler Division

Multiplexing Access (DDMA)

Automated DDMA helps with parallelization of different signals

simultaneously, more closely described done in 3.3.3.

3.3.3 V&V Workflows of Doppler Division Multiplexing Access (DDMA)

Integrated radar circuits usually have multiple transmitting and receiving units serving multiple

channels. Conventionally those are used sequentially to update the radar map. With using these

methods, we can test the performance of these channels simultaneously. The phase of the transmitted

signals is being changed by a phase shifter at the end of the transmitting chain to make the signals

orthogonal (invisible) to each other. Hence, the signals of all transmitters can be separated by the

receiver in the detection map. This saves customers time and improves the quality of the delivered

chips because they can be already validated at system level early in the supply chain. Last but not

least, quality is also improved because parasitic effects between channels are characterized that would

otherwise be invisible if the channels were tested sequentially.

Figure 3.16 shows the workflow specification diagram of Doppler Division Multiplexing Access

(DDMA).

Final Detailed Description of Improved Process Workflows

58 ECSEL JU, grant agreement No 876852.

Figure 3.16 Workflow Definition diagram of Doppler Division Multiplexing Access (DDMA) used in UC3_NXP

Table 3.12 lists the activities of the workflow Doppler Division Multiplexing Access (DDMA).

Table 3.12 List of activities performed by Doppler Division Multiplexing Access (DDMA)

Name Type Description

Activate Multiplexing Modus Semi-automated Multiplexing modus gets activated to enable the sending of

signals in parallel

Activate all transmitters in

parallel

Automated The difference to time-based multiplexing is the

parallelization of the sending and perception of signals

simultaneously without interference. Consequently, all

transmitters get activated in parallel here.

Develop Multiplexing with

the Doppler Division Multiple

Access

Manual The phase of the transmitted signals is being changed by a

phase shifter at the end of the transmitting chain to make

the signals orthogonal (invisible) to each other.

Send signals with the

respective phase-shift values

required for parallelization

Automated The altered signals are sent back and all transmitters can be

separated by the receiver in the detection map.

Dopler Division Multiplexing Access (DDMA)

test config: Integertest config: Integer

signals: Integersignals: Integer

Activate all transmitters in

parallel

Activate Multiplexing Modus

Develop Multiplexing with the

Doppler Division Multiple

Access

Send signals with the

respective phase-shift values

requiered for parallelizaion

StopWorkflow

StartWorkflow

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 59

3.4 V&V Workflow of Use Case 4 PUMACY

UC4_PUMACY package contains the following workflows:

• UC4_Combinded Virtual Validation and Failure Detection Diagnosis

• Failure Detection Diagnosis

• Virtual Validation

Figure 3.17 shows the Combined Virtual Validation and Failure Detection Diagnosis Method Definition

diagram type of the V&V workflow UC4_PUMACY.

Figure 3.17 Method Definition of Combined Virtual Validation and Failure Detection Diagnosis defined for UC4_PUMACY

Figure 3.18 shows the Failure Detection Diagnosis Method Definition diagram type of the V&V

workflow UC4_PUMACY.

UC4_Combinded Virtual Validation and Failure

Detection Diagnosis

tags

Type = Manual

Perform activities

Create combined validationr report :

Compare test results and model predictions :

Define test cases :

Failure Detection Diagnosis : Failure Detection Diagnosis

Virtual Validation : Virtual Validation

functional requirements:

System Specification

functional requirements:

System Specification

system architecture:

System_Architecture_Model

system architecture:

System_Architecture_Model

test cases: Test

Cases

test cases: Test

Cases

communication and

behavior faults: Fault

Model

communication and

behavior faults: Fault

Model

test objectives in

project: Test Objectives

test objectives in

project: Test Objectives

components: Simulation

Components

components: Simulation

Components

test scripts: Test

Scripts

test scripts: Test

Scripts

simulation components:

Simulation Components

simulation components:

Simulation Components

updated ML model:

ML_Model

updated ML model:

ML_Model

model predictions:

ML_Model_Predictions

model predictions:

ML_Model_Predictions

ML model: ML_ModelML model: ML_Model

scripts: Test Scriptsscripts: Test Scripts

ML model configuration:

ML Model Configuration

ML model configuration:

ML Model Configuration

simulation system:

Simulation System

simulation system:

Simulation System

simulation report:

Validation Report

simulation report:

Validation Report

combined validation

report: Validation Report

combined validation

report: Validation Report

Final Detailed Description of Improved Process Workflows

60 ECSEL JU, grant agreement No 876852.

Figure 3.18 Method Definition of Failure Detection Diagnosis defined for UC4_PUMACY

Figure 3.19 shows the Virtual Validation Method Definition diagram type of the V&V workflow

UC4_PUMACY.

Figure 3.19 Method Definition of Virtual Validation defined for UC4_PUMACY

Failure Detection Diagnosis

tags

Type = Semi-automated

Perform activities

check ML model :

Needs adaption because of Errors? :

Predict Pattern in Data :

Preprocess data :

Train ML Model :

test_object_ML_model_configuration:

ML Model Configuration

test_object_ML_model_configuration:

ML Model Configuration

traiined_model:

ML_Model

traiined_model:

ML_Model

input_ML_Model:

ML_Model

input_ML_Model:

ML_Model

model_predictions:

ML_Model_Predictions

model_predictions:

ML_Model_Predictions
Simulation log data:

Signal values

Simulation log data:

Signal values

Virtual Validation

tags

Type = Manual

Perform activities

check if adaptators for component coupling are avaiable :

check if simulation components are available and complete :

Create component adapters :

Create or extend components :

Create test scripts :

Deploy simulation components :

Evaluate outputs :

Execute simulation scenarios :

test cases: Test Casestest cases: Test Cases

test run report:

Validation Report

test run report:

Validation Report
components: Simulation

Components

components: Simulation

Components

requirements: System

Specification

requirements: System

Specification

system architecture:

System_Architecture_Model

system architecture:

System_Architecture_Model

updated simulation

components: Simulation

Components

updated simulation

components: Simulation

Components

simulation system:

Simulation System

simulation system:

Simulation System

fault model: Fault

Model

fault model: Fault

Model

adapters: Component

Adapters

adapters: Component

Adapters

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 61

Details on the workflows are given in the following subsections.

3.4.1 Artifacts used in UC4_PUMACY

Table 3.13 lists the artifacts used for the workflows defined for UC4_PUMACY_NEW.

Table 3.13 List of artifact types used in UC4_PUMACY

Name Description

Component Adapters (Active Unit) All simulation components are created.

Fault Model (Information) If trained machine learning model is not accurate to predict the

failures, it is considered as a Fault Model.

ML Model Configuration (Information) This step checks if there is any new feature or sensor added into

the dataset. With the addition new sensor variable in existing

dataset, machine learning model must be configured and

retrained.

ML_Model (Information) After pre-processing, raw data is converted into a suitable

format which fed into machine learning model for training. A

deep learning model LSTM (Long Short-Term Memory) is used

to predict the anomalies in an assembly process. An LSTM

network is well-suited to learn from experience to classify,

process and predict time series events when there are very

long-time lags of unknown size between important events.

ML_Model_Predictions (Information) This is the output of trained ML model which has been

deployed for predictions. The results from trained ML model is

used for the evaluation of Virtual Failure Detection &

Diagnosis.

Simulation Components (Active Unit) Check if simulation components are available and complete.

Simulation System (Active Unit) Execution of simulation scenario.

System Specification (Information) List of system specification is created and defined here.

System_Architecture_Model

(Information)

System architecture is defined here.

Test Cases (Information) List of test cases are defined here.

Test Objectives (Information) List of test objectives are defined here.

Test Scripts (Active Unit) Create and run python-based test scripts for fault injection

Validation Report (Information) After fault injection, verification and validation report is

generated for fault diagnosis.

Final Detailed Description of Improved Process Workflows

62 ECSEL JU, grant agreement No 876852.

3.4.2 V&V Workflows of Combined Virtual Validation and Failure

Detection Diagnosis

The combined method of Data Analytics/ML and Virtual Validation is designed and developed to detect

failures in the Simulation. ML-Pipeline will be used as enhancement / improvement of the “Failure

Detection and Diagnosis (FDD)” Method that is applied in UC4 as part of the tool chain.

Figure 3.20 shows the workflow specification diagram of Combined Virtual Validation and Failure

Detection Diagnosis.

Figure 3.20 Workflow Definition diagram of Combined Virtual Validation and Failure Detection Diagnosis used in

UC4_PUMACY

UC4_Combinded Virtual Validation and Failure Detection Diagnosis

functional requirements:

System Specification

functional requirements:

System Specification

system architecture:

System_Architecture_Model

system architecture:

System_Architecture_Model

test cases:

Test Cases

test cases:

Test Cases

test objectives in

project: Test

Objectives

test objectives in

project: Test

Objectives

communication and

behavior faults: Fault

Model

communication and

behavior faults: Fault

Model

test scripts:

Test Scripts

test scripts:

Test Scripts

components: Simulation

Components

components: Simulation

Components

simulation components:

Simulation Components

simulation components:

Simulation Components

updated ML model:

ML_Model

updated ML model:

ML_Model

model predictions:

ML_Model_Predictions

model predictions:

ML_Model_Predictions

ML model:

ML_Model

ML model:

ML_Model

scripts: Test Scriptsscripts: Test Scripts

ML model configuration: ML

Model Configuration

ML model configuration: ML

Model Configuration

simulation system:

Simulation System

simulation system:

Simulation System

simulation report:

Validation Report

simulation report:

Validation Report

combined

validation report:

Validation Report

combined

validation report:

Validation Report

StartWorkflow

StopWorkflow

Define test cases

requirements:

System Specification

requirements:

System Specification

test cases: Test Casestest cases: Test Cases

Failure Detection Diagnosis

Simulation log data:

Signal values

Simulation log data:

Signal values

test_object_ML_model_configuration:

ML Model Configuration

test_object_ML_model_configuration:

ML Model Configuration

trained_model:

ML_Model

trained_model:

ML_Model

input_ML_Model:

ML_Model

input_ML_Model:

ML_Model

model_predictions:

ML_Model_Predictions

model_predictions:

ML_Model_Predictions

Virtual Validation

components: Simulation

Components

components: Simulation

Components

simulation log data:

Signal values

simulation log data:

Signal values

test cases: Test

Cases

test cases: Test

Cases

test run report:

Validation Report

test run report:

Validation Report

requirements: System

Specification

requirements: System

Specification

system architecture:

System_Architecture_Model

system architecture:

System_Architecture_Model

updated simulation

components: Simulation

Components

updated simulation

components: Simulation

Components

simulation system:

Simulation System

simulation system:

Simulation System
test scripts:

Component

Adapters

test scripts:

Component

Adapters
test scripts:

Test Scripts

test scripts:

Test Scripts

Compare test results

and model predictions

validation report:

Validation Report

validation report:

Validation Report

model predictions:

ML_Model_Predictions

model predictions:

ML_Model_Predictions

Create combined

validationr report
:Validation

Report

:Validation

Report

:Validation

Report

:Validation

Report

:ML_Model_Predictions:ML_Model_Predictions

results are acceptable

and no further changes

requiredresults are not acceptable and

further changes are required

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 63

Table 3.14 below lists the activities of the workflow Combined Virtual Validation and Failure Detection

Diagnosis.

Table 3.14 List of activities performed by UC4_Combined Virtual Validation and Failure Detection Diagnosis

Name Type Description

Compare test results and

model predictions

Manual Results from the sub-methods (virtual validation and failure

detection diagnosis) are compared and used to take

decisions on possible changes of test cases and test artifacts

in subsequent test runs.

Create combined validation

report

Manual Validation report is created based on the results from the

evaluation and comparison of both sub-methods (virtual

validation and failure detection diagnosis)

Define test cases Manual Test cases are designed based on the input information from

the development process (requirements, architecture, fault

model)

Failure Detection Diagnosis:

Failure Detection Diagnosis

(CallBehavior)

Manual The data analytics/ML tool mainly focuses on predicting

and detecting the occurrence of failures in advanced in an

assembly process. The raw data will be collected from

CIROS simulation and failure detection model will be

trained and deploy for failure prediction & diagnosis.

Virtual Validation: Virtual

Validation (CallBehavior)

Manual A virtual simulation environment and dedicated test cases

are constructed and used to run and evaluate validation

scenarios.

3.4.3 V&V Workflows of Failure Detection Diagnosis

The data analytics/ML tool mainly focuses on predicting and detecting the occurrence of failures in

advance in an assembly process. The raw data will be collected from CIROS simulation and failure

detection model will be trained and deployed for failure prediction & diagnosis.

Figure 3.21 shows the workflow specification diagram of Failure Detection Diagnosis.

Final Detailed Description of Improved Process Workflows

64 ECSEL JU, grant agreement No 876852.

Figure 3.21 Workflow Definition diagram of Failure Detection Diagnosis used in UC4_PUMACY

Table 3.15 lists the activities of the workflow Failure Detection Diagnosis.

Table 3.15 List of activities performed by Failure Detection Diagnosis

Name Type Description

Predict Pattern in Data Manual After machine learning model training, the trained model is

deployed for failure detection. The LSTM model is trained

in such a way that it takes a single sample and predicts the

next future value. A threshold is set in a way that if the

predicted output value from LSTM model overshoots the

threshold, an alert signal has been generated in advance.

check ML model Manual The data from Simulation consists of important

features/attributes. This step checks if there is any new

feature or sensor added into the dataset. With the addition

new sensor variable in existing dataset Machine Learning

model must be retrained.

Failure Detection Diagnosis

trained_model:

ML_Model

trained_model:

ML_Model

test_object_ML_model_configuration:

ML Model Configuration

test_object_ML_model_configuration:

ML Model Configuration

input_ML_Model:

ML_Model

input_ML_Model:

ML_Model

model_predictions:

ML_Model_Predictions

model_predictions:

ML_Model_Predictions

Simulation log data:

Signal values

Simulation log data:

Signal values

StartWorkflow

Train ML Model

training_data:

Signal values

training_data:

Signal values

model_configuration: ML

Model Configuration

model_configuration: ML

Model Configuration
trained_model:

ML_Model

trained_model:

ML_Model

Preprocess data

simulation log

data: Signal

values

simulation log

data: Signal

values

normalized data:

Signal values

normalized data:

Signal values

StopWorkflow

check ML model

ML_Model:

ML_Model

ML_Model:

ML_Model

Predict Pattern in Data

normalized_input_data:

Signal values

normalized_input_data:

Signal values
model_predictions:

ML_Model_Predictions

model_predictions:

ML_Model_Predictions

trained_model:

ML_Model

trained_model:

ML_Model

Model is trained and

usable for predictions

model has to be imporved

or is not trained

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 65

Name Type Description

Pre-process data Manual Stream of raw data collected from the CIROS simulation has

to be pre-processed. Pre-processing involves:

• Data cleaning

• Data segmentation

• Feature correlation

• Feature reduction

• Data scaling

Train ML Model Manual After pre-processing, raw data is converted into a suitable

format which fed into machine learning model for training.

Since our data is a stream of time series, deep learning

model LSTM (Long Short-Term Memory) is used to predict

the anomalies in an assembly process. LSTM networks are a

type of recurrent neural network which are capable of

learning patterns or order dependence in sequence. An

LSTM network is well-suited to learn from experience to

classify, process and predict time series events when there

are very long-time lags of unknown size between important

events.

3.4.4 V&V Workflows of Virtual Validation

Virtual validation uses a fully virtual setup, i.e., virtual components and a virtual environment, to check

specific properties of the system under test through simulation. A virtual simulation environment and

dedicated test cases are constructed and used to run and evaluate validation scenarios. The simulation

scenarios comprise a set of simulation components, which are connected by dedicated adapters. Missing

or incomplete components and adapters are created or extended in separate steps. Simulation

components and adapters are deployed to defined execution nodes and connected to the FERAL

framework [11]. FERAL executes the simulation scenarios and controls the simulation components and

the data flow between them. Log data from simulation runs is collected and provided. A validation

report is created after the execution and evaluation of all simulation scenarios.

Figure 3.22 shows the workflow specification diagram of Virtual Validation.

Final Detailed Description of Improved Process Workflows

66 ECSEL JU, grant agreement No 876852.

Figure 3.22 Workflow Definition diagram of Virtual Validation used in UC4_PUMACY

Table 3.16 below lists the activities of the workflow Virtual Validation.

Table 3.16 List of activities performed by Virtual Validation

Name Type Description

Create component adapters Manual Missing adapters for connecting components to the FERAL

framework are created.

Create or extend components Manual Missing components for creating a virtual simulation

scenario in FERAL are created. For this activity external

simulation, modelling, or programming tools can be used.

Create test scripts Manual Validation scenarios are implemented as test scripts, which

will be executed by the FERAL

Virtual Validation

components: Simulation

Components

components: Simulation

Components

simulation log data:

Signal values

simulation log data:

Signal values

test cases:

Test Cases

test cases:

Test Cases

test run report:

Validation Report

test run report:

Validation Report

requirements:

System Specification

requirements:

System Specification

system architecture:

System_Architecture_Model

system architecture:

System_Architecture_Model
updated simulation

components: Simulation

Components

updated simulation

components: Simulation

Components

simulation system:

Simulation System

simulation system:

Simulation System

fault model: Fault

Model

fault model: Fault

Model

adapters: Component

Adapters

adapters: Component

Adapters

check if simulation

components are available

and complete

components:

Simulation

Components

components:

Simulation

Components

test cases:

Test Cases

test cases:

Test Cases

fault model:

Fault Model

fault model:

Fault Model

StartWorkflow

check if adaptators for

component coupling are

avaiable

adapters: Component

Adapters

adapters: Component

Adapters

Create or extend

components
component:

Simulation

Components

component:

Simulation

Components

requirements: System

Specification

requirements: System

Specification

system architecture:

System_Architecture_Model

system architecture:

System_Architecture_Model

components:

Simulation

Components

components:

Simulation

Components

Create test scripts

adapters:

Component

Adapters

adapters:

Component

Adapters

test cases: Test

Cases

test cases: Test

Cases

test scripts:

Test Scripts

test scripts:

Test Scripts

systema architecture:

System_Architecture_Model

systema architecture:

System_Architecture_Model

components:

Simulation

Components

components:

Simulation

Components

Create component

adapters

components:

Simulation

Components

components:

Simulation

Components

adapters:

Component

Adapters

adapters:

Component

Adapters

Deploy simulation

components

simulation system:

Simulation System

simulation system:

Simulation System

test scripts:

Test Scripts

test scripts:

Test Scripts

Execute simulation

scenarios

simulation log data:

Signal values

simulation log data:

Signal values

simulation system:

Simulation System

simulation system:

Simulation System

Evaluate outputs

validation run report:

Validation Report

validation run report:

Validation Report

simulation log data:

Signal values

simulation log data:

Signal values

StopWorkflow

components are available

and complete
adapters are

not available

adapters are

available
components are not

available or incomplete

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 67

Name Type Description

Deploy simulation

components

Manual Simulation components are deployed to their execution

nodes and connected to the FERAL framework.

Evaluate outputs Manual Outputs from the validation runs are evaluated by

dedicated log components.

Execute simulation scenarios Manual Simulation scenarios are executed within the FERAL

framework.

check if adaptors for

component coupling are

available

Manual Check if adaptors for connecting components to FERAL are

available

check if simulation

components are available and

complete

Manual Check if all required components of the simulation scenario

are available.

Final Detailed Description of Improved Process Workflows

68 ECSEL JU, grant agreement No 876852.

3.5 V&V Workflow(s) of UC5 UTRCI

UC5_UTRCI package contains the following workflows:

• SiLVer (SimuLation-based Verification)

• Model-implemented fault/attack injection with pre-injection analysis

• Classical Formal Verification Driven by Formal Requirements

Figure 3.23 shows the SILVER_UTRCI Method Definition diagram type of the V&V workflow

UC5_UTRCI.

Figure 3.23 Method Definition of SILVER_UTRCI defined for UC5_UTRCI

Figure 3.24 shows the MIFI_MIAI_RISE (pre-injection) Method Definition diagram type of the V&V

workflow UC5_UTRCI.

SiLVer (SimuLation-based Verification)

tags

Type = Semi-automated

Perform activities

Falsification :

Generate Report :

Parse Configuration :

Translate Model :

Translate Requirements :

Verification :

:System Model:System Model

:Analysis Report:Analysis Report

:Configuration:Configuration

:Requirements:Requirements

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 69

Figure 3.24 Method Definition of MIFI_MIAI_RISE (pre-injection) defined for UC5_UTRCI

Figure 3.25 shows the Verifying and Refactoring Formalised Requirements Method Definition diagram

type of the V&V workflow UC5_UTRCI.

Figure 3.25 Method Definition of Verifying and Refactoring Formalised Requirements defined for UC5_UTRCI

Details of the workflows are given in the following subsections.

Model-implemented fault/attack injection with pre-

injection analysis

tags

Type = Semi-automated

Perform activities

Analyse Fault/Attack Injection Results :

Analyse Model Structure :

Configure Campaign :

Inject Fault/Attack :

Perform Golden Run :

Pre-injection Analysis :

Retrieve from Database :

Run Simulation :

Store in Database :

Store Simulation Output :

:Simulink system

model

:Simulink system

model

:Fault/Attack

Injection Results

:Fault/Attack

Injection Results

:Stimuli:Stimuli

:Requirements:Requirements

:Fault/Attack

Model Library

:Fault/Attack

Model Library

Verifying and Refactoring Formalised Requirements

tags

Type = Semi-automated

Perform activities

Attach Simulink Model :

Build Formal System Model :

Formal Verification :

Formal Verification :

Generate Verification Conditions :

Refactor Requirement :

Requirements Elicitation :

Requirements Formalisation :

Simulink Model :

Translate to Verification Conditions :

Requirements: Natural-

Language Requirements

Requirements: Natural-

Language Requirements

Simulink Model:

Simulink Model

Simulink Model:

Simulink Model

Temporal Logic

Properties:

Temporal Logic

Properties

Temporal Logic

Properties:

Temporal Logic

Properties

Semi-Formal

Requirements: FRETish

Requirements

Semi-Formal

Requirements: FRETish

Requirements

CoCoSim Contracts:

CoCoSim Contracts

CoCoSim Contracts:

CoCoSim Contracts

Formal Model: Formal

System Model

Formal Model: Formal

System Model

Verification Report:

Evaluation Report

Verification Report:

Evaluation Report

Formal Verification

Properties: Formal

Verification Properties

Formal Verification

Properties: Formal

Verification Properties

Final Detailed Description of Improved Process Workflows

70 ECSEL JU, grant agreement No 876852.

3.5.1 Artifacts used in UC5_UTRCI

Table 3.17 lists the artifacts used for the workflows defined for UC5_UTRCI.

Table 3.17 List of artifact types used in UC5_UTRCI

Name Description

Analysis Report (Information) Textual report based on system analysis results. Optionally,

includes plots.

CoCoSim Contracts (Active Unit) Verification contracts, written in the contract language

CoCoSpec [12], derived from the system's requirements.

Configuration (Information) Set of YAML configuration files containing information such as

whether to perform verification or falsification, whether to plot

the results, etc.

Evaluation Report (Information) The output of the verification step, formatted as produced the

verification tool(s) that were used. This is likely to be the

verification conditions and if they passed (or counterexamples

if they failed), but will depend on the tools and methods used

by the verifier.

Fault/Attack Injection Results

(Information)

Results of V&V of the target Simulink system model.

Fault/Attack Model Library

(Information)

Library of fault- and attack Simulink models that can be

injected into the target Simulink system model.

Formal System Model (Active Unit) A formal model of the system, derived from the requirements

and other design documents. This will be written in the formal

language of choice by the verifier.

Formal Verification Properties (Active

Unit)

Formalised properties that the system or design should be

checked for. They are derived from the requirements and

written in the formal language of choice of the verifier.

FRETish Requirements (Active Unit) The semi-formalised requirements written in the controlled

natural language FRETish [13] (which is the input language to

the tool FRET.

Natural-Language Requirements

(Information)

The system's requirements, written in natural-language. These

may be improved or added to during the requirement

elicitation activity.

Requirements (Information) V&V requirements of the target Simulink system model

evaluated.

Simulink system model (Active Unit) V&V target Simulink system model evaluated.

Stimuli (Information) Input to the target Simulink system model during simulation.

System Model (Information) A Matlab Simulink model of the system's design.

Temporal Logic Properties (Active

Unit)

Temporal logic properties automatically generated from the

FRETish requirements.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 71

3.5.2 V&V Workflows of Verifying and Refactoring Formalised

Requirements

The method takes the system’s natural-language requirements and a Simulink diagram of the system’s

design as input, and ultimately produces formal verification results (usually either that a requirement-

check passes, or a counterexample that shows the events leading to a violation of the requirement).

Other outputs are produced and re-consumed within the method but are also available for use outside

the method. These artefacts include the semi-formal and temporal-logic versions of the requirements,

other formal models of the system, etc.

Figure 3.26 shows the workflow specification diagram of Verifying and Refactoring Formalised

Requirements.

Figure 3.26 Workflow Definition diagram of Verifying and Refactoring Formalised Requirements used in UC5_UTRCI

Verifying and Refactoring Formalised Requirements

Requirements: Natural-

Language Requirements

Requirements: Natural-

Language Requirements

Simulink Model:

Simulink Model

Simulink Model:

Simulink Model

Temporal Logic

Properties: Temporal

Logic Properties

Temporal Logic

Properties: Temporal

Logic Properties

Semi-Formal

Requirements:

FRETish

Requirements

Semi-Formal

Requirements:

FRETish

Requirements

CoCoSim Contracts:

CoCoSim Contracts

CoCoSim Contracts:

CoCoSim Contracts

Formal Model:

Formal System

Model

Formal Model:

Formal System

Model

Verification Report: Evaluation ReportVerification Report: Evaluation Report

Formal Verification Properties:

Formal Verification Properties

Formal Verification Properties:

Formal Verification Properties

MU-FRET

FRET-Supported Verification FRET-Guided Verification

StartWorkflow

Requirements

Elicitation

Requirements

Formalisation

Semi-Formal Requirements:

FRETish Requirements

Semi-Formal Requirements:

FRETish Requirements

Temporal Logic Properties:

Temporal Logic Properties

Temporal Logic Properties:

Temporal Logic Properties

Requirements

Detailed Enough?

Attach Simulink

Model

Generate Verification

Conditions

Formal Verification

Verification

Passed?

StopWorkflow

Translate to Verification Conditions

Build Formal System

Model

Formal Verification

Verification

Passed?

Error in

Requirements?

Refactor

Requirement

Refactoring

Needed?

Simulink Model

Semi-Formal Requirements

Semi-Formal

Requirements

[No]

Simulink Model

Formal Verification

Properties

Updated Natural-Language Requirements

[Yes]

Simulink Model

Semi-Formal Requirements

Verification

Report

[Yes]

Verification

Report

Formal System Model
Formal Verification Properties

Formal Properties

[No]

[No]

CoCoSim Contracts

[Yes]

System Model

Semi-Formal

Requirements

[No]

Semi-Formal Requirements

[Yes]

[Yes]

[No]

Natural-Language

Requirements

Final Detailed Description of Improved Process Workflows

72 ECSEL JU, grant agreement No 876852.

Table 3.18 lists the activities of the workflow Verifying and Refactoring Formalised Requirements

Table 3.18 List of activities performed by Verifying and Refactoring Formalised Requirements

Name Type Description

Attach Simulink Model Semi-automated Within MU-FRET, add the Simulink that describes the

system's design.

Build Formal System Model Manual Using the available information about the system (various

forms of requirements, possibly even design diagrams)

build a formal model of the system in the verifier's formal

language of choice.

For example, in our work with Event-B, this step involves

constructing an Event-B specification that describes the

system.

Formal Verification Semi-automated (Right-hand side of Figure 3.26)

Perform the formal verification of the Formal Properties

(verification conditions) against the formal system model.

For example, in our work with Event-B, this step uses the

Rodin tool to prove the invariants and other constrains.

Formal Verification Semi-automated (Left-hand side of Figure 3.26)

Run the formal verification of the CoCoSim contracts on the

Simulink diagram. This happens in Simulink, using the

CoCoSim plugin.

Generate Verification

Conditions

Automated Export the verification conditions, based on the formalised

requirements, for the attached Simulink diagram. This

outputs contracts in CoCoSpec, a contract language for

CoCoSim.

Requirements Elicitation Manual Using the Natural-Language version of the system's

requirements, and potentially the currently formalised

version of the requirements, elicit either new requirements

or more detail about the existing requirements.

Requirements Formalisation Semi-automated Formalise the natural language requirements. Outputs

requirements in FRETish (a controlled natural language for

describing requirements) and Temporal Logic.

Translate to Verification

Conditions

Manual Manually produce the verification conditions, from the

FRETish version of the requirements (or using the Temporal

Logic properties directly). This produces formal properties

in the verifier's language of choice.

For example, in our work with Event-B, this step involves

creating invariants and other properties that the Event-B

specification must obey.

Refactor Requirement Semi-automated Apply a refactoring to a requirement. Refactoring is the

process of reorganising the requirements without changing

their behaviour.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 73

Name Type Description

This activity also formally verifies that the new requirement

and the original requirement have the same behaviour.

3.5.3 V&V Workflows of Model-implemented Fault and Attack Injection

with Pre-Injection Analysis

The workflow describes the application of the V&V methods MIFI (Model-Implemented Fault Injection

with Pre-injection Analysis) and MIAI (Model-Implemented Attack Injection with Pre-injection

Analysis). These methods allow fault- and attack injection mechanisms implemented as model blocks

to be injected into simulated target system models to evaluate the impact of faults and cybersecurity

attacks on target systems at early development phases.

The workflow has four inputs: Simulink system model, Stimuli, Fault/Attack Model Library and

Requirements. There is also one output: the Fault/Attack Injection Results. The sequence of main

activities included in the workflow is as follows:

• Analyse Model Structure: The target Simulink system model structure is analysed to determine

the fault/attack space.

• Perform Golden Run: The target Simulink system model is simulated with the chosen Stimuli

and monitored to obtain the nominal (fault/attack free) behaviour.

• Pre-injection Analysis: The target Simulink system model fault/attack space structure and

nominal behaviour is analysed to reduce the fault/attack space.

• Configure Campaign: The campaign of fault- and attack injections to conduct on the target

Simulink system model is configured. The target system Requirements and Stimuli to use for

the simulations determines the set of faults and attacks to inject including their locations,

activation times and durations.

• Inject Fault/Attack: The faults and attacks are injected into the target Simulink system model

according to the campaign configuration.

• Run Simulation: The target Simulink system model injected according to the campaign

configuration is simulated with the chosen stimuli and the target system behaviour is

monitored.

• Analyse Fault/Attack Injection Results: The monitored data obtained during simulations of the

golden run and fault injected target Simulink system model is analysed based on the Requirements

to report the Fault/Attack Injection Results of the campaign performed.

Figure 3.27 shows the workflow specification diagram of Model-implemented fault/attack injection with

pre-injection analysis.

Final Detailed Description of Improved Process Workflows

74 ECSEL JU, grant agreement No 876852.

Figure 3.27 Workflow Definition diagram of MIFI_MIAI_RISE used in UC5_UTRCI

Model-implemented fault/attack injection with pre-injection analysis

:Fault/Attack

Injection Results

:Fault/Attack

Injection Results

:Simulink

system model

:Simulink

system model

:Requirements:Requirements

:Fault/Attack

Model Library

:Fault/Attack

Model Library

:Stimuli:Stimuli

Analyse Fault/Attack

Injection Results

:Requirements:Requirements

:Fault/Attack Injection Results:Fault/Attack Injection Results

:Injected

Simulation

Output

:Injected

Simulation

Output
:Nominal

Simulation

Output

:Nominal

Simulation

Output

Analyse

Model

Structure:Simulink system

model

:Simulink system

model

:Fault/attack

space

:Fault/attack

space

Configure Campaign
:Stimuli:Stimuli

:Requirements:Requirements

:Fault/Attack

Model Library

:Fault/Attack

Model Library

:Reduced

fault/attack

space

:Reduced

fault/attack

space

:Nominal

Simulation

Output

:Nominal

Simulation

Output

Run Simulation
:Stimuli:Stimuli

:Fault/attack

injected Simulink

system model

:Fault/attack

injected Simulink

system model

:Injected

Simulation

Output

:Injected

Simulation

Output

Inject Fault/Attack

:Simulink

system model

:Simulink

system model

:Fault/Attack

Model Library

:Fault/Attack

Model Library

:Campaign

Configuration

:Campaign

Configuration

Campaign finished?

Perform

Golden Run

:Simulink system

model

:Simulink system

model

:Stimuli:Stimuli :Nominal

Simulation Output

:Nominal

Simulation Output

Pre-injection Analysis

:Reduced

fault/attack

space

:Reduced

fault/attack

space

:Simulink system

model

:Simulink system

model

StartWorkflow

StopWorkflow

Yes

No

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 75

Table 3.19 lists the activities of the workflow Model-implemented fault/attack injection with pre-

injection analysis.

Table 3.19 List of activities performed by Model-implemented fault/attack injection with pre-injection analysis

Name Type Description

Analyse Fault/Attack Injection

Results

Semi-automated Analyse Fault/Attack Injection Results: The monitored data

obtained during simulations of the golden run and fault

injected target Simulink system model is analysed based on

the Requirements to report the Fault/Attack Injection

Results of the campaign performed.

Analyse Model Structure Automated Analyse Model Structure: The target Simulink system

model is analysed to determine the fault/attack space

structure.

Configure Campaign Manual Configure Campaign: The campaign of fault- and attack

injections to conduct on the target Simulink system model

is configured. The target system Requirements and Stimuli

to use for the simulations determines the set of faults and

attacks to inject including their locations, activation times

and durations.

Inject Fault/Attack Automated Inject Fault/Attack: The faults and attacks are injected into

the target Simulink system model according to the

campaign configuration.

Perform Golden Run Automated Perform Golden Run: The target Simulink system model is

simulated with the chosen Stimuli and monitored to obtain

the nominal (fault/attack free) behaviour.

Pre-injection Analysis Automated Pre-injection Analysis: The target Simulink system model

fault/attack space structure and nominal behaviour is

analysed to reduce the fault/attack space.

Run Simulation Automated Run Simulation: The target Simulink system model injected

according to the campaign configuration is simulated with

the chosen stimuli and the target system behaviour is

monitored.

3.5.4 V&V Workflows of SiLVer (SimuLation-based Verification)

The workflow is a semi-automated approach for determining whether a system model conforms to a

given set of requirements. It supports both verification and falsification of the given system model w.r.t.

requirements. Falsification is conducted by Monte-Carlo simulation runs, while verification is

essentially symbolic simulation of the system model using Affine arithmetic. System model and

requirement monitors are expected to be provided as C++ code. This enables analysis throughout the

design cycle (even when moving to implementation). Currently, there is support for automatic

generation of C++ code from specific, parametrized requirement / system templates. Once the system

Final Detailed Description of Improved Process Workflows

76 ECSEL JU, grant agreement No 876852.

model and requirements are provided, depending on the choice (verification or falsification) made by

the user (via the configuration file), the appropriate algorithm is run, generating a report with analysis

results.

Figure 3.28 shows the workflow specification diagram of SiLVer (SimuLation-based Verification).

Figure 3.28 Workflow Definition diagram of SiLVer (SimuLation-based Verification) used in UC5_UTRCI

Table 3.20 lists the activities of the workflow SiLVer (SimuLation-based Verification).

SiLVer (SimuLation-based Verification)

:Requirements:Requirements

:Configuration:Configuration

:Analysis Report:Analysis Report

:System Model:System Model

StartWorkflow

StopWorkflow

Translate Model
:System Model:System Model Translate

Requirements

:Requirements:Requirements

Parse

Configuration

:Configuration:Configuration

Verification or

falsification?

Verification Falsification

Generate Report
:Analysis Report:Analysis Report

Translated

Requirements

Verification

Falsification Results

Translated Model

Verification Results

Parsed

ConfigurationParsed Configuration

Translated

Requirements

Translated Model

Falsification

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 77

Table 3.20 List of activities performed by SiLVer (SimuLation-based Verification)

Name Type Description

Falsification Automated Performs Monte Carlo simulation runs

Generate Report Automated Creates textual report based on system analysis results.

Optionally, includes plots.

Parse Configuration Automated Reads set of YAML configuration files containing

information such as whether to perform verification or

falsification, whether to plot the results, etc.

Translate Model Semi-automated Generates C++ code representing the system model based

on a parametrized template and a YAML file containing

specific values for parameters. (Note: system template has

to be created manually)

Translate Requirements Semi-automated Generates C++ code representing the requirements based on

parametrized templates and a YAML file containing specific

values for parameters. (Note: requirement templates have to

be created manually)

Verification Automated Performs reachability-analysis-based verification for safety-

critical hybrid systems (through Affine Arithmetic)

Final Detailed Description of Improved Process Workflows

78 ECSEL JU, grant agreement No 876852.

3.6 V&V Workflow of Use Case 6 ESTE

UC6_ESTE package contains the following workflow:

• Model-based safety analysis FLA

Figure 3.29 shows the UC6_ESTE Method Definition diagram type of the V&V workflow UC6_ESTE.

Figure 3.29 Method Definition of UC6_ESTE defined for UC6_ESTE

Details on the workflow are given in the Section 3.8.3. UC6 and UC8 apply the workflow Model Based

Safety Analysis FLA.

Model Based Safety Analysis FLA

tags

Type = Semi-automated

Perform activities

Automated FTA Generation :

Automatic FMEA Generation :

Complete FMEA fields :

Design System Functional Model :

Extend Desig with Failure Behavior :

Hazard and Risk Analysis :

:System Architecture:System Architecture

:System Requirements:System Requirements

:Functional Model:Functional Model

:FMEA Table:FMEA Table

:Failure Mode and Error

Propagation Model

:Failure Mode and Error

Propagation Model

:FTA Diagram:FTA Diagram

:Refined Safety

Requirements

:Refined Safety

Requirements

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 79

3.7 V&V Workflow of Use Case 7 ALDAKIN

UC7_ALDAKIN package contains the following workflow:

• MGEP V&V Workflow

Figure 3.30 shows the MGEP-2 UC7 Method Definition diagram type of the V&V workflow

UC7_ALDAKIN.

Figure 3.30 Method Definition of MGEP-2 UC7 defined for UC7_ALDAKIN

Details on the workflow are given in the following subsections.

3.7.1 Artifacts used in UC7_ALDAKIN

Table 3.21 lists the artifacts used for the workflow defined for UC7_ALDAKIN.

Table 3.21 List of artifact types used in UC7_ALDAKIN

Name Description

InterpretationModel (Information) Interpretation model: It needs to define how Steps and

Situations are interpreted using constraint-based-modelling.

These level does not define whether a step or situations are

being carried out correctly, it describes the model to know if

they are being executed or not in a specific time interval.

Steps: intervals that have a meaning inside a situation. They

are defined using constraint base modelling.

MGEP VaV Workflow

tags

Type = Semi-automated

Perform activities

Generate Test Cases :

Diagnose :

Interpret :

Observe :

Priotirize test cases :

RunSimulation :

:ObservationModel:ObservationModel

:InterpretationModel:InterpretationModel

:TaskModel:TaskModel

:SituationValidationResult:SituationValidationResult
:TestCase:TestCase

:StepValidationResult:StepValidationResult

Final Detailed Description of Improved Process Workflows

80 ECSEL JU, grant agreement No 876852.

Name Description

Situation: they represent the context where the actions are

taking place and are composed of observations and steps. They

are defined using constraint-based-modelling.

ObservationModel (Information) It is a XML file where the observations or facts that are need to

be observed from the interactive system (simulation in this

case) are defined. Those observations are the base level to

define steps and situations via a constraint-based-modelling

technique.

SimulationStream (Active Unit) A stream of information that is coming from the simulation. In

this particular case, different variables' information is acquired

via MQTT subscription.

Situations (Active Unit) element note

SituationValidationResult

(Information)

This artifact is the result of diagnosing a situation. It will return

True if the steps that have been carried out were executed

correctly.

StepValidationResult (Information) This artifact is the result of diagnosing a step. It will return True

if the steps have been carried out correctly. Otherwise, it will

return a False result.

TaskModel (Information) The diagnosis level specifies how humans or robots in the

simulation must be evaluated when they are carrying out a

task, which involves detecting their errors. To achieve this aim,

the diagnosis subsystem receives from the interpreter the steps

that are being carried out and also the situations that are

associated with them. The steps and situations that must be

diagnosed are specified in the Task Model.

Test case (Information) The test case will include the id of the simulation to be run and

the id of the file where operator's movements are described

3.7.2 V&V Workflows of MGEP V&V Workflow

The ULISES framework transforms data streams generated by a Virtual Reality Interactive System into

data suitable to diagnose a test case in real time. This diagnosis will generate sufficient information to

validate a test case specification.

ULISES is a three-layered framework that explicitly models the unconscious process that a real human

use when they supervise real activities: they first perceive the environment through their senses, then

they interpret what is happening and lastly, they make a diagnosis about what happened. In order to

ensure that the runtime kernel is able to observe, interpret and diagnose students’ activity, the ULISES

framework defines the ULISES metamodel, which is divided into three abstraction levels and each of

them generically describes a set of elements that have to be particularized into the Task, Interpretation

and Observation Models. In other words, the metamodel defines elements to specify how to observe

the actions that are being carried out in the Interactive System, how to interpret the steps taken by user

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 81

or robots and the context in which they are taken, and how to diagnose them. Hence, each level of the

metamodel represents a different phase in the task creation process.

The core unit of this level is observation, which represents an event or a fact taking place during an interval

of time in the simulation. Therefore, the Observation level contains generic elements that specify how

the data streams coming from the IS must be transformed into single meaningful entities (observations)

that describe something perceived during an interval of time. Taking a driving simulator as an example,

the driver perceives certain elements during different periods of time: the intersection he is

approaching, the vehicle on his left, the solid line on the road, and so on. These observations will be

used as primitives for describing students’ activity on the other two levels: interpretation and diagnosis.

For example, if overtaking (which is a durative action) needs to be described in the interpretation level,

first the movements to other lanes and the movement of the preceding vehicle need to be observed.

Additionally, observation properties can be defined. For example, the “Preceding vehicle” observation

would have a “Distance” property that would register the change in the distance to the preceding

vehicle during the interval of time when it is observed.

Allowing both discrete and continuous input is a crucial advantage at this level. Thus, both continuous

observations, e.g., the driver is approaching the left lane, and instantaneous observations, e.g., the driver

is pushing a button, can be defined. The observation model defines for every observation its properties,

the input data (from any source) needed to generate the observation and its properties, and the ULISES

Observer plugin, which processes the input data. With this model, the ULISES runtime kernel fuses the

inputs from the simulation and updates in real time the set of synchronized observations that are

perceived. This means that after all update cycle new observations are perceived, other observations are

completed and still other observations continue with updated properties. Then, the interpretation

subsystem is notified in order to perform its own interpretation cycle.

The interpretation level generically describes how to recognize human or robots’ activity in the

simulation, that is, it expresses digitally what is happening in the virtual environment. Just as instructors

make subjective interpretations based on what they perceive, ULISES does the same when interpreting

the observations from the IS. The interpretations shall be valid and complete enough so that the ULISES

diagnosis subsystem can determine whether actions in the test case are valid or not. Therefore, the

interpretation subsystem must recognize the actions performed by the different simulation elements

and the context in which the actions are being carried out. For this reason, the interpretation level

specifies how the interpretation subsystem must interpret two core elements from observations: steps

and situations:

• Step: This represents an action that takes place over an interval of time and that will be

diagnosed. The step model contains the necessary attributes for the ULISES runtime kernel to

interpret when a step is being performed from observations. It is important to emphasize that

the observations contained in the step model cannot depend on the correctness or incorrectness

of the step. For example, in a driving context, if an “overtaking” step is modelled, the

observation where the vehicle is in the left lane should not be included. The driver could be

overtaking from the right, incorrectly, but still overtaking. Determining correctness happens at

the diagnostic level rather than at the interpretation level.

Final Detailed Description of Improved Process Workflows

82 ECSEL JU, grant agreement No 876852.

• Situation: The term context has many definitions, but all of them underline the importance of

the context when interpreting or diagnosing an activity. A situation represents a context that is

relevant for diagnosing where some steps will be performed. We identify specific situations

when there is a set of factors that determines the steps that students must perform. For example,

driving on the highway at 100 km/h is not the same as driving at the same speed on a city street.

The student is performing the same step, but it has a different meaning in each situation.

The diagnosis level contains the elements that must be particularized in order to generate the task

model. This model describes the tasks that simulation elements are to perform so they can be diagnosed

automatically. In order to define the composition of a task and its validation, the diagnosis level defines

the following elements:

• Step: This represents the minimum diagnosable unit.

• Situation: This represents the diagnosis context. It includes the specification of possible

solutions to the situation and the information (observations) that will be necessary to diagnose

the steps executed.

• Solution: A solution defines if a specific task is valid within a situation. Each solution can be

linked to a different diagnosis module, so multiple diagnosis techniques can be used at the same

time for different solutions. Nevertheless, the solution must always be composed of steps,

although the specific structure depends on the diagnosis technique that is used.

Due to the domains where the system will be validated, we chose to implement a constraint satisfaction-

based diagnosis technique. Within this technique, constraints are used as an element to restrict whether

a step is correct or incorrect in the solution specification. Rather than defining a way to solve a problem,

constraints allow for the definition of how certain actions should be solved in order to detect mistakes.

Thus, if a constraint rule is not satisfied, a mistake is detected. The advantage of constraint-based

modelling is that it is possible to group actions that violate the same domain principle. In our case, we

go further and define solutions over situations and steps. We group actions that violate the same domain

principles, but at the same time, we are able to distinguish the context in which the mistake was

committed. This distinction is very important, because there are many cases where the same error can

have a different meaning.

Figure 3.31 shows the workflow specification diagram of MGEP V&V Workflow.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 83

Figure 3.31 Method Definition of MGEP V&V Workflow used in UC7_ALDAKIN

MGEP VaV Workflow

:SituationValidationResult:SituationValidationResult

:ObservationModel:ObservationModel

:TaskModel:TaskModel

:StepValidationResult:StepValidationResult

:TestCase:TestCase

:InterpretationModel:InterpretationModel

StartWorkflow

RunSimulation

Observe

:SimulationStream:SimulationStream

Interpret

Diagnose

ObservationsObservations

StepsSteps

SituationsSituations

StopWorkflow

Analyse

observations

Re-run simulation

:SimulationStream:SimulationStream

Steps

[something observed:

further processing needed]

[Nothing

observed]

Situations

Final Detailed Description of Improved Process Workflows

84 ECSEL JU, grant agreement No 876852.

Table 3.22 lists the activities of the workflow MGEP V&V Workflow.

Table 3.22 List of activities performed by MGEP V&V Workflow

Name Type Description

Diagnose Automated Diagnosing means evaluating the correctness of each of the

steps and situations that have been defined in the Task

Model. This activity receives the observations, steps and

situations that are being carried out in each simulations

cycle and evaluates the correctness of steps and situations.

The solution to a test is defined in the Task Model based on

a Constraint-based modelling language.

Interpret Automated During this activity, steps and situations defined in the

Interpretation Model will be interpreted. In this context,

interpreting means detecting which steps are being carried

out in the simulation, and in which context (situation) are

being executed. These interpretations are defined on top of

observations and/or other steps, whose relationships are

described via a constraint-based modelling language.

Observe Automated The aim of the observation subsystem is gathering data

streams and converting this data into information that is

suitable for the other two subsystems: the interpretation and

the Diagnosis subsystem. Each cycle, it will generate

observations that have been specified in the Observation

Model and publish them for other agents.

RunSimulation

/ Re-run simulation

Automated It will run the simulation that is specified in the TestCase.

Each simulation is related to one test. During the execution,

every time cycle simulation streams will be transmitted to

the ULISES runtime kernel so its agents gather these streams

and convert them to observations.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 85

3.8 V&V Workflow of Use Case 8 RGB

UC8_RGB package contains the following workflows:

• Model Based Safety Analysis FLA

• Tailored Model-Based Assurance and Certification

• Compliance-Aware Extended Knowledge-Centric System Artefact Quality Analysis

• Extended Knowledge-Centric System Traceability Management

• Single Experiment

• TC Automated Experimenting

• TC Management – TCM

Figure 3.32 shows the TC Management Method Definition diagram type of the V&V workflow

UC8_RGB.

Figure 3.32 Method Definition of TC Management defined for UC8_RGB

Figure 3.33 shows the TC Automated Experimenting Method Definition diagram type of the V&V

workflow UC8_RGB.

Figure 3.33 Method Definition of TC Automated experimenting for UC8_RGB

TC Management - TCM

tags

Type = Semi-automated

Perform activities

 : TC Automated Experimenting - TCAutoExperimenting

Design TC General Description :

:TCGeneralDescription:TCGeneralDescription :TCSummary:TCSummary

Final Detailed Description of Improved Process Workflows

86 ECSEL JU, grant agreement No 876852.

Figure 3.34 shows the Single Experiment Method Definition diagram type of the V&V workflow

UC8_RGB.

Figure 3.34 Method Definition of Single Experiment for UC8_RGB

Figure 3.35 shows the Model based Safety Analysis FLA Method Definition diagram type of the V&V

workflow UC8_RGB.

Figure 3.35 Method Definition of Model based Safety Analysis FLA defined for UC8_RGB

Single Experiment

tags

Type = Automated

Perform activities

Controller Cycle :

InfusionPump Cycle :

NMTSensor Cycle :

PatientModel Cycle :

Plan Next Cycle :

Synchronize output :

:TCGeneralDescription:TCGeneralDescription

:ExpPatientAttrs:ExpPatientAttrs

:ExpOutputs:ExpOutputs

Model Based Safety Analysis FLA

tags

Type = Semi-automated

Perform activities

Automated FTA Generation :

Automatic FMEA Generation :

Complete FMEA fields :

Design System Functional Model :

Extend Desig with Failure Behavior :

Hazard and Risk Analysis :

:System Architecture:System Architecture

:System Requirements:System Requirements

:Functional Model:Functional Model

:Refined Safety Requirements:Refined Safety Requirements

:FMEA Table:FMEA Table

:Failure Mode and Error Propagation

Model

:Failure Mode and Error Propagation

Model

:FTA Diagram:FTA Diagram

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 87

Figure 3.36 shows the Tailored Model-based Assurance and Certification Method Definition diagram

type of the V&V workflow UC8_RGB.

Figure 3.36 Method Definition of Tailored Model-based Assurance and Certification defined for UC8_RGB

Figure 3.37 shows the Compliance-Aware Extended Knowledge-Centric System Artefact Quality

Analysis Method Definition diagram type of the V&V workflow UC8_RGB.

Figure 3.37 Method Definition of Compliance-Aware Extended Knowledge-Centric System Artefact Quality Analysis

defined for UC8_RGB

Figure 3.38 shows the Extended Knowledge-Centric System Traceability Management Method

Definition diagram type of the V&V workflow UC8_RGB.

Tailored Model-Based Assurance and

Certification

tags

Type = Semi-automated

Perform activities

Generate Compliance Report :

Configure Reference Standard :

Refine Device Development Model :

Verify Device Development Model Completeness :

:Device Development

Model

:Device Development

Model

:Compliance Report:Compliance Report

:Standard Model:Standard Model

Compliance-Aware Extended Knowledge-Centric System Artefact Quality

Analysis

tags

Type = Semi-automated

Perform activities

Define metrics :

Define system artefacts import mechanism :

Run quality analysis :

Select metrics :

Update system artefacts : :Assurance Standard:Assurance Standard

:Ontology:Ontology

:System Artifacts:System Artifacts

:Quality Analysis Report:Quality Analysis Report

:Metrics Configuration:Metrics Configuration

Final Detailed Description of Improved Process Workflows

88 ECSEL JU, grant agreement No 876852.

Figure 3.38 Method Definition of Extended Knowledge-Centric System Traceability Management defined for UC8_RGB

Details on the workflows are given in the following subsections.

3.8.1 Artifacts used in UC8_RGB

Table 3.23 lists the artifacts used for the workflows defined for UC8_RGB.

Table 3.23 List of artifact types used in UC8_RGB

Name Description

Assurance Standard (Information) Document with best practices to follow and criteria to meet for

system assurance

Change Impact Analysis Report

(Information)

Report with information about the effect that the change of a

given system artifact has had or could have on other system

artifacts, and how such an effect could propagate

Compliance Report (Information) Report generated with the information of fulfilment of the

system under analysis and any gap to be bridged according to

the reference standard.

Device Development Model (Active

Unit)

Model that describes the development activities related to the

device under analysis

ExpOutputs (Information) Time sequence of Infusion settings (determined by Anaesthesia

Controller)

Time sequence of Infusion outputs (by Infusion pump, with

eventual injected errors)

Extended Knowledge-Centric System Traceability Management

tags

Type = Semi-automated

Perform activities

Analyse artefacts change impact :

Define relationship types :

Define traceability project map :

Discover traces :

Review Traces :

Trace system artefacts :

:Assurance Standard:Assurance Standard

:Traceability Project Map:Traceability Project Map

:Traces Between System Artefacts:Traces Between System Artefacts

:Ontology:Ontology

:System Artifacts:System Artifacts

:Change Impact Analysis Report:Change Impact Analysis Report

:Traceability Report:Traceability Report

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 89

Name Description

Time sequence of Patient's body responses (by Patient Model)

- concentration of drug,

estimated NMB in TOF/PTC, estimated time for total recovery)

Time sequence of NMB Sensor measurements

Logs from Anaesthesia Controller

ExpPatientAttrs (Information) particular weight [kg]

particular PK/PD parameters (generated from

PatientAttributesRange)

Failure Mode and Error Propagation

Model (Information)

System model extended with the annotations and decorations

required to describe the fault behaviours of the functional

blocks.

FMEA Table (Information) FMEA (Failure Mode and Effect Analysis) tables record failure

modes, causes, and resulting effects on the system, for each

system's component.

FTA Diagram (Information) Fault Trees are logic block diagrams that display the state of a

system (top event) in terms of the states of its components

(basic events).

It uses a graphic "model" of the pathways within a system that

can lead to a foreseeable, undesirable loss event (or a failure).

The pathways connect contributory events and conditions,

using standard logic symbols (AND, OR, etc.).

Functional Model (Information) The system functional model describes all the system

functional blocks, relevant in the context of the fault generation

and propagation analysis, and their relationships.

Metrics Configuration (Information) Selection of the metrics to use for a specific system quality

analysis, including measurement procedures and quality levels

Ontology (Information) Knowledge base in the form of an ontology with terms,

semantic information and system specification patterns, among

other elements, which can be exploited for quality analysis and

traceability management of system artifacts

Quality Analysis Report (Information) Report generated with the information about how good a

system artifact is according to a metrics configuration and

considering a given ontology

Refined Safety Requirements

(Information)

System safety requirements refined after the Hazard and Risk

Analysis.

Standard Model (Active Unit) Model related to the reference standard that will be used to

perform the compliance and gap analysis

System Architecture (Information) Original system architecture defined by system engineers.

System Artifacts (Information) Artifacts management during a system's lifecycle, such as

requirements specifications and design diagrams

Final Detailed Description of Improved Process Workflows

90 ECSEL JU, grant agreement No 876852.

Name Description

System Requirements (Information) Original system requirements definition available from

requirement engineering.

TCGeneralDescription (Information) AnaesthesiaPlan - time sequence of target NMT

(Neuromuscular Transmission) in TOF/PTC

units planned for a particular surgery (target NMT for certain

period, generally: [(NMT target level, timePeriod), ...]

Number of experiments (randomly generated out of the

specified ranges, then statistically

processed)

ExperimentConfiguration: Name of Neuromuscular blocking

agent (drug: Rocuronium, CisAtracurium, ...)

Allowed deviation from the target NMT (%)

Flag (Enable/Disable) - Error injections into infusion pumps

Flag - Error injection into NMB sensor (cuff)

Anaesthesia strategy (selection of Control algorithm)

PatientAttributesRange:

weight range <from, to> [kg]

Pharmacokinetic/Pharmacodynamic parameters (range):

Muscles-to-weight ratio <from, to>

Unit Volume of Distribution <from, to>

EC50 (sensitivity) <from, to>

TCSummary (Information) number of executed experiments

number of experiments where NMB was out of target range

number of minutes when NMB was out of target range

... other

Traceability Project Map (Information) Definition of the system artifact sources and the parameters to

consider for a given traceability management effort

Traceability Report (Information) Report generated with information about the relationships

between artifacts managed during a system's lifecycle

Traces Between System Artefacts

(Information)

Set of relationship between system artifacts specified for a

given traceability management effort

3.8.2 V&V Workflows of Tailored Model-Based Assurance and

Certification

TMAC method involves the specification of meta-models for representing NMT devices and related

safety standards to define specific models for devices, development processes and quality criteria,

which can be automatically analysed to obtain compliance levels to reference quality models or

certification standards.

Figure 3.39 shows the workflow specification diagram of Tailored Model-Based Assurance and

Certification.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 91

Figure 3.39 Model-Based Assurance and Certification used in UC8_RGB

Table 3.24 lists the activities of the workflow Tailored Model-Based Assurance and Certification.

Table 3.24 List of activities performed by Tailored Model-Based Assurance and Certification

Name Type Description

Configure Reference

Standard

Semi-automated This task is oriented to indicate the reference standard an

provide the necessary configuration according to the

system to be verified.

Generate Compliance Report Automated The tailored method and the certification models defined

are automatically analyzed to evaluate the level of

compliance to the reference standards.

Refine Device Development

Model

Manual This task is manually performed to refine of fix the input

device model when the verification task indicates some

error.

Verify Device Development

Model Completeness

Automated This task verifies the device models defined in terms of

their completeness

Tailored Model-Based Assurance and Certification

:Standard Model:Standard Model

:Compliance

Report

:Compliance

Report

:Device

Development

Model

:Device

Development

Model

Start

End

Verify Device

Development Model

Completeness

ActivityArtifact: Device

Development Model

ActivityArtifact: Device

Development Model

Configure

Reference Standard

ActivityArtifact:

Standard Model

ActivityArtifact:

Standard Model

Is the device

model correct?

Refine Device

Development Model

ActivityArtifact: Device

Development Model

ActivityArtifact: Device

Development Model

Generate

Compliance Report

ActivityArtifact:

Compliance Report

ActivityArtifact:

Compliance Report

ActivityArtifact:

Standard Model

ActivityArtifact:

Standard Model

ActivityArtifact: Device

Development Model

ActivityArtifact: Device

Development Model

[no]

[yes]

Final Detailed Description of Improved Process Workflows

92 ECSEL JU, grant agreement No 876852.

3.8.3 V&V Workflows of Model Based Safety Analysis FLA

The workflow describes the application of the V&V method MSA - FLA (Model-based Safety Analysis

with Failure Logical Analysis) to the Use Case with the aim of analysing the failure propagation

phenomena and evaluating their consequences in terms of safety and reliability, based on a formal

model of the system of interest, automatically generating Fault Trees and FMEA (Failure Mode and

Effect Analysis) tables.

The workflow has just two inputs: System Requirements and System Architecture. Starting from these

inputs, the main activities included in the workflow of the method are:

• Design of the System Functional Model: the system model should describe the system

functional blocks, relevant in the context of the fault generation and propagation analysis, and their

relationships;

• Extended Design with Failure Behaviour: the system model should be extended with the

annotations and decorations required to describe the fault behaviours of the functional blocks. This

model is called Failure Mode and Error Propagation Model;

• Automatic FMEA Generation + Complete FMEA fields: FMEA tables are automatically

generated from the Failure Mode and Error Propagation Model. Furthermore, they can be manually

completed by the safety experts

• Automated FTA Generation: Fault Trees are automatically generated from the Failure Mode

and Error Propagation Model.

• Hazard and Risk Analysis: A Hazard and Risk Analysis is performed, starting from the FMEA

table and the FTs. As a result, refined safety requirements may be provided.

These activities are iteratively performed until the Hazard and Risk Analysis results are acceptable,

according to the related standards.

The workflow outputs are:

• Failure Mode and Error Propagation Model;

• FTA Diagram;

• FMEA Table;

• Refined Safety Requirements.

Figure 3.40 shows the workflow specification diagram of Model Based Safety Analysis FLA.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 93

Figure 3.40 Workflow Definition diagram of Model Based Safety Analysis FLA used in UC8_RGB

Model Based Safety Analysis FLA

:System Requirements:System Requirements

:Functional Model:Functional Model

:Refined Safety

Requirements

:Refined Safety

Requirements

:FMEA Table:FMEA Table

:Failure Mode and Error

Propagation Model

:Failure Mode and Error

Propagation Model

:FTA Diagram:FTA Diagram

:System Architecture:System Architecture

Design System Functional Model

:System Requirements:System Requirements :Functional Model:Functional Model

:System Architecture:System Architecture

StartWorkflow

Extend Desig with Failure

Behavior

:Functional Model:Functional Model

:Failure Mode and

Error Propagation

Model

:Failure Mode and

Error Propagation

Model

Automatic FMEA

Generation

:Failure Mode and

Error Propagation

Model

:Failure Mode and

Error Propagation

Model

:FMEA Table:FMEA Table

Hazard and Risk Analysis

:FMEA Table:FMEA Table :FTA Diagram:FTA Diagram

:Refined Safety

Requirements

:Refined Safety

Requirements

Evaluate results

StopWorkflow

Automated FTA

Generation

:Failure Mode and

Error Propagation

Model

:Failure Mode and

Error Propagation

Model

:FTA Diagram:FTA Diagram

Complete FMEA

fields

:FMEA Table:FMEA Table

:FMEA Table:FMEA Table

Refine

Model

OK

Final Detailed Description of Improved Process Workflows

94 ECSEL JU, grant agreement No 876852.

Table 3.25 lists the activities of the workflow Model Based Safety Analysis FLA.

Table 3.25 List of activities performed by Model Based Safety Analysis FLA

Name Type Description

Automated FTA Generation Automated The CHESS-FLA plugin automatically generates the Fault

Trees from the Failure Mode and Error Propagation

Model.

Automatic FMEA Generation Automated The CHESS-FLA plugin automatically generates the

FMEA table from the Failure Mode and Error Propagation

Model.

Complete FMEA fields Manual The FMEA table can be manually completed by the safety

experts who want to add additional information.

Design System Functional

Model

Semi-automated Design of the system functional model. This functional

model should describe the system functional blocks,

relevant in the context of the fault generation and

propagation analysis, and their relationships.

Extend Design with Failure

Behaviour

Semi-automated The system functional model is extended with the

annotations and decorations required to describe the fault

behaviours of the functional blocks. In particular, the FLA

(Failure Logical Analysis) rules are used. The extended

model is called Failure Mode and Error Propagation

Model.

Hazard and Risk Analysis Manual Starting from the FMEA table and the FTs, an Hazard and

Risk Analysis is performed. As a result of this action,

refined safety requirements may be provided.

If the results of this results of the Hazard and Risk

Analysis are not acceptable, all the actions are repeated

again.

3.8.4 V&V Workflows of Compliance-Aware Extended Knowledge-

Centric System Artefact Quality Analysis

Method to quantitatively determine the suitability of system artifacts in different formats by exploiting

ontologies and semantic information, according to selected criteria, e.g., correctness, consistency, and

completeness, and considering specific compliance needs from assurance standards.

Figure 3.41 shows the workflow specification diagram of Compliance-Aware Extended Knowledge-

Centric System Artefact Quality Analysis.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 95

Figure 3.41 Workflow Definition diagram of Compliance-Aware Extended Knowledge-Centric System Artefact Quality

Analysis used in UC8_RGB

Table 3.26 lists the activities of the workflow Compliance-Aware Extended Knowledge-Centric System

Artefact Quality Analysis.

Table 3.26 List of activities performed by Compliance-Aware Extended Knowledge-Centric System Artefact Quality Analysis

Name Type Description

Define metrics Manual Specification of the characteristics (measurement

procedure, quality levels...) of new metrics to use for

system artifact quality analysis

Define system artefacts

import mechanism

Manual Determination of the means to import system artifact data

for quality analysis, and of the means will be used

Run quality analysis Automated Execution of a system artifact quality analysis according to

a given metrics configuration and to the content of a given

ontology

Select metrics Manual Determination of the set of metrics to use for a given

system artifact quality analysis, considering the

requirements from applicable assurance standards

Extended Knowledge-Centric System Traceability Management

:Traceability Report:Traceability Report

:Assurance

Standard

:Assurance

Standard

:Traceability

Project Map

:Traceability

Project Map

:Ontology:Ontology

:Traces Between

System Artefacts

:Traces Between

System Artefacts

:System Artifacts:System Artifacts

:Change Impact

Analysis Report

:Change Impact

Analysis Report

Start

End

Define

relationship

types

ActivityArtifact:

Ontology

ActivityArtifact:

Ontology

ActivityArtifact:

Assurance

Standard

ActivityArtifact:

Assurance

Standard

Define traceability

project map

ActivityArtifact:

Assurance

Standard

ActivityArtifact:

Assurance

Standard

ActivityArtifact:

Traceability

Project Map

ActivityArtifact:

Traceability

Project Map

Trace system artefacts

ActivityArtifact:

Traceability

Project Map

ActivityArtifact:

Traceability

Project Map

ActivityArtifact:

System Artifacts

ActivityArtifact:

System Artifacts

ActivityArtifact: Traces

Between System

Artefacts

ActivityArtifact: Traces

Between System

Artefacts

Discover

traces

ActivityArtifact:

Ontology

ActivityArtifact:

Ontology

ActivityArtifact: System

Artifacts

ActivityArtifact: System

Artifacts

Review Traces

ActivityArtifact:

Traceability

Report

ActivityArtifact:

Traceability

Report

ActivityArtifact: Traces

Between System Artefacts

ActivityArtifact: Traces

Between System Artefacts

ActivityArtifact: Traces Between

System Artefacts

ActivityArtifact: Traces Between

System Artefacts

ActivityArtifact:

Change Impact

Analysis Report

ActivityArtifact:

Change Impact

Analysis Report Analyse artefacts

change impact

ActivityArtifact:

Change Impact

Analysis Report

ActivityArtifact:

Change Impact

Analysis Report

New relatioship type

needed?

Trace

discover

wanted?

System

artefacts

changed?

[no]

[no]

[yes]

[yes]

[no]

[yes]

Final Detailed Description of Improved Process Workflows

96 ECSEL JU, grant agreement No 876852.

Name Type Description

Update system artefacts Manual Revision of system artifacts in case quality issues are

identified, to address the issues

3.8.5 V&V Workflows of Extended Knowledge-Centric System

Traceability Management

Method to manage the relationships between system artifact by taking advantage of ontologies and

semantic information, further supporting advanced traceability project configuration and automating

trace discovery and verification.

Figure 3.42 shows the workflow specification diagram of Extended Knowledge-Centric System

Traceability Management.

Figure 3.42 Workflow Definition diagram of Extended Knowledge-Centric System Traceability Management used in

UC8_RGB

Extended Knowledge-Centric System Traceability Management

:Traceability Report:Traceability Report

:Assurance

Standard

:Assurance

Standard

:Traceability

Project Map

:Traceability

Project Map

:Ontology:Ontology

:Traces Between

System Artefacts

:Traces Between

System Artefacts

:System Artifacts:System Artifacts

:Change Impact

Analysis Report

:Change Impact

Analysis Report

Start

End

Define

relationship

types

ActivityArtifact:

Ontology

ActivityArtifact:

Ontology

ActivityArtifact:

Assurance

Standard

ActivityArtifact:

Assurance

Standard

Define traceability

project map

ActivityArtifact:

Assurance

Standard

ActivityArtifact:

Assurance

Standard

ActivityArtifact:

Traceability

Project Map

ActivityArtifact:

Traceability

Project Map

Trace system artefacts

ActivityArtifact:

Traceability

Project Map

ActivityArtifact:

Traceability

Project Map

ActivityArtifact:

System Artifacts

ActivityArtifact:

System Artifacts

ActivityArtifact: Traces

Between System

Artefacts

ActivityArtifact: Traces

Between System

Artefacts

Discover

traces

ActivityArtifact:

Ontology

ActivityArtifact:

Ontology

ActivityArtifact: System

Artifacts

ActivityArtifact: System

Artifacts

Review Traces

ActivityArtifact:

Traceability

Report

ActivityArtifact:

Traceability

Report

ActivityArtifact: Traces

Between System Artefacts

ActivityArtifact: Traces

Between System Artefacts

ActivityArtifact: Traces Between

System Artefacts

ActivityArtifact: Traces Between

System Artefacts

ActivityArtifact:

Change Impact

Analysis Report

ActivityArtifact:

Change Impact

Analysis Report Analyse artefacts

change impact

ActivityArtifact:

Change Impact

Analysis Report

ActivityArtifact:

Change Impact

Analysis Report

New relatioship type

needed?

Trace

discover

wanted?

System

artefacts

changed?

[no]

[no]

[yes]

[yes]

[yes]

[no]

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 97

Table 3.27 lists the activities of the workflow Extended Knowledge-Centric System Traceability

Management.

Table 3.27 List of activities performed by Extended Knowledge-Centric System Traceability Management

Name Type Description

Analyse artefacts change

impact

Automated Determination of the effect that the changes of system

artifacts have or might have

Define relationship types Manual Characterization of new types of relationships between

artifacts to consider for a given traceability management

effort

Define traceability project

map

Manual Specification of how a traceability project will be,

considering aspects such as the system artifact sources to

consider and the parameters to use in traceability tasks

(trace discovery, specification, verification...)

Discover traces Automated Automatic determination of possible relationships

between

Review Traces Manual Trace check to confirm that the traces specified are valid

Trace system artefacts Manual Specification of relationships between system artifacts

3.8.6 V&V Workflows of Single Experiment

This workflow is fully automatic and manages the simulation with the Patient Model and Anaesthesia

Controller (either simulated or physical). Regarding the experiment definition, the method injects

random errors into infusion and measurement entities.

Figure 3.43 shows the workflow specification diagram of Single Experiment.

Final Detailed Description of Improved Process Workflows

98 ECSEL JU, grant agreement No 876852.

Figure 3.43 Workflow Definition diagram of Single Experiment used in UC8_RGB

Table 3.28 lists the activities of the workflow Single Experiment.

Table 3.28 List of activities performed by Single Experiment

Name Type Description

Synchronize output Automated This activity synchronizes the outputs of the different task

in the workflow and generates the final result.

Controller Cycle Automated This activity analyses the NMT value from the NMT

sensor and calculates the next dose for the infusion pump.

Single Experiment

:ExpOutputs:ExpOutputs

:TCGeneralDescription:TCGeneralDescription

:ExpPatientAttrs:ExpPatientAttrs

Plan Next Cycle

ActivityArtifact:

ExpOutputs

ActivityArtifact:

ExpOutputs

ActivityArtifact:

ExpPatientAttrs

ActivityArtifact:

ExpPatientAttrs

ActivityArtifact:

TCGeneralDescription

ActivityArtifact:

TCGeneralDescription

ActivityArtifact:

ExpPatientAttrs

ActivityArtifact:

ExpPatientAttrs

ActivityArtifact:

TCGeneralDescription

ActivityArtifact:

TCGeneralDescription

StartWorkflow

StopWorkflow

Controller Cycle
ActivityArtifact:

ExpOutputs

ActivityArtifact:

ExpOutputs

ActivityArtifact:

ExpPatientAttrs

ActivityArtifact:

ExpPatientAttrs

ActivityArtifact:

TCGeneralDescription

ActivityArtifact:

TCGeneralDescription

ActivityArtifact:

ExpPatientAttrs

ActivityArtifact:

ExpPatientAttrs

ActivityArtifact:

TCGeneralDescription

ActivityArtifact:

TCGeneralDescription

InfusionPump Cycle ActivityArtifact:

ExpOutputs

ActivityArtifact:

ExpOutputs

ActivityArtifact:

ExpPatientAttrs

ActivityArtifact:

ExpPatientAttrs
ActivityArtifact:

TCGeneralDescription

ActivityArtifact:

TCGeneralDescription

ActivityArtifact:

ExpPatientAttrs

ActivityArtifact:

ExpPatientAttrs

ActivityArtifact:

TCGeneralDescription

ActivityArtifact:

TCGeneralDescription

PatientModel Cycle

ActivityArtifact:

ExpOutputs

ActivityArtifact:

ExpOutputs

ActivityArtifact:

ExpPatientAttrs

ActivityArtifact:

ExpPatientAttrs
ActivityArtifact:

TCGeneralDescription

ActivityArtifact:

TCGeneralDescription

ActivityArtifact:

ExpPatientAttrs

ActivityArtifact:

ExpPatientAttrs

ActivityArtifact:

TCGeneralDescription

ActivityArtifact:

TCGeneralDescription

NMTSensor Cycle

ActivityArtifact:

ExpOutputs

ActivityArtifact:

ExpOutputs

ActivityArtifact:

ExpPatientAttrs

ActivityArtifact:

ExpPatientAttrs
ActivityArtifact:

TCGeneralDescription

ActivityArtifact:

TCGeneralDescription

Next cycle?

Synchronize output

ActivityArtifact:

ExpOutputs

ActivityArtifact:

ExpOutputs

ActivityArtifact:

ExpOutputs

ActivityArtifact:

ExpOutputs

[no]

[yes]

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 99

Name Type Description

InfusionPump Cycle Automated This activity delivers the indicated amount of drug to the

patient.

NMTSensor Cycle Automated This activity calculates the NMT value of the patient.

PatientModel Cycle Automated This activity computes the relaxation status depending on

the drug received by the infusion pump.

Plan Next Cycle Automated This activity selects and starts next plan when actual plan

finishes.

3.8.7 V&V Workflows of TC Automated Experimenting

Generates simulation experiments, executes them, and statistically processes them. The experiments are

generated randomly from predefined ranges of input attributes. Random generation of experiments

must cover the whole space of patient’s weight and sensitivity to the drug, anaesthesia strategies, etc.

within scenarios of eventual application of anaesthesia.

Figure 3.44 shows the workflow specification diagram of TC Automated Experimenting.

Figure 3.44 Workflow Definition diagram of TC Auto Experiment used in UC8_RGB

Table 3.29 lists the activities of the workflow TC Automated Experimenting.

Table 3.29 List of activities performed by TC Automated Experimenting

Name Type Description

Experiment Execution:

(CallBehavior)

Semi-automated Execute experiments group

TC Automated Experimenting - TCAutoExperimenting

:TCGeneralDescription:TCGeneralDescription

:TCSummary:TCSummary

StartWorkflow

StopWorkflow

Generate Single

Experiment

:TCGeneralDescription:TCGeneralDescription

:TCGeneralDescription:TCGeneralDescription

:ExpPatientAttrs:ExpPatientAttrs

Experiment Postprocessing

:ExpOutputs:ExpOutputs

:ExpPatientAttrs:ExpPatientAttrs

:TCSummary:TCSummary

more experiments?

Experiment Execution

[no]

[yes]

Final Detailed Description of Improved Process Workflows

100 ECSEL JU, grant agreement No 876852.

Name Type Description

Experiment Postprocessing Automated This activity accumulates the generated outputs

(ExpOutputs) and statistically

process them into an aggregated output (TCSummary)

Generate Single Experiment Automated Generate outputs (ExpOutputs)

3.8.8 V&V Workflows of TC Management

Test Case Management Methods need manual preparation of the test case general description, which is

mainly defined by the intended relaxant drug and ranges of experimenting. TC Management generates

simulation experiments, executes them, and statistically processes them. The experiments are generated

randomly from predefined ranges of input attributes. Random generation of experiments must cover

the whole space of patient’s weight and sensitivity to the drug, anaesthesia strategies, etc. within

scenarios of eventual application of anaesthesia.

Figure 3.45 shows the workflow specification diagram of TC Management.

Figure 3.45 Workflow Definition diagram of TC Management used in UC8_RGB

Table 3.30 lists the activities of the workflow TC Management.

Table 3.30 List of activities performed by TC Management

Name Type Description

TC Automated

Experimenting -

TCAutoExperimenting

(CallBehavior)

Automated Automated execution of test cases that include the

intended relaxant drug and ranges of experimenting

TC Management - TCM

:TCSummary:TCSummary

:TCGeneralDescription:TCGeneralDescription

StartWorkflow

StopWorkflow

Design TC General Description
ActivityArtifact:

TCGeneralDescription

ActivityArtifact:

TCGeneralDescription

TC Automated Experimenting -

TCAutoExperimenting

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 101

Name Type Description

Design TC General

Description

Manual manual preparation of the test case, which is mainly

defined by the intended relaxant drug and ranges of

experimenting

Final Detailed Description of Improved Process Workflows

102 ECSEL JU, grant agreement No 876852.

3.9 V&V Workflow of Use Case 9 CAF

UC9_CAF_Submethods package contains the following workflows:

• Overall UC9 Method

• Simulation based V&V of Computer Vision System

Figure 3.46 shows the Overall UC9 workflow Method Definition diagram type of the V&V workflow

UC9_CAF_Submethods.

Figure 3.46 Method Definition of Overall UC9 workflow defined for UC9_CAF

Figure 3.47 shows the Simulation based V&V of Computer Vision System Method Definition diagram

type of the V&V workflow UC9_CAF_Submethods.

Figure 3.47 Method Definition of Simulation based V&V of Computer Vision System defined for UC9_CAFs

Overall UC9 Method

tags

Type = Semi-automated

Perform activities

 : Simulation based V&V of Computer Vision System

Validation Test Execution :

:Polaris CV Validation Test:Polaris CV Validation Test

:Polaris V&V Results:Polaris V&V Results

:Polaris CV Validation Test Result:Polaris CV Validation Test Result

Simulation based V&V of Computer Vision System

tags

Type = Semi-automated

Perform activities

Accuracy Metric Calculation :

Ground truth template generation :

Scenario frames recording :

Scenario selection and execution :

Simulated scenario design :

Validation Test Execution :

:V&V Result:V&V Result

:CV System Test Results:CV System Test Results
:Datasets for test:Datasets for test

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 103

 Details on the workflows are given in the following subsections.

3.9.1 Artifacts used in UC9_CAF

Table 3.31 lists the artifacts used for the workflow(s) defined for UC9_CAF.

Table 3.31 List of artifact types used in UC9_CAF

Name Description

CV System Test Results (Information) This will be the results obtained by the Polaris model, "Polaris

CV Validation Test".

Datasets for test (Information) Dataset generated with the tools DaGe4v and Train Simulator

for the computer vision for testing.

Polaris CV Validation Test

(Information)

Results generated by the model Polaris.

Polaris CV Validation Test Result

(Information)

This will be the input for the computer vision model which is

made by “Simulation based V&V of Computer Vision System”

using DaGe4v and Train Simulator. The input will be the

"Datasets for test" of “Simulation based V&V of Computer

Vision System”.

Polaris V&V Results (Information) The results obtained from the “Simulation based V&V of

Computer Vision System" method.

V&V Result (Information) The results obtained by analysing the dataset created with the

results obtained by Polaris model which are the input of the

method, “CV System Test Results”.

3.9.2 V&V Workflows of Overall UC9 Method

The overall use case 9 method defines the workflow for semi-automatically validate a computer vision

system using simulated validation datasets. In particular, the use case is focused on validating CAF’s

CV system (Polaris), which is trained to detect traffic lights and speed signs in the railway domain. For

this purpose, the workflow automates the use of the combined method defined by IKER, “Simulation

based V&V of Computer Vision System”. It contains a single activity that is responsible for obtaining a

list of validation datasets from the combined method process and it executes automatically one after

each other on the Polaris CV System. After obtaining the execution results from the system under test,

it provides to the combined method to finally get the V&V results that will be evaluated by an engineer.

Figure 3.48 shows the workflow specification diagram of Overall UC9 Method.

Final Detailed Description of Improved Process Workflows

104 ECSEL JU, grant agreement No 876852.

Figure 3.48 Workflow Definition diagram of UC9_VV_Method used in UC9_CA

Table 3.32 lists the activities of the workflow Overall UC9 Method.

Table 3.32 List of activities performed by Overall UC9 Method

Name Type Description

Activity: Simulation based

V&V of Computer Vision

System (CallBehavior)

Semi-automated The “Simulation based V&V of Computer Vision System”

method is a combined method that enables the validation of

a CV system focused on objects detection in a semi-

automated way. It is based on synthetic images generated

using a simulator

Validation Test Execution Semi-automated Validation Test Execution receives the synthetic images

generated using a simulator and makes the predictions to

pass it to the Simulation based V&V of Computer Vision

System.

Overall UC9 Method

:Polaris CV

Validation Test

:Polaris CV

Validation Test

:Polaris V&V

Results

:Polaris V&V

Results

:Polaris CV Validation

Test Result

:Polaris CV Validation

Test Result

StartWorkflow

StopWorkflow

Validation Test Execution

Simulation based V&V of

Computer Vision System

[V&V activity

not finished]

[V&V activity

finished]

V&V Results

Test Result

Validation Test

Test

Execution

Results

Validation

datasets

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 105

3.9.3 V&V Workflows of Simulation-Based V&V of Computer Vision

System

The “Simulation based V&V of Computer Vision System” method is a combined method that enables

the validation of a CV system focused on objects detection in a semi-automated way. It is based on

synthetic images generated using a simulator. The activities that compose the workflow of the method

are described below:

• Simulated scenario design: The first activity comprises the design of the scenarios using the

simulator. At this point, by means of a simulation environment the objects that CV system

should detect are placed in different scenarios.

• Scenario selection and execution: This activity will comprise the selection of a previously

designed scenario that will be executed in the simulator. Setting the configuration parameters

will enable to carry out a simulation in different conditions.

• Scenario frames recording: During a simulation execution, the Dataset Generator for

Validation (DaGe4V) tool records the frames and related metadata from the simulator. As a

result, the validation datasets for testing the system under test are generated.

• Ground truth template generation: This activity comprises semi-automatically labelling the

validation datasets, using external tools, such as DarkLabel, to get the ground truth information

with accurate information on objects location in each frame.

• Accuracy Metric Calculation: In this activity, Validation Test Result Analyser (VaTRA) tool will

analyse the results obtained in several tests carried out for the CV system. It will compare the

results get on each test with the ground truth template, providing several metrics and

identifying potential safety violations due to incorrect object detection during the tests,

generating the V&V Results artifact.

Figure 3.49 shows the workflow specification diagram of Simulation based V&V of Computer Vision

System.

Final Detailed Description of Improved Process Workflows

106 ECSEL JU, grant agreement No 876852.

Figure 3.49 Workflow Definition diagram of Simulation based V&V of Computer Vision used in

UC9_CAF_Submethods

Table 3.33 lists the activities of the workflow Simulation based V&V of Computer Vision System.

Table 3.33 List of activities performed by Simulation based V&V of Computer Vision System

Name Type Description

Simulated scenario design Manual The first activity comprises the design of the scenarios using

the simulator. At this point, by means of a simulation

environment the objects that CV system should detect are

placed in different scenarios.

Scenario selection and

execution

Manual This activity will comprise the selection of a previously

designed scenario that will be executed in the simulator.

Setting the configuration parameters will enable to carry out

a simulation in different conditions.

Scenario frames recording Automated During a simulation execution, the Dataset Generator for

Validation (DaGe4V) tool records the frames and related

metadata from the simulator. As a result, the validation

datasets for testing the system under test are generated.

Ground truth template

generation

Semi-automated This activity comprises semi-automatically labelling the

validation datasets, using external tools, such as DarkLabel,

Simulation based V&V of Computer Vision System

:CV System Test

Results

:CV System Test

Results

:V&V Result:V&V Result

:Datasets for test:Datasets for test

StartWorkflow

StopWorkflow

Simulated scenario design
Scenario selection and

execution
Scenario frames recording

Ground truth template

generation

Accuracy Metric

Calculation

Test Execution Results

Validation datasets

Journey Ground Truth

scenario

Validation

datasets

scenario data

Validation

datasets

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 107

Name Type Description

to get the ground truth information with accurate

information on objects location in each frame.

Accuracy Metric Calculation Automated In this activity, Validation Test Result Analyser (VaTRA)

tool will analyse the results obtained in several tests carried

out for the CV system. It will compare the results get on each

test with the ground truth template, providing several

metrics and identifying potential safety violations due to

incorrect object detection during the tests, generating the

V&V Results artifact.

Final Detailed Description of Improved Process Workflows

108 ECSEL JU, grant agreement No 876852.

3.10 V&V Workflow of Use Case 10 BT

UC10_BT package contains the following workflows:

• UC10 Overall Method

• Model Checking Families of Real-Time Specifications

• Optimize Fault Injection Experiments Using Model-Based Mutation Testing

• Behaviour-driven model development and test-driven model review

Figure 3.50 shows the UC10 Overall Method Definition diagram type of the V&V workflow UC10_BT.

Figure 3.50 Method Definition of UC10 Overall Method defined for UC10_BT

Figure 3.51 shows the Model Checking Families of Real Time Systems Method Definition diagram type

of the V&V workflow UC10_BT.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 109

Figure 3.51 Method Definition of Model Checking Families of Real Time Systems - Method defined for UC10_BT

Figure 3.52 shows the Optimize Fault Injection Experiments Using Model-Based Mutation Testing

Method Definition diagram type of the V&V workflow UC10_BT.

Figure 3.52 Method Definition of Optimize Fault Injection Experiments Using Model-Based Mutation Testing defined for

UC10_BT

Figure 3.53 shows the Behaviour-driven model development and test-driven model review Method

Definition diagram type of the V&V workflow UC10_BT.

Final Detailed Description of Improved Process Workflows

110 ECSEL JU, grant agreement No 876852.

Figure 3.53 Behaviour-driven model development and test-driven model review

Details on the workflows are given in the following subsections.

3.10.1 Artifacts used in UC10_BT

Table 3.34 lists the artifacts used for the workflows defined for UC10_BT.

Table 3.34 List of artifact types used in UC10_BT

Name Description

Abstract Test Sequences (Scenarios)

(Information)

Set of possible sequences of events that describe tests over the

behaviour of a system.

Annotated RT Spec (Active Unit) Formal specification of a real-time specification, annotated

with placeholders that can be modified to produce variations

of the specification.

Behavioural Model (Information) Informal description of the behaviour of a specific case-study.

Configuration Table (Information) Compilation of configuration values, including functional

parameters, real-time parameters, requirements, and scenarios.

FI Report (Information) Report resulting from running the analysis of the system-

under-test after injecting faults.

Functional Parameters (Information) Concrete values that will influence the generation of concrete

instances, focused on functional behaviour.

Generation Params (Information) Generation parameters are the concrete set of values that will

be used to configure an automated activity that produces test

sequences for a given behaviour model.

Real-Time Parameters (Information) Combinations of temporal restrictions of the behaviour of the

use-case.

Requirements (Information) Requirements is an informal description (e.g., text,

spreadsheets) of desirable properties that should be considered

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 111

Name Description

during the design and verification of a system. These can be

safety or liveness properties, depending on the particular

system being analysed.

Scenarios (Information) Description of context information, including a sequence of

expected input messages.

Specification Instances (Active Unit) Set of concrete instances of specifications of a system built from

a more generic and parameterized specification.

SUT (Active Unit) System Under Test (SUT) is the concrete implementation that

will be analysed and verified.

UML Behaviour Model (Information) A UML behavioural model of the system. This allows us to

generate the tests.

Ver Report (Information) Report regarding the formal verification analysis.

3.10.2 V&V Workflows of UC10 Overall Method

UC10 is a DC motor controller in the railway domain targeted for a Tolerable Hazard Rate (THR) of

5*10^-12 according to the railway safety standard EN50129 [14]. In this use case, the platforms are

different hardware configurations of COTS functional safety SoC. In VALU3S, we investigate and

validate the safety functions implemented on different platforms and try to move the safety functions

between environments and assess the compliance with the railway standards. With this approach, we

explore the possibility to reduce the time and cost of functional safety product development in the

railway system. Moreover, the possibility to increase the system availability is explored.

In UC10, three V&V methods will be applied/used:

1. For functional testing, Model-Based Mutation Testing is applied.

2. The combined method Scenario Generation and Validation of Real-Time Systems is specialised

here, using Model-Based Mutation Testing as a specialisation of its part method Model-Based

Testing to provide scenarios for the validation of real-time properties of the system.

3. Fault injection experiments are done. For optimizing the experiments, the combined method

Optimize Fault Injection Experiments Using Model-Based Mutation Testing is used.

The UML behavior models used in all three methods will be developed using Behaviour-driven model

development and test-driven model review – one possibility to optimize building behaviour models for

analysis and testing. This diagram depicts how the methods interact and how the workflow for Scenario

Generation and Validation of Real-Time Systems is adapted to use Model-Based Mutation Testing.

Tools that will be used are:

• MoMuT’s integration into Enterprise Architect for Behaviour-driven model development and

test-driven model review MoMuT::UML: for Model-Based Mutation Testing [15]

Final Detailed Description of Improved Process Workflows

112 ECSEL JU, grant agreement No 876852.

• UPPAAL [16] for Model Checking Families of Real-Time Systems

• Xilinx Vivado Design Suite [17] and the Healing Core Feature for Fault Injection into FPGAs.

The tools are not integrated at the moment – it is not clear yet how far integration on the tool side will

go, apart from exchanging V&V artefacts.

The actual fault injection experiments can be done in software simulation or on the actual hardware

prototype, deployed into the FPGA. Both approaches derive an intermediate input from a system

description that can be shared/reused.

Figure 3.54 shows the workflow specification diagram of UC10 Overall Method.

Figure 3.54 Workflow Definition diagram of UC10 Overall Method Workflow used in UC10_BT

Table 3.35 lists the activities of the workflow UC10 Overall Method.

Table 3.35 List of activities performed by UC10 Overall Method

Name Type Description

Activity: Behaviour-driven

model development and test-

Semi-automated Build scenarios from informal requirements. The scenarios

can be for example: process control by of sensor data, server

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 113

Name Type Description

driven model review

(CallBehavior)

and PLC communication, anomaly detection at component

and system level. The output are abstract test sequences.

Activity: Model Checking

Families of Real-Time

Specifications (CallBehavior)

Semi-automated This method uses a model checker to statically verify a set

of requirements with real-time aspects. It uses an annotated

description of the formal model and a table of possible

parameters, and effectively checks each requirement against

a set of sensible variations of the system model. Some of

these parameters capture the possible scenarios produced

by <generation-activity>. This exploration of variants is

realized by a new in-house tool named Uppex.

Activity: Optimize Fault

Injection Experiments Using

Model-Based Mutation

Testing (CallBehavior)

Semi-automated Fault-based testing plays an important role in the

verification and validation of systems, as it is able to

demonstrate the absence of certain faults. Model-based

mutation testing (MBMT) is a particular instance of fault-

based testing. MBMT is working in a black box setting,

which means that it does not look at the implementation

during test case generation. Instead, it is working off a

model of the system under test (SUT)

that is directly derived from the requirements and usually

is more abstract than the implementation. Given a

behavioural model of the SUT and a set of generic fault

models, i.e., so-called mutation-operators, MBMT strives to

automatically generate test cases that can reveal whether

any modelled fault has been implemented. To this end,

MBMT will take the original model, apply one mutation

operator at one particular location a time, deriving a so-

called mutant, compare the behaviour of the original model

with the one of the mutant, and - once a difference is found

- write out a test case that steers the SUT towards this

difference.

Assemble Scenarios Manual Prepare a given set of high-level scenarios to be provided as

input to the model-checking method, using its dedicated

input format.

Build/Adapt Refined

Behaviour Model

Manual Prepare or adapt the behaviour model using the

specification language used by the model-checking method.

Mutation-Driven Model-

Based Test Case Generation

Automated Generate test cases using a mutation-based technique over

the behaviour model.

Needs adaption because of

Errors?

Manual Evaluating all results of the “Model Checking Families …"

activity, it is decided whether the scenarios need further

adaption or not.

Run generated test on target

system

Automated Execute the test cases on the concrete implementation of the

target system.

Final Detailed Description of Improved Process Workflows

114 ECSEL JU, grant agreement No 876852.

3.10.3 V&V Workflows of Model Checking Families of Real-Time

Specifications

The goal of this method is to guide the model checking process of many variations of similar

specifications of Real Time behaviour, using an intermediate set of configuration tables to guide the set

of variants.

Model checking is a method to verify if a model of the system under verification satisfies its

requirements. In complex models verification becomes infeasible due to the large state space, requiring

many small variations of the model, one for each set of related requirements. Typically, these variations

are built independently, intersecting efforts, and not guaranteeing that they are kept consistent.

This method explores how to define this of variations and respective requirements based on a single

configurable model, leveraging on principles from software product line engineering (SPLE), which are

here applied to formal specifications rather than software specifications. It focuses on the UPPAAL real-

time model checker, and proceeds in two phases: (1) annotation of the specifications, and (2) automatic

configuration of these annotated blocks via a product line of specifications.

Annotated Specifications

In many cases the relation between the abstract model and the implementation is maintained via

personal meetings and reports using natural languages. Automatizing this synchronisation is involves

a large effort and is in many cases impractical. Our approach involves using a set of tables in Microsoft

Excel to maintain the key parameters of the formal models, including scenarios and requirements of the

system. This set of tables is easy to be read and modified by both developers of the system and by

developers of the formal models and is automatically entangled with the models used by the formal

analysis tools. On one hand, the system developers can update this table and check which requirements

can be verified; on the other hand, the designers of the formal models can adapt the model to either

include new details, or to relax aspects that introduce state explosions. By using an intermediate

representation of the core parameters of the formal specifications, we reduce the expected knowledge

of the system developers over formal models. This includes ranges of estimated time executions of

individual components, the number of times certain actions may occur, and sequences of input

scenarios. Experts in formal modelling are kept in the loop to refine the models and property

specifications as needed.

Product Line of Specifications

A common approach to avoid exploring too many states while trying to verify a property is to bound

the state space. Some tools support bounded model checking, limiting the depth of search in the state

space. Our approach supports the specification of variants, where the state-space can be reduced by

modifying different parameters of the specification. For example, 2 variants could remove 2

independent parts of the specification, allowing the verification of properties for these two variants

instead of the full model. Ultimately, the goal is to verify a large-enough set of variants to cover the

relevant cases without incurring in state-space explosions.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 115

The method workflow is as follows. The informal behavioural description, different parameters, input

scenarios, and requirements are provided as input. These are used to manually build: (1) an initial global

and annotated real-time specification, and (2) a collection of Excel tables with information on how to

populate the annotated blocks of the specifications and with the set of requirements. Our own tool

(Uppex) is then used to automatically apply the configurations in the Excel tables to the annotated

specifications, producing a set of specification instances. These are also automatically analysed via

UPPAAL, with a provided time-out, and a report is produced over which requirements hold in which

configuration. The instances can also be manually inspected within UPPAAL, leading to a manual

refinement of the annotated specifications and the Excel tables, until all desired requirements are met

for a rich enough set of configurations.

Figure 3.55 shows the workflow specification diagram of Model Checking Families of Real Time

Systems.

Figure 3.55 Workflow Definition diagram of Model Checking Families of Real Time Systems used in UC10_BT

Table 3.36 lists the activities of the workflow Model Checking Families of Real-Time Specifications.

Table 3.36 List of activities performed by Model Checking Families of Real-Time Specifications

Name Type Description

Apply Configurations Automated Given an annotated specification (with customizable parts)

and a set of configuration tables (describing alternative

parameters to customize the specification), automatically

create many concrete instances of the annotated

specification with the information from the tables.

Build Configuration Tables Manual Construct a set of tables describing different sets of valid

parameters, scenarios, and requirements. Identify a set of

"products", i.e., groups of parameters, scenarios, and

requirements that can considered together.

Build annotated RT spec Manual Construct a specification for a Real-Time system, e.g., an

input model for the UPPAAL model checker, and annotate

Model Checking Families of Real-Time Specifications

Behaviour:

Behavioural

Model

Behaviour:

Behavioural

Model

Abstract Test

Cases: Scenarios

Abstract Test

Cases: Scenarios

Functional:

Functional

Parameters

Functional:

Functional

Parameters
Behaviour and Timing

Requirements:

Requirements

Behaviour and Timing

Requirements:

Requirements

Real-Time Verification

Report: Ver Report

Real-Time Verification

Report: Ver Report

Configuration:

Configuration Table

Configuration:

Configuration Table

Specifications:

Specification Instances

Specifications:

Specification Instances
Real-Time:

Real-Time

Parameters

Real-Time:

Real-Time

Parameters
Failed property?

:Ver Report:Ver Report

State explosion or

unexpected result?

:Ver Report:Ver Report

Refine spec

:Annotated RT

Spec

:Annotated RT

Spec :Annotated RT Spec:Annotated RT Spec

Refine

params+reqs

Apply

Configurations

:Specification

Instances

:Specification

Instances:Configuration

Table

:Configuration

Table

Build

Configuration

Tables :Configuration

Table

:Configuration

Table

:Scenarios:Scenarios

:Functional

Parameters

:Functional

Parameters

:Requirements:Requirements

:Real-Time

Parameters

:Real-Time

Parameters

Build annotated

RT spec :Annotated RT

Spec

:Annotated RT

Spec

:Behavioural

Model

:Behavioural

Model

:Real-Time

Parameters

:Real-Time

Parameters

Verify

Instances

:Ver Report:Ver Report

StartWorkflow

StopWorkflow

noyes

no

yes

Final Detailed Description of Improved Process Workflows

116 ECSEL JU, grant agreement No 876852.

Name Type Description

it using special commented blocks indicating variability

areas. I.e., marking parts of the specification as

customizable.

Failed property? Manual Verify if any of the properties failed the model-checking

phase.

Refine params+reqs Manual Update the parameter’s values and the requirements based

on what properties failed and why.

Refine spec Manual Update the specification of the behaviour based on what

properties failed and why.

State explosion or unexpected

result?

Manual Check if the verification phase timed-out or if some output

seems different from the expected one.

Verify Instances Automated Run the model checker over a set of specifications and their

requirements.

3.10.4 V&V Workflows of Optimize Fault Injection Experiments Using

Model-Based Mutation Testing

For fault injection experiments, system stimuli are needed to operate the system under test while faults

are injected. This is needed to verify that a fault tolerant system is gracefully handling a fault in all

(relevant) situations. While the number of possible injected faults grows linearly with the size of the

system, the number of possible input stimuli combinations, system states, and paths over the system

states (i.e., test sequences) tends to grow exponentially with the size of the system.

By naively combining all injected faults with all tests, the time to run fault injection experiments would

also grow exponentially with the size of the system. Therefore, ways to limit the size of the test suite,

ensure the quality of the test suite, and select relevant test sequences per injected fault are crucial.

The combination with model-based mutation testing can support this by generating tests that:

• cover the system behaviour as complete as possible,

• do so with a low number of test sequences,

• ensure to propagate a problem caused by the injected fault long enough to become observable

at the test interface.

If the system under evaluation can be instrumented to show which test sequences exercise the part of

the system where the fault is injected, this can generally be used to limit the tests that need to be run per

injected fault.

In this case, if model-based testing is used to create the test sequences, the tests can be used to establish

correlations between model elements and parts of the system where faults are injected. By only mutating

these model elements during model-based mutation testing, a specific, small test suite can be generated

to be run for all fault injections into the related system part. Since the tests are optimized for problems

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 117

in the specific part of the system, the overall execution time of the fault injection experiments can be

substantially lower than when using only selected tests of a standard test suite. Tests for the complete

system with regression testing as test goal would try to achieve as much coverage as possible with a

test, independently if the exercised system parts are of interest for the fault injection, or not. Tests for

the complete system with debug testing as test goal would try to reach each coverage goal with as little

steps as possible but running all relevant out of such a test suite would re-run shared prefixes of the test

sequences numerous times.

Figure 3.56 shows the workflow specification diagram of Optimize Fault Injection Experiments Using

Model-Based Mutation Testing.

Figure 3.56 Workflow Definition diagram of Optimize Fault Injection Experiments Using Model-Based Mutation Testing

used in UC10_BT

Table 3.37 lists the activities of the workflow Optimize Fault Injection Experiments Using Model-Based

Mutation Testing.

Table 3.37 List of activities performed by Optimize Fault Injection Experiments Using Model-Based Mutation Testing

Name Type Description

Add FI-Instrumentation Automated The SUT is modified in a way that allows later to inject faults.

Add Probes Automated Into the modified SUT means are inserted that provide

information to the outside (of the SUT) about inner

parameters.

Analyse Location Coverage Semi-automated Check whether the generated test sequences cover all fault

locations added to the SUT in the "Add FI-instrumentation"

activity.

Build/Update Behaviour

Model

Manual The behaviour of the SUT is modelled to a level of detail that

covers all relevant behavioural aspects; for instance, as UML

state machine.

Optimize Fault Injection Experiments Using Model-Based Mutation Testing

Behavioural

Requirements:

Requirements

Behavioural

Requirements:

Requirements

MBT configuration:

Generation Params

MBT configuration:

Generation Params

System Under Test:

SUT

System Under Test:

SUT

BM: Behaviour

Model

BM: Behaviour

Model

FI Report: FI ReportFI Report: FI Report

Pre-Existing Model:

Behaviour Model

Pre-Existing Model:

Behaviour Model Build/Update

Behaviour Model

prelim.

Behaviour

Model

prelim.

Behaviour

Model

Generate Test

Sequences

Test Sequ.sTest Sequ.s

Optimized Gen.Params:

UML Behaviour Model

Optimized Gen.Params:

UML Behaviour Model

(prelim.) Map: Model Elem

<-> Test Sequ (Step)

(prelim.) Map: Model Elem

<-> Test Sequ (Step)

Analyse Location

Coverage

Adapting gen.params.

sufficient?

Map Fault Loc. ->

Model Elem.

Map: Model Elem <->

Test Sequ (Step)

Map: Model Elem <->

Test Sequ (Step)
(List of) Target

Model Elems.

(List of) Target

Model Elems.

Map: Fault Loc.s <->

Model Elem.s

Map: Fault Loc.s <->

Model Elem.s

Add FI-

Instrumentation

:SUT:SUT

Fault Loc.sFault Loc.s

FI'd SUTFI'd SUT

Add Probes

FI+Probed SUTFI+Probed SUT

Generate Loc.

specif. Test

Sequ.s

Optimized

Gen. Params

Optimized

Gen. Params

Behaviour ModelBehaviour Model

Loc. Spec. Test Sequ.sLoc. Spec. Test Sequ.s

Map Loc. specif.

Test Sequ.s <->

Fault Loc.s

Map: Model.Elem <->

Test Sequ.s (Step)

Map: Model.Elem <->

Test Sequ.s (Step)

Map: Fault loc.s <->

spec. Test sequ.s

Map: Fault loc.s <->

spec. Test sequ.s

Optimized FI-

experiments

FI+Probed SUTFI+Probed SUT

Map: Fault Loc. <-> Test Sequ.s (Step)

All fault loc.s

cov.d

Not all fault loc.s

cov.d

yes

no

Final Detailed Description of Improved Process Workflows

118 ECSEL JU, grant agreement No 876852.

Name Type Description

If the model is too coarse (i.e. the control flow arrives activity

from inner loop), extend model according to findings from

location coverage analysis.

Generate Loc. specif. Test

Sequ.s

Automated The test sequences are extended in order to touch the model

elements corresponding to fault locations.

Generate Test Sequences Automated Using a set of predefined mutations (e.g. modifying

transition conditions or follow-up states), test sequences are

generated that enforce the mutated model to behave

differently than the original.

Map Fault Loc. -> Model Elem. Semi-automated The fault locations (see activity "Add FI-instrumentation")

are mapped to the corresponding items in the behaviour

model.

Map Loc. specif. Test Sequ.s

<-> Fault Loc.s

Semi-automated Convert the test sequences into form that can be applied to

SUT.

Optimized FI-experiments Semi-automated Apply optimized test sequences to FI+Probed SUT.

3.10.5 V&V Workflows of Behaviour-Driven Model Development and

Test-Driven Model Review

Here we aim to build scenarios from informal requirements. The scenarios can be for example: process

control by of sensor data, server and PLC communication, anomaly detection at component and system

level. The output are abstract test sequences. Figure 3.57 shows the workflow specification diagram of

Optimize Fault Injection Experiments Using Model-Based Mutation Testing.

Figure 3.57 Workflow Definition diagram of Behaviour-driven model development and test-driven model review used in

UC10_BT

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 119

Table 3.38 lists the activities of the workflow Optimize Fault Injection Experiments Using Model-Based

Mutation Testing.

Table 3.38 List of activities performed by Behaviour-driven model development and test-driven model review

Name Type Description

Build Manual Scenarios Manual Build scenarios from informal requirements. The scenarios

can be for example: process control by of sensor data, server

and PLC communication, anomaly detection at component

and system level. The output are abstract test sequences.

Build Behaviour Model Manual The behaviour model of the system is built around informal

requirement, use case scenarios and high-level descriptions

of the behaviour to produce test cases, i.e., traces of

interactions with external components that maximize

coverage and a more refined descriptions of the behaviour

to model check requirements, enriched with the scenarios

derived from requirements.

The output is a formal behaviour model for the model

verification process.

Behaviour Verification Manual Behaviour verification of the formal Behaviour Model

against manual defined test scenarios and abstract test

sequences.

The loop-back to the Behaviour Model activity is performed

as long as the Behaviour Model passes all verification

criteria.

Acceptance Testing Manual It performs an acceptance testing to validate the behaviour

model of the system.

Scenario Generation Automated Both manual defined test scenarios and scenarios derived

from behaviour models verify the transfer of systems

behaviour from the real environment to the model

environment. Given specific inputs, it allows the execution

of meaningful scenarios designed to check that the system

complies with the informal requirements.

Release finished model Automated After passing the acceptance test the Formal Behaviour

Model is released as Validated UML Behaviour Model.

Final Detailed Description of Improved Process Workflows

120 ECSEL JU, grant agreement No 876852.

3.11 V&V Workflow of Use Case 11 OTOKAR

UC11_OTOKAR package contains the following workflows:

• Penetration Testing

• Model-Based Formal Specification and Verification of Robotic Systems

• Simulation-based Verification

• Vulnerability Analysis of FPGA Based Cryptographic Modules Against Hardware-Based

Attacks

Figure 3.58 shows the Penetration testing Method Definition diagram type of the V&V workflow

UC11_OTOKAR.

Figure 3.58 Method Definition of UC11_OTOKAR_2_Penetration_testing defined for UC11_OTOKAR

Figure 3.59 shows the Model-Based Formal Specification and Verification of Robotic Systems Method

Definition diagram type of the V&V workflow UC11_OTOKAR.

Penetration Testing

tags

Type = Manual

Perform activities

 Exploitation :

Attack/ Fault Injection :

Information Gathering :

Post Exploitation :

Reporting :

Req. Formalization :

Results Evaluation / Report Generation :

Threat Modelling :

Vulnerability Analysis :

:Requirements:Requirements :Report:Report

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 121

Figure 3.59 Method Definition of Model-Based Formal Specification and Verification of Robotic Systems defined for

UC11_OTOKAR

Figure 3.60 shows the Simulation-based Verification Method Definition diagram type of the V&V

workflow UC11_OTOKAR.

Figure 3.60 Method Definition of Simulation-based Verification defined for UC11_OTOKAR

Model-Based Formal Specification and Verification of Robotic Systems

tags

Type = Semi-automated

Perform activities

Create state-based models :

Define formal specifications of

Determine functional units :

Evaluate model checking results :

Evaluate runtime verification

Execute model checking :

Execute runtime verification :

Execute services :

Generate monitor (Instrumentation) :

Generate V&V report :

System Requirements:

Requirements

System Requirements:

Requirements

ISO 10218/ISO 15066 Regulations:

Standards

ISO 10218/ISO 15066 Regulations:

Standards

Functional Description:

Description

Functional Description:

Description

Model Pattern Library:

Model Library

Model Pattern Library:

Model Library

System Codes: CodesSystem Codes: Codes

State-Based Behavior Models:

Verification Models

State-Based Behavior Models:

Verification Models

Model-Checking Results:

Model-Checking Results

Model-Checking Results:

Model-Checking Results

Formal Specifications:

Specifications

Formal Specifications:

Specifications

Runtime Verification Results:

Runtime Verification Results

Runtime Verification Results:

Runtime Verification Results

V&V report:

Report

V&V report:

Report

Simulation-based Verification

tags

Type = Semi-automated

Perform activities

Camera Fault Injection (CamFITool) : Camera Fault Injection (CamFITool)

Mutation-based Fault Injection (IMFIT) : Mutation-based Fault Injection (IMFIT)

Simulation-based Robot Verification Testing (SRVT) : Simulation-based Robot Verification Testing Tool (SRVT)

:Requirements:Requirements

:System verification report:System verification report

:Source Code:Source Code

:Workload:Workload

:Code snippets:Code snippets

Final Detailed Description of Improved Process Workflows

122 ECSEL JU, grant agreement No 876852.

Figure 3.61 shows the Vulnerability Analysis of Cryptographic Modules Against Hardware-Based

Attacks Method Definition diagram type of the V&V workflow UC11_OTOKAR.

Figure 3.61 Method Definition of Vulnerability Analysis of Cryptographic Modules Against Hardware-Based Attacks

defined for UC11_OTOKAR

Details on the workflows are given in the following subsections.

3.11.1 Artifacts used in UC11_OTOKAR

Table 3.39 lists the artifacts used for the workflow(s) defined for UC11_OTOKAR.

Table 3.39 List of artifact types used in UC11_OTOKAR

Name Description

Code snippets (Information) Code snippets are a programming term for a small region of

reusable Python source codes for the robotic system.

Codes (Information) They are system software codes created in accordance with the

verified model.

Data /Log Files (Information) Collecting data to prepare a security attack.

Description (Information) It is a textual description of what the system will do and how it

will behave.

Fault Injection Plan (Information) In the images taken from the cameras on the arms of the robots

will be injected.

Fault Library (Information) Salt&Pepper, Gaussian, Poisson, Open, Close, Dilation,

Erosion, Gradient, Motionblur will be injected to the images.

Model-Checking Results (Information) These are the verification results that are created after the state-

based behaviour models are checked whether they meet the

specifications.

«Method»

Vulnerability Analysis of FPGA Based Cryptographic Modules Against

Hardware-Based Attacks

tags

Type = Manual

Perform activities

Activity7: Vulnerability Analysis Results :

Irreproducibility and Robutness Analysis Block :

Randomness Evaluation Block :

Unpredictability Analysis Block :

Vulnerability Analysis Results :

Vulnerability Analysis(1) :

Vulnerability Analysis(2) :

Vulnerability Analysis(3) :
«MethodArtifact»

Vulnerability Test : Evaluated

System's Design Documents

«MethodArtifact»

Vulnerability Test : Evaluated

System's Design Documents

«MethodArtifact» Report:

Vulnerability Analysis Results

Report, Randomness Evaluation Test

Results

«MethodArtifact» Report:

Vulnerability Analysis Results

Report, Randomness Evaluation Test

Results

«MethodArtifact»

Randomness Test: Evaluated

System's RNG Output

«MethodArtifact»

Randomness Test: Evaluated

System's RNG Output

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 123

Name Description

Model Library (Information) It is a model library that contains formal models for the

functional modules of robotic systems, which are created as

patterns.

Report (Information) Providing a detailed report of strategies to improve your

security

Report (Information) This reports the overall V&V results.

Requirements (Information) The simulation models of the robotic system to be verified, the

physical dimensions of the real environment, the task location

lists applied by the robotic system and the software

codes/scripts from the system, if any.

Requirements (Information) It is a list of statements that identify the required functionality

and safety of the system.

Requirements (Information) Monitoring and inspection of unexpected network data

activity. In case of an unexpected network data activity system

will be shut down with safety protocols and will start working

with back-up server.

WAN connection must prevent unauthorized access from

WAN. (bypass firewall, DLP etc systems)

Runtime Verification Results

(Information)

These are the verification results that are created after checking

the fulfilment of the specifications during the execution of

system programs.

Source Code (Information) Robotic system codes to be verified.

Specifications (Information) They are the formal specifications of the requirements.

Standards (Information) They are the formal specifications of the standards to be used

in the verification of robotic systems.

System verification report

(Information)

Task completion times, safety trajectory plans for robots and

fault reports (verification report) of the robotic system.

Verification Models (Information) They are the models of the robotic system which are verified by

model-checking, and then they are used to construct system

software.

Workload (Information) The workload is the structure that includes the source codes

written for the task that robotic systems must perform. Within

the source codes, the V&V operation is used as a reference for

the applicable parts.

3.11.2 V&V Workflows of Model-Based Formal Specification and

Verification of Robotic Systems

The workflow includes six input and four output artifacts. The input artifacts are required to implement

workflow. These are functional descriptions, analysis models, model pattern library, ISO 10218 [18] /

Final Detailed Description of Improved Process Workflows

124 ECSEL JU, grant agreement No 876852.

ISO 15066 [19] regulations, and the system codes. The functional descriptions are the textual description

of the designed system provided by the customer or systems owner. The analysis models are the models

which were constructed during the analysis stage of the system, like use-case diagrams, activity

diagrams, etc. Model pattern library consists of state-based models which resemble the common

behaviours of the robotic systems. ISO 10218/ISO 15066 regulations are the robotic standards used to

determine the system's compliance with the standards. The last input artifact is the systems codes. The

codes are used to verify the system in the execution stage.

A state-based model, which is one of the output artifacts, reflects the system's behaviour. The

specifications are constructed formally for the properties of the system based on the requirements. The

method utilizes two techniques in two stages. Model-checking results and runtime verification results

are the verification results obtained in each stage.

Figure 3.62 shows the workflow specification diagram of Model-Based Formal Specification and

Verification of Robotic Systems.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 125

Figure 3.62 Workflow Definition diagram of MBF used in UC11_OTOKAR

Model-Based Formal Specification and Verification of Robotic Systems

Runtime Verification Results:

Runtime Verification Results

Runtime Verification Results:

Runtime Verification Results

System Requirements:

Requirements

System Requirements:

Requirements

ISO 10218/ISO 15066 Regulations:

Standards

ISO 10218/ISO 15066 Regulations:

Standards

Functional Description:

Description

Functional Description:

Description

Model Pattern Library:

Model Library

Model Pattern Library:

Model Library

System

Codes:

Codes

System

Codes:

Codes

State-Based Behavior Models:

Verification Models

State-Based Behavior Models:

Verification Models

Model-Checking Results:

Model-Checking Results

Model-Checking Results:

Model-Checking Results

Formal

Specifications:

Specifications

Formal

Specifications:

Specifications

V&V Report:

Report

V&V Report:

Report

StartWorkflow

Determine functional units

System RequirementsSystem Requirements

Functional DescriptionFunctional Description

Functional UnitsFunctional Units

Define formal specifications of

requirements

System

Requirements

System

Requirements SpecificationsSpecifications

ISO 10218/ISO 15066

Regulations

ISO 10218/ISO 15066

Regulations

Create state-based models

System RequirementsSystem Requirements

State-Based

Behaviour Models

State-Based

Behaviour Models

Functional DescriptionFunctional Description

Model Pattern LibraryModel Pattern Library

Functional UnitsFunctional Units

Execute model checking

Model-

checking

results

Model-

checking

results

State-

based

model

State-

based

model

SpecificationsSpecifications

Evaluate model checking results
Model-checking resultsModel-checking results

Evaluation ResultEvaluation Result

model verified?

Generate monitor (Instrumentation)

SpecificationsSpecifications

CodesCodes

State-Based ModelState-Based Model

Monitor: MonitorMonitor: Monitor

Execute runtime verification

Runtime Verification resultsRuntime Verification results

Monitor: MonitorMonitor: Monitor

CodesCodes
System Runtime DataSystem Runtime Data

Execute services

System Runtime DataSystem Runtime Data
MonitorMonitor

Evaluate runtime verification

results
Runtime Verification ResultsRuntime Verification Results

Runtime EvaluationRuntime Evaluation

StopWorkflow

Generate V&V report

V&V ReportV&V Report

Runtime Verification

Results

Runtime Verification

Results
Model

Cehecking

Results

Model

Cehecking

Results

Runtime

evaluation

Runtime

evaluation

Model EvaluationModel Evaluation

[Yes]

[No]

Final Detailed Description of Improved Process Workflows

126 ECSEL JU, grant agreement No 876852.

Table 3.40 lists the activities of the workflow Model-Based Formal Specification and Verification of

Robotic Systems.

Table 3.40 List of activities performed by Model-Based Formal Specification and Verification of Robotic Systems

Name Type Description

Create state-based models Semi-automated A state-based model of the system is created. This model

describes the behaviour of the system. If it is created in a

way that fully represents the system, the fulfilment of the

requirements related to the system can be checked.

Define formal specifications of

requirements

Semi-automated The safety and functional requirements are formally

specified. Thus, the specifications are utilized to check the

system model whether it meets.

Determine functional units Manual The software of the systems usually consists of multiple

functional units. If these functional units are identified, it

can facilitate system verification.

System requirements and description are utilized to

determine the functional units.

Evaluate model checking

results

Semi-automated The model-checking results are analysed. If any properties

are not met by the model, then the model needs to be

revised.

Evaluate runtime verification

results

Semi-automated Runtime verification results are analysed. If there are cases

where the requirements are not met by the running system,

then the codes need to be revised.

Execute model checking Semi-automated The model is checked whether it fulfil the formally specified

requirements. There are many tools for the purpose of

checking model.

Execute runtime verification Automated Runtime verification is executed. The system codes and

monitor is run.

Execute services Automated In addition to monitor, services that provides processed

data about the system being verified (e.g. online distance

tracker) are run.

Generate monitor

(Instrumentation)

Semi-automated During the runtime verification, the states and required

values of the software to be verified need to be monitored.

A monitor is generated in order to track these data. The

model, properties, and system codes are used to configure

the monitor.

 Generate V&V report

Semi-automated This activity compiles the verification results and creates a

detailed report.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 127

3.11.3 V&V Workflows of Penetration Testing

There are plenty of different techniques in data manipulation where MITM, DoS and ARP poisoning

are emerging and commonly exploited. MITM (Men-in-the-Middle, also called person-in-the-middle) is

a cyber-attack technique. Basically, in this technique, the attacker is positioning himself between two

sides of communication for listening and resolving any information in communication [20]. DoS (a

Denial-of-Service) attack is a cyber-attack in which the perpetrator aims to make a machine or network

resource unavailable to its intended users by temporarily or permanently disrupting services of a host

connected to the Internet [21] [22]. ARP is a communication protocol for link layer in ISO reference

model at RFC 826 [20]. ARP Poisoning is also called ARP spoofing, ARP cache poisoning, or ARP poison

routing. It is a technique by which an attacker sends (spoofed) ARP messages onto a local area network.

Generally, the aim is to associate the attacker's MAC address with the IP address of another host, such

as the default gateway, causing any traffic meant for that IP address to be sent to the attacker instead

[20] [23]. Industrial systems can be tested to detect these issues.

Figure 3.63 shows the workflow specification diagram of Penetration Testing.

Final Detailed Description of Improved Process Workflows

128 ECSEL JU, grant agreement No 876852.

Figure 3.63 Workflow Definition diagram of Penetration Testing used in UC11_OTOKAR

Table 3.41 lists the activities of the workflow Penetration Testing.

Table 3.41 List of activities performed by Penetration Testing

Name Type Description

Exploitation Semi-automated Attempting to gain sensitive data

Information Gathering Semi-automated Collecting data to prepare a security attack

Post Exploitation Semi-automated Evaluating the level of risk to your business known

weaknesses

Reporting Semi-automated Providing a detailed report of strategies to improve your

security

Threat Modelling Semi-automated Designing ways to test the weaknesses

Penetration Testing

:Report:Report

:Requirements:Requirements

StartWorkflow

StopWorkflow

Information

Gathering
RequirementsRequirements Information

Gathering

Information

Gathering

Threat

Modelling

Threat

Modelling

Threat

Modelling

Vulnerability

Analysis
Vulnerability

Analysis

Vulnerability

Analysis

 Exploitation

Exploitation

Results

Exploitation

Results

Post

Exploitation
Post

Exploitation

Post

Exploitation

Reporting

ReportReport

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 129

Name Type Description

Vulnerability Analysis Semi-automated Defining the possible points of entry

3.11.4 V&V Workflows of Simulation-Based Verification

Description: In industrial operations, failure of an autonomous robot system can cause a significant

hazard to that system. The safety of autonomous systems must be verified to prevent such accidents

and to prevent possible loss of life and property. Currently, most systems are tested through field tests,

which are costly, time consuming, limited in repeatable scenarios, and risky in case of unacceptable

behaviour. To mitigate these issues, their software can be pre-validated using simulation-based testing.

Based on the simulation-based robot verification tests method, simulations of autonomous system

operation were created in a virtual environment similar to the real environment in which the system

will operate. In this system created, it has become possible to verify the robots. With the safe trajectory

planned for the robots, the safety of the robots has been tried to be ensured. In addition, various fault

injection mechanisms have been put into use on these systems. These fault injection mechanisms have

their own elements for system testing and verification. These mechanisms provide different system

corruption functions at compilation and runtime of a system.

In this method, a test system has been developed with studies on the Simulation Based Verification

method, which focuses on the simulation and observation of robot behaviour and safety trajectory

optimization in the automotive body inspection system. The safety of the robotic system is ensured by

these tests made with the developed system.

Figure 3.64 above shows the workflow specification diagram of Simulation-based Verification.

Final Detailed Description of Improved Process Workflows

130 ECSEL JU, grant agreement No 876852.

Figure 3.64 Workflow Definition diagram of Simulation-based Verification - Workflow used in UC11_OTOKAR

Table 3.42 lists the activities of the workflow Simulation-based Verification.

Table 3.42 List of activities performed by Simulation-based Verification

Name Type Description

 Camera Fault Injection

(CamFITool) (CallBehavior)

Semi-automated Camera Fault Injection Tool (CamFITool) is a simple

interface that allows injection of image faults/distortion into

robot cameras. Thanks to this interface, you can create new

image libraries by injecting the fault types you have

determined, both real-time to ROS cameras, and to the

image libraries previously recorded by these cameras.

• Applicability of 6 fault types regulated for cameras.

• Having both offline and realtime fault injection features.

• User-friendly, easy to develop and open source.

Mutation-based Fault

Injection (IMFIT)

(CallBehavior)

Semi-automated

IMFIT is a simulation-based fault injection tool. Intended

purpose of this tool is to identify and understand potential

failures in the simulation environment. With this tool, the

user injects some faults, create failures or errors and monitor

their effects in a simulation environment. This tool is

designed to inject faults to the robots which are used in

industry.

Simulation-based Verification

:System

verification report

:System

verification report

:Requirements:Requirements

:Source Code:Source Code

:Workload:Workload

:Code snippets:Code snippets

Mutation-based Fault

Injection (IMFIT)

:Fault Injection

Plan

:Fault Injection

Plan

:Analytics:Analytics

Simulation-based Robot

Verification Testing (SRVT)

:Visualization:Visualization
Will the

injection be

displayed in

the simulation

environment?

Camera Fault Injection (CamFITool)

:Data /Log Files:Data /Log Files

:Fault Injection

Plan

:Fault Injection

Plan

[no]

[yes]

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 131

Name Type Description

With the popular use of ROS (Robot Operating System) in

industrial robotics, this tool is developed as compatible with

ROS and Gazebo.

 Simulation-based Robot

Verification Testing Tool

(SRVT) (CallBehavior)

Semi-automated

Description: SRVT is a testing tool system that enables

industrial robots to be verified & validated in simulation

environments. Using the Robot Operating System (ROS) as

its infrastructure, SRVT uses Gazebo to create the

simulation environment, MoveIt for robot motion trajectory

planning, and the ROS Smach library as the finite state

machine system. SRVT is formed by bringing these

components into a system.

These are components for SRVT:

• ROS: The Robot Operating System (ROS) is a set of

software libraries and tools that help you build robot

applications (https://www.ros.org).

• Gazebo: Gazebo, which is the most widely used

simulation engine in ROS (http://gazebosim.org).

• MoveIt: MoveIt is a planning framework where we

transfer the planned trajectory into the SRVT system

and use it (https://moveit.ros.org).

Improvement in Valu3s: The robotic system (UC11) used

before VALU3S used a C#-based manual control system and

had to be constantly observed by an operator. In addition,

the task completion times and working processes of the

robotic system were not optimized.

With SRVT, optimization of this robotic system and

improvements in task completion times are realized. With

the tests performed at SRVT, the most ideal trajectory

planning algorithms for this robotic system were

determined and it was observed that the tasks were

completed in 30-40% shorter time with this algorithm. In

addition, the safe implementation of the trajectories

obtained with the help of Moveit by the robot has been

observed in Gazebo.

Link: https://github.com/inomuh/srvt-ros

3.11.5 V&V Workflows of Vulnerability Analysis of FPGA Based

Cryptographic Modules Against Hardware-Based Attacks

ERARGE automates the verification and validation processes of chaotic oscillator and ring oscillator

based RNGs designed in FPGA. In this context, it is aimed that the RNGs in the design phase will work

without any security vulnerabilities throughout their lifetimes.

Artifact and Method Interfaces:

https://www.ros.org/h
http://gazebosim.org/h
https://moveit.ros.org/h
https://github.com/inomuh/srvt-ros

Final Detailed Description of Improved Process Workflows

132 ECSEL JU, grant agreement No 876852.

• Evaluated System's Design Documents. These documents must be in a format that can be

imported into Anadigm Designer or Vivado Design Suite.

• Evaluated System's RNG Output. This is a string of bits. It can be uploaded as an input in .bit

or .hex format. This bit string is tested by the Randomness Test Suite programs. (MATLAB,

Octave etc.)

• Vulnerability Analysis Report, Randomness Evaluation Test Results. This is a report. It is

created in .pdf or .doc format. It is prepared as design and performance feedback about the

RNG to the RNG designer or the authority in any specific organization. The main output of the

method is this report of vulnerability analysis assessment and test results.

Activities in the workflow with their control flows and data flows: There is a workflow without

hierarchy here. Each of the workflow steps contributes to the resulting report from different

perspectives. If there is no obvious error in the RNG design documents after preliminary inspection, the

RNG outputs can be tested as a bit string (must be at least 1 million bits).

Randomness Evaluation Block: NIST 800-22 [24], BigCrush [25] and DieHard [26] tests are standard

randomness tests. In this block, RNG outputs are taken as input and randomness tests are performed.

Results are reported.

Unpredictability Analysis Block: Design documents are reviewed by ERARGE. Whether the evaluated

RNG is unpredictable is examined with special techniques. These techniques are very diverse, some

versions can be seen in scientific publications published in [27].

Irreproducibility and Robustness Analysis Block: Design documents are reviewed by ERARGE. If the

output bit sequences of the evaluated RNG have a pattern and are immune to external interference, the

RNG cannot passes this test (in such a case the test results indicate that the targeted design is failed, and

the designer should correct/improve the previous design). This process is examined with special

techniques. These techniques are very diverse, some versions can be seen in relevant scientific

publications [28] [29]. According to these publications of ERARGE (mainly on cryptanalysis), if the RNG

examined is a ring oscillator-based RNG, it is statistically checked whether the interim outputs of the

RNG's inner blocks are correlated with each other. These techniques are very diverse, and alternative

designs can be adapted to various needs of cyber-physical systems.

Figure 3.65 shows the workflow specification diagram of Vulnerability Analysis of FPGA Based

Cryptographic Modules Against Hardware-Based Attacks.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 133

Figure 3.65 Workflow Definition diagram of Vulnerability Analysis of FPGA Based Cryptographic Modules Against

Hardware-Based Attacks used in UC11_OTOKAR

Table 3.43 lists the activities of the workflow Vulnerability Analysis of FPGA Based Cryptographic

Modules Against Hardware-Based Attacks.

Table 3.43 List of activities performed by Vulnerability Analysis of FPGA Based Cryptographic Modules Against Hardware-

Based Attacks

Name Type Description

Irreproducibility and

Robustness Analysis Block

Manual The position of the ring oscillator based RNGs in the FPGA

hardware and the sampling technique used increase the

correlation between the ring oscillators, this block is used to

analyse it.

Activity7:

Vulnerability

Analysis

Results

Vulnerability Analysis of FPGA Based Cryptographic Modules Against Hardware-Based Attacks

Vulnerability Test :

Evaluated System's

Design Documents

Vulnerability Test :

Evaluated System's

Design Documents

Randomness Test:

Evaluated System's

RNG Output

Randomness Test:

Evaluated System's

RNG Output

Report: Vulnerability Analysis Results

Report, Randomness Evaluation Test

Results

Report: Vulnerability Analysis Results

Report, Randomness Evaluation Test

Results

Vulnerability

Analysis(3)

Vulnerability

Analysis(2)

StartWorkflow

Randomness Evaluation

Block

Unpredictability

Analysis Block

Requirement:

Evaluated

System's Design

Documents

Requirement:

Evaluated

System's Design

Documents

Irreproducibility and

Robutness Analysis

Block

Vulnerability

Analysis(1)

StopWorkflow

Vulnerability

Analysis Results

Final Detailed Description of Improved Process Workflows

134 ECSEL JU, grant agreement No 876852.

Name Type Description

Randomness Evaluation Block Manual At the end of all design applications, RNG outputs are

subjected to randomness tests. Thus, it contributes to

verifying the unpredictability and non-reproducibility of

cryptographic keys.

Unpredictability Analysis

Block

Manual Circuits with chaotic ring oscillators are based on some

basic chaotic mathematical equations (example: jerk

equation). This block is used to prevent the risk of obtaining

the variable coefficients/voltage values of these structures

by scalar time series analysis and the estimation of all the

data produced by this RNG.

Vulnerability Analysis Results Manual Contains the result report of all applied analyses.

Vulnerability Analysis(1) Manual Contains the result report of randomness analyses.

Vulnerability Analysis(2) Manual Contains the result report of Unpredictability analyses.

Vulnerability Analysis(3) Manual Contains the result report of Irreproducibility and

Robustness analyses.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 135

3.12 V&V Workflow of Use Case 13 SIEMENS

UC13_SIEMENS package contains the following workflows:

• UC13 - SIEMENS

• Model-Based Mutation Testing

• Monitoring Enriched Test Execution

• Mutation-Driven Model-Based Test Case Generation

Figure 3.66 shows the UC13 - SIEMENS Method Definition diagram type of the V&V workflow

UC13_SIEMENS.

Figure 3.66 Method Definition of UC13 - SIEMENS defined for UC13_SIEMENS

Figure 3.67 shows the Model-Based Mutation Testing Method Definition diagram type of the V&V

workflow UC13_SIEMENS.

Figure 3.67 Method Definition of Model-Based Mutation Testing defined for UC13_SIEMENS

UC13 - SIEMENS

tags

Type = Semi-automated

Perform activities

 : Model-Based Mutation Testing

 : Behaviour-driven model development and test-driven model review

 : Model-Based Robustness Testing

 : Monitoring Enriched Test Execution

 : Monitoring Enriched Test Execution

Digital Twin Configuration :

Monitor Definition :

Robustness Test Concretization :

Test Concretization :

Test Formalization :

Requirements:

Requirements

Requirements:

Requirements

Validated Model: UML

Behavior Model

Validated Model: UML

Behavior Model

Motor + Motor Control:

Digital Twin

Motor + Motor Control:

Digital Twin

Functional (Safety)Test

Results: Test Report

Functional (Safety)Test

Results: Test Report

Fault Injection Results: Fault

Injection Experiment Report

Fault Injection Results: Fault

Injection Experiment Report

Pre-Existing Tests: Concrete

Test Sequences

Pre-Existing Tests: Concrete

Test Sequences Robustness Test Results:

Test Report

Robustness Test Results:

Test Report

Model-Based Mutation Testing

tags

Type = Semi-automated

Perform activities

Model Mutation Processor (Momut) :

UML Model Interpreter and Flattener :

Test Model: UML

Behavior Model

Test Model: UML

Behavior Model

Generated Tests:

Abstract Test Sequences

(Scenarios)

Generated Tests:

Abstract Test Sequences

(Scenarios)

System Under Test: SUTSystem Under Test: SUT

Test Report: ReportTest Report: Report

Final Detailed Description of Improved Process Workflows

136 ECSEL JU, grant agreement No 876852.

Figure 3.68 shows the Monitoring Enriched Test Execution Method Definition diagram type of the V&V

workflow UC13_SIEMENS.

Figure 3.68 Method Definition of Monitoring Enriched Test Execution defined for UC13_SIEMENS

Figure 3.69 shows the Mutation-Driven Model-Based Test Case Generation Method Definition diagram

type of the V&V workflow UC13_SIEMENS.

Figure 3.69 Method Definition of Mutation-Driven Model-Based Test Case Generation defined for UC13_SIEMENS

Details on the workflows are given in the following subsections.

3.12.1 Artifacts used in UC13_SIEMENS

Table 3.44 lists the artifacts used for the workflow(s) defined for UC13_SIEMENS.

Monitoring Enriched

Test Execution

tags

Type = Semi-automated

Perform activities

Digital Twin Simulation :

RTAMT monitor execution :

Monitor-Def: Monitor

Condition Definitions

Monitor-Def: Monitor

Condition Definitions

Tests: Concrete Test

Sequences

Tests: Concrete Test

Sequences

Test Result: Test

Verdict

Test Result: Test

Verdict

System under Test:

SUT

System under Test:

SUT

Mutation-Driven Model-Based Test

Case Generation

tags

Type = Automated

Perform activities

Analyse Coverage / Coverage sufficient? :

Generate Test Cases :

Modify Mutators :

Mutate Test Model :

Tests with High

Mutation Coverage:

Test Suite

Tests with High

Mutation Coverage:

Test Suite
Behaviour Model:

Test Model

Behaviour Model:

Test Model

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 137

Table 3.44 List of artifact types used in UC13_SIEMENS

Name Description

Artifact (Information) Report on passed/failed tests of the system regarding safety.

Artifact (Information) A behavioural model of the use case system in UML.

Behaviour Model (Active Unit) A test model that describes the required behaviour of the SUT

(and can be executed).

Concrete Test Sequences (Information) A series of tests cases for checking the correct implementation

of the motion control application – based on pre-existing tests.

Digital Twin (Active Unit) A digital twin implementation of the system including

hardware models such as motor control platform and physical

motor model, and relevant software such as motor control

algorithms.

Fault Injection Experiment Report

(Information)

Report on the passed/failed behaviour of the system regarding

fault-injection tests.

Monitor Condition Definitions

(Information)

The monitor is the correctness specification. It can be described

in Linear Temporal Logic or Signal Temporal Logic (for cyber-

physical systems)

monitor formal analysis test result

(Information)

Test report on successful/failed tests.

Requirements (Active Unit) Requirements for the system.

Scenarios (Abstract Test Sequences) Test sequences that detect faults (modelled as mutations of the

correct model) in the model, hence ‘'abstract'. They represent

test scenarios.

Simulation traces (Information) A series of tests cases for checking the correct implementation

of the motion control application – based on pre-existing tests.

SUT (Active Unit) The system under test containing the digital twin.

Test Report (Information) Test report on successful/failed tests.

Test Report for Functional Safety

(Information)

Test report on successful/failed tests regarding functional

safety.

Test Suite (from Mutation-Driven Model-

Based TCG)

Set of tests that together cover a certain aspect or criterion (of

the SUT), e.g., its requirements.

Test Verdict (Information) Test report on successful/failed test execution

UML Behavioural Model (Information) The system UML behavioural model.

Updated and Flattened Model

(Information)

The tests can be used to establish correlations between model

elements and parts of the system where faults are injected

Updated Model with FI

Instrumentation (Information)

Updated model with Fault-injection hooks

Final Detailed Description of Improved Process Workflows

138 ECSEL JU, grant agreement No 876852.

3.12.2 V&V Workflows of UC13 - SIEMENS

The group of V&V methods applied to the motor control for industrial drives use case (UC13), which

includes the migration of a digital twin to another processor platform, are:

• Behaviour-Driven Model Development and Test-Driven Model Review

• Model-Based Mutation Testing

• Model-Based Robustness Testing

• Monitoring Enriched Test Execution (Test Oracle Observation at Runtime)

As such, the method takes the digital twin, requirements and potentially pre-existing test cases as input

and delivers a validated model and reports on functional and robustness tests as well as fault injection.

This overall workflow depicts how the methods interact in the context of the use case. Behaviour-Driven

Model Development and Test-Driven Model Review provides a behaviour model for the two model-based

test case generation approaches. The resulting abstract tests are concretized and run in a monitoring-

enriched test environment. This environment makes use of formally defined monitors to ensure that

properties in the discrete or continuous domain, such as voltage and current, of the system under test

hold. This is an application of the Test Oracle Observation at Runtime method (as part of Monitoring

Enriched Test Execution).

Figure 3.70 shows the workflow specification diagram of UC13 - SIEMENS.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 139

Figure 3.70 Workflow Definition diagram of UC13 - SIEMENS used in UC13_SIEMENS

Table 3.45 lists the activities of the workflow UC13 - SIEMENS.

UC13 - SIEMENS

Motor + Motor Control:

Digital Twin

Motor + Motor Control:

Digital Twin

Functional

(Safety)Test

Results: Test

Report

Functional

(Safety)Test

Results: Test

Report

Robustness Test

Results: Test Report

Robustness Test

Results: Test Report

Requirements:

Requirements

Requirements:

Requirements

Pre-Existing Tests:

Concrete Test

Sequences

Pre-Existing Tests:

Concrete Test

Sequences

Validated

Model: UML

Behaviour

Model

Validated

Model: UML

Behaviour

Model

Test

Formalization

Abstract Tests: Scenarios

(Abstract Test Sequences)

Abstract Tests: Scenarios

(Abstract Test Sequences)

Monitor

Definition

Signal

Requirements:

Monitor

Condition

Definitions

Signal

Requirements:

Monitor

Condition

Definitions

Test

Concretization

Digital Twin

Configuration

Robustness Test

Concretization

Behaviour-driven model development

and test-driven model review

Model-Based Mutation Testing

Test Model:

UML

Behaviour

Model

Test Model:

UML

Behaviour

Model
Generated Tests:

Scenarios

(Abstract Test

Sequences)

Generated Tests:

Scenarios

(Abstract Test

Sequences)
Monitoring Enriched Test Execution

Monitor-Def: Monitor

Condition Definitions

Monitor-Def: Monitor

Condition Definitions

Tests: Concrete Test

Sequences

Tests: Concrete Test

Sequences

Test Result:

Test Verdict

Test Result:

Test Verdict

System under Test:

SUT

System under Test:

SUT

Model-Based Robustness Testing

Test Model:

UML

Behaviour

Model

Test Model:

UML

Behaviour

Model

Generated Robustness

Tests: Scenarios

(Abstract Test

Sequences)

Generated Robustness

Tests: Scenarios

(Abstract Test

Sequences)
Monitoring Enriched Test Execution

Monitor-Def: Monitor Condition

Definitions

Monitor-Def: Monitor Condition

Definitions

Tests: Concrete Test

Sequences

Tests: Concrete Test

Sequences

Test Result:

Test Verdict

Test Result:

Test Verdict

System under Test: SUTSystem under Test: SUT

Final Detailed Description of Improved Process Workflows

140 ECSEL JU, grant agreement No 876852.

Table 3.45 List of activities performed by UC13 - SIEMENS

Name Type Description

Activity: Behaviour-driven

model development and test-

driven model review

(CallBehavior)

Semi-automated The behaviour of a system-under-test (e.g., cyber-physical

system) is modelled by the application of modelling

languages. In this use case, UML-based models are

designed in Enterprise Architect. Taking the information

from informal requirements and formalized pre-existing

test scenarios, the (executable) system model is reviewed

and validated. Outputs are a validated system model and

test models for Model-Based Mutation Testing and Model-

Based Robustness Testing.

Activity: Model-Based

Mutation Testing

(CallBehavior)

Semi-automated Test mutation has the goal of covering the system behaviour

as completely as possible with as few test sequences as

necessary. New tests are generated based on the test model

(input) by applying test mutations.

Activity: Model-Based

Robustness Testing

(CallBehavior)

Automated Model-Based Robustness Testing takes the validated test

model as input and creates test cases for running robustness

tests (e.g., the generation of fault-injection tests).

Interface fault injection (or robustness testing) requires that

the system/component under test faces erroneous input

conditions, which are usually defined based on typical

developer mistakes or wrong assumptions. Erroneous input

conditions can be also generated at random in some

robustness testing scenarios. In a more general fault

injection context, erroneous inputs injected at the interface

of a given component can represent failures in preceding

components that forward their erroneous outputs to the

target component.

Activity: Monitoring Enriched

Test Execution (CallBehavior)

Semi-automated The concretized test cases, monitor definitions and the

system under test (configured digital twin) are inputs for

this activity, where the system is executed in a monitoring-

enriched environment. This environment makes use of

formally defined monitors to ensure that properties of the

continuous outputs (e.g., motor speed, current, voltage) of

the system under test hold. This is an application of the Test

Oracle Observation at Runtime method (as part of Monitoring

Enriched Test Execution). A test result report is written as

output of this activity.

Activity: Monitoring Enriched

Test Execution (CallBehavior)

Semi-automated The concretized test cases, monitor definitions and the

system under test (configured digital twin) are inputs for

this activity, where the system is executed in a monitoring-

enriched environment. This environment makes use of

formally defined monitors to ensure that properties of the

continuous outputs (e.g., motor speed, current, voltage) of

the system under test hold. This is an application of the Test

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 141

Name Type Description

Oracle Observation at Runtime method (as part of Monitoring

Enriched Test Execution). A robustness test result report is

written as output of this activity.

Digital Twin Configuration Manual Digital twin configurations (configuration of test runtimes,

set-ups of motors and control algorithms, batch simulation

scenarios, etc.) are created for simulation with concrete tests

in Monitoring Enriched Test Execution.

Monitor Definition Manual Based on the system requirements, monitors are defined

with the capability of analysing signals for the digital twin.

Monitor specification is supported by formal languages

(signal temporal logic), e.g., the motor shaft rotation speed

requirements are formalized, which serve as input for

creating the signal monitor definitions.

Test Concretization Semi-automated Abstract test cases are concretized (data format, test

structure) for their application in a test environment

connected to the system-under-test realized as a digital

twin.

Robustness Test

Concretization

Semi-automated Abstract robustness test cases are concretized (data format,

test structure) for their application in a test environment

connected to the system-under-test realized as a digital

twin.

Test Formalization Semi-automated Pre-existing tests (concrete test sequences) are formalized

using notations suitable for the method Behaviour-Driven

Model Development and Test Driven Model Review, which

require abstract test sequences and scenarios.

3.12.3 V&V Workflows of Model-Based Mutation Testing

Model-Based Testing is an approach for testcase generation for black-box testing. Model-based mutation

testing was pioneered by Lipton in 1971. Since there have been several approaches described in

literature, using several modelling formalisms and several commercial tools are available as well. Many

applications of the approach are in the safety critical systems domain, probably because there the

additional effort of creating a sufficiently complete model for testing is easier to argue.

The model-based mutation testing technique uses the input model to create a number of mutants, which

differ from the original model in tiny details. The goal is then to find tests that differentiate the mutant

from the original. These tests can then be used to test the implementation of the model.

An example would be a UML state machine that represents the behaviour of a car alarm system. The

model would arm the alarm when the doors are locked and raise an alarm when a door is open before

the car is unlocked. This model could be used to derive tests over the input/output behaviour of the

alarm system. These tests can be used to test a real-world implementation of the alarm system.

Final Detailed Description of Improved Process Workflows

142 ECSEL JU, grant agreement No 876852.

Figure 3.71 shows the workflow specification diagram of Model-Based Mutation Testing.

Figure 3.71 Workflow Definition diagram of Model-Based Mutation Testing - Workflow used in UC13_SIEMENS

Table 3.46 lists the activities of the workflow Model-Based Mutation Testing.

Table 3.46 List of activities performed by Model-Based Mutation Testing

Name Type Description

Model Mutation Processor

(Momut)

Automated

In a first step, the model mutation processor syntactically

alter the original test model and produces a set of mutated

models. In the next step automatically generate test cases try

to kill the model mutants, i.e., reveal their non-conforming

behaviour. This is accomplished by a conformance check

between the original and the mutated models.

As the test model is an abstraction of the SUT, also the

derived test sequences are abstract. Hence, they have to be

concretised, i.e., mapped to the level of detail of the SUT

UML Model Interpreter and

Flattener

Automated

The main parts of the UML behaviour model are class

diagrams, state machines and interfaces for the input and

output signals.

First, the interpreter checks the UML model for syntactical

correctness.

In a further step the hierarchical UML model will be

converted to a flat model representation.

Model-Based Mutation Testing

Test Model: UML

Behavior Model

Test Model: UML

Behavior Model

Generated Tests: Abstract

Test Sequences (Scenarios)

Generated Tests: Abstract

Test Sequences (Scenarios)

:Mutation

Operators

:Mutation

Operators

UML Model

Interpreter and

Flattener

:Updated and

Flattened Model

:Updated and

Flattened Model

:UML

Behavior

Model

:UML

Behavior

Model

Model Mutation

Processor (Momut)
:Abstract Test

Sequences

(Scenarios)

:Abstract Test

Sequences

(Scenarios)

:Mutation

Operators

:Mutation

Operators

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 143

3.12.4 V&V Workflows of Monitoring Enriched Test Execution

In this use case, Monitoring Enriched Test Execution enables the analysis of signals based on formal

requirement definitions. The system is tested by the simulation with a digital twin and chosen system

traces, such as discrete/continuous domain signals, are exported to the Real-Time Analog Monitoring

Tool (RTAMT [30]) which analyses signals and checks them against the formally specified requirements.

As results, the digital twin simulation outputs a test report, while the RTAMT tool generates an analysis

test result potentially showing requirement violations and indicators for bug fixes and optimizations.

Figure 3.72 shows the workflow specification diagram of Monitoring Enriched Test Execution.

Figure 3.72 Workflow Definition diagram of «Method» Monitoring Enriched Test Execution used in

UC13_SIEMENS

Table 3.47 lists the activities of the workflow Monitoring Enriched Test Execution.

Table 3.47 List of activities performed by Monitoring Enriched Test Execution

Name Type Description

Digital Twin Simulation Semi-

automated

The digital twin consists of a motor control platform, a

motor model and a motor control software. The digital twin

is started based on the provided test case sequences

enabling combined analysis of safety, security and

performance. After successful simulation, a test report is

output and simulation traces are exported to the RTAMT

monitor for further signal analysis.

Monitoring Enriched Test Execution

Monitor-Def: Monitor

Condition Definitions

Monitor-Def: Monitor

Condition Definitions

:Concrete Test

Sequences

:Concrete Test

Sequences

System under Test:

Digital Twin

System under Test:

Digital Twin

Result: Test

Report

Result: Test

Report

Digital Twin Simulation:Digital Twin:Digital Twin
:Test Report:Test Report

:TestCase:TestCase

:simulation

traces

:simulation

traces

RTAMT monitor execution

configured monitors:

Monitor Condition

Definitions

configured monitors:

Monitor Condition

Definitions

:monitor formal

analysis test result

:monitor formal

analysis test result

Final Detailed Description of Improved Process Workflows

144 ECSEL JU, grant agreement No 876852.

Name Type Description

RTAMT monitor execution Semi-

automated

RTAMT is a Python (2- and 3-compatible) library for

monitoring of Signal Temporal Logic (STL). The library

implements algorithms offline and online monitoring of

discrete-time and dense-time STL. The online monitors

support the bounded future fragment of STL. The online

discrete-time part of the library has an optimized C++ back-

end.

3.12.5 Mutation-Driven Model-Based Test Case Generation

Model-based testing (MBT) is used to automatically create test cases for diverse Systems Under Test

(SUT), descripted in form of a formal system test model. This system test model incorporates the

specification of the SUT. In this case MBT provide the opportunity to verify that the implemented

system conforms to its specification.

A variant of MBT is the mutation-driven model-based testing, a fault-based variant of MBT. The

generated test cases detect faulty implementation versions of the specification. The method illustrates

that during the system implementation the specified requirements were correctly understood and that

the SUT is free of the faults which are injected in the specification - in this case in the test model.

Mutation-driven model-based testing is a semantically very rich test case generation technique. Due to

the high overhead of test sequence processing that detects the differences between the original

specification and the mutations, this test technology is often considered impractical and not applicable.

Figure 3.73 shows the workflow specification diagram of Monitoring Enriched Test Execution.

Figure 3.73 Workflow Definition diagram of Mutation-Driven Model-Based Test Case Generation used in UC13

Mutation-Driven Model-Based Test Case Generation

Behaviour Model:

Test Model

Behaviour Model:

Test Model

Tests with High

Mutation Coverage:

Test Suite

Tests with High

Mutation Coverage:

Test Suite

Mutate Test

Model

Mutated Models

(Suite)

Mutated Models

(Suite)

Current

Mutatos

Current

Mutatos

Generate Test

Cases

Test SuiteTest Suite

Analyse Coverage /

Coverage sufficient?

(Optimized)

Test Suite

(Optimized)

Test Suite

Modify Mutators

Modified MutatorsModified Mutators [No]

[Yes]

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 145

Table 3.48 lists the activities of the workflow Mutation-Driven Model-Based Test Case Generation.

Table 3.48 List of activities performed by Mutation-Driven Model-Based Test Case Generation

Name Type Description

Analyse Coverage / Coverage

sufficient?

Semi-

automated

Assess how many elements of the behavior model are

accessed by the found test suite.

Generate Test Cases Automated I/O sequences are searched, that force the mutated model

('mutant') to behave observably different than the original

test model. That mutant is then considered to be "covered".

This is done for each mutant. It can be tried to find I/O-

sequences that cover several mutants". The resulting I/O-

sequences build the resulting test suite.

Modify Mutators Semi-

automated

The set of mutators is modified such that model elements

currently not tangled can be modified. (Usually, further

mutators are added.)

Mutate Test Model Semi-

automated

Generate variants of the Test Model by applying so-called

'mutators' to it. For state machines, a mutator can e.g.

change the targets of transitions, or modify the transition

conditions.

Initially, a predefined set of mutators is used.

Final Detailed Description of Improved Process Workflows

146 ECSEL JU, grant agreement No 876852.

3.13 V&V Workflow of Use Case 14 CARDIOID

UC14_CARDIOID package contains the following workflows:

• Biometric Model Performance and Privacy Validation

• Hardware in the Loop Validation & Verification

• Verification of Driver Monitoring Models

• Safe Generation and Instrumentation of Runtime Verification Architectures

• Software-Implemented Fault Injection

Figure 3.74 shows the Biometric Model Performance and Privacy Validation method definition diagram

type of the V&V workflow UC14_CARDIOID.

Figure 3.74 Method Definition of Biometric Model Performance and Privacy Validation defined for UC14_CARDIOID

Figure 3.75 shows the Hardware in the Loop Validation & Verification method definition diagram type

of the V&V workflow UC14_CARDIOID.

Biometric Model Performance and Privacy

Validation

tags

Type = Semi-automated

Perform activities

Accumulate Results :

Biometric Hashing :

Change Salt of One Subject :

Comparative Analysis :

Evaluate Rejection Performance of Changed Salt :

ML Model Validation :

ML Model Validation :

Salt Generation :

:Hashing Method:Hashing Method

:Template Dataset:Template Dataset

:Model Parameters:Model Parameters

:Salt Parameters:Salt Parameters

Cancellation Power

Report: Cancellation

Power Report

Cancellation Power

Report: Cancellation

Power Report

:Secure Biometric

Performance Report

:Secure Biometric

Performance Report

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 147

Figure 3.75 Method Definition of Hardware in the Loop Validation & Verification defined for UC14_CARDIOID

Figure 3.76 above shows the Verification of Driver Monitoring Models Method Definition diagram type

of the V&V workflow UC14_CARDIOID.

Figure 3.76 Method Definition of Verification of Driver Monitoring Models defined for UC14_CARDIOID

Figure 3.77 shows the Safe Generation and Instrumentation of Runtime Verification Architectures

Method Definition diagram type of the V&V workflow UC14_CARDIOID.

Hardware in the Loop Validation & Verification

tags

Type = Semi-automated

Perform activities

 : Safe Generation and Instrumentation of Runtime Verification

 : Software-Implemented Fault Injection

Report Analysis :

Specification Definition :

Specification Validation :

:Requirements:Requirements

System: Source CodeSystem: Source Code

:Hardware Setup:Hardware Setup

Monitor: Source CodeMonitor: Source Code

Instrumented: Source CodeInstrumented: Source Code

:Runtime Verification Report:Runtime Verification Report

:Report Analysis Outcomes:Report Analysis Outcomes

:Fault Resilience Report:Fault Resilience Report

Verification of Driver Monitoring Models

tags

Type = Semi-automated

Perform activities

Machine Learning Model Validation :

Drowsiness Data Collection on Driver Simulator :

:Volunteers:Volunteers

:CardioWheel

Ecossystem

:CardioWheel

Ecossystem

:Drowsiness Model:Drowsiness Model

:Driver Drowsiness

Dataset

:Driver Drowsiness

Dataset

:Model Performance

Report

:Model Performance

Report

:Drowsiness Metric:Drowsiness Metric

:Driving Simulator:Driving Simulator

Final Detailed Description of Improved Process Workflows

148 ECSEL JU, grant agreement No 876852.

Figure 3.77 Method Definition of Safe Generation and Instrumentation of Runtime Verification Architectures defined for

UC14_CARDIOID

Figure 3.78 shows the Software-Implemented Fault Injection Method Definition diagram type of the

V&V workflow UC14_CARDIOID.

Figure 3.78 Method Definition of Software-Implemented Fault Injection defined for UC14_CARDIOID

Details on the workflows are given in the following subsections.

3.13.1 Artifacts used in UC14_CARDIOID

UC14_Artifacts package contains the artifacts defined and used in the workflows for UC14.

Table 3.49 lists the artifacts used for the workflow(s) defined for UC14_CARDIOID.

Software-Implemented Fault Injection

tags

Type = Automated

Perform activities

Execute system with workload :

Generate faults :

Generate report :

Inject one fault :

System to be tested:

System-under-test

System to be tested:

System-under-test

Workload: WorkloadWorkload: Workload

Faultload: FaultloadFaultload: Faultload

Results:

Results report

Results:

Results report

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 149

Table 3.49 List of artifact types used in UC14_CARDIOID

Name Description

Cancellation Power Report

(Information)

Report on the success of the system in blocking access from

cancelled templates.

CardioWheel Ecossystem (Active Unit) System used to acquire volunteer's biosignals.

Driver Drowsiness Dataset

(Information)

Dataset containing both ECG recordings during driving

sessions, as well as independent drowsiness related metrics.

Driving Simulator (Active Unit) Driving Simulator where a volunteer can be immersed in a

realistic driving environment while being instrumented to have

biosignals acquired during the driving sessions.

Drowsiness Metric (Information) Auxiliary signal that allows independent inference of

drowsiness levels.

Drowsiness Model (Active Unit) Machine Learning model that estimates the drowsiness level

from acquired ECG signal.

Failure Classification (Information) Information characterizing the failure that was detected during

the experiment run (or information that no failure was

detected). This information can include the failure mode

classification and further details regarding the failure.

Fault details (Information) Information about the fault that was injected, e.g., the affected

register, affected bit, pre-injection value of the register,

injection timestamp, etc.

Fault Resilience Report (Information) Report describing the effects that each fault injection had on the

system.

Faultload (Information) Faultload defines how to emulate the type of faults that we

want to study, Usually these emulate either hardware (e.g., soft

errors in the CPU) or software faults.

Hardware Setup (Active Unit) Hardware setup where runtime verification should run on.

Hashing Method (Active Unit) Hashing method that obfuscates original biometric features

while allowing comparisons in the hashed space.

MARS Specification (Information) This artifact represents a formal specification of what the

monitor will verify in the target system.

Model Parameters (Information) Parameters for the biometric models.

Model Performance Report

(Information)

Report containing performance metrics of the model, including

Matthews Correlation Coefficient and Safety Cage systems

related results.

Monitor's Source Code (Active Unit) Code definition of produced runtime monitors.

Report Analysis Outcomes

(Information)

Outcomes from the analysis of Monitor's report, returning

either a validation certificate, a list of found failures, or a list of

found abnormal failures that demand a re-iteration of

specification definition.

Final Detailed Description of Improved Process Workflows

150 ECSEL JU, grant agreement No 876852.

Name Description

Requirements (Information) Set of system requirements related with runtime timing

properties.

Results report (Information) The results report contains information about the failure modes

and probabilities, and overall dependability, of the system-

under-test.

Runtime Verification Report

(Information)

Compilation of results from running a system

instrumented with a set of runtime monitors.

Salt Parameters (Information) Parameters for salt generation.

Secure Biometric Performance Report

(Information)

Report on the performance of the biometric models using

obfuscated templates, compared with models using the

original templates.

Source Code (Active Unit) Source code of some software artifact. This is used in the

context of full systems, monitors, and instrumented systems.

System-under-test (Active Unit) The system being tested. Can be a prototype or the final

version.

Template Dataset (Information) Dataset containing ECG templates associated with an identity.

Volunteers (Active Unit) Subjects that volunteer to have their data acquired.

Workload (Active Unit) The workload that will be executed in the System-under-test

while fault injection is taking place. It exercises the system to

foment faults to propagate into failures. The workload should

be the same, or at least similar, to the workloads that will be

executed in the system when fault injection is not being

performed.

3.13.2 V&V Workflows of Biometric Model Performance and Privacy

Validation

This Workflow is designed to provide a platform to test and validate both the performance and the

privacy/security properties of biometric models and biometric template hashing methodologies.

With an annotated database of ECG (ElectroCardioGraphic) templates, a biometric model parametric

definition and a hashing function, the model performance using raw (unprotected) and hashed features

are compared to measure the impact that hashing has on the system's capability to correctly identify

enrolled subjects.

Furthermore, hashed template cancellation is performed, and the cancelled template is provided as an

input to ensure that it is rejected, validating the system's template cancellation feature.

Figure 3.79 shows the workflow specification diagram of Biometric Model Performance and Privacy

Validation.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 151

Figure 3.79 Workflow Definition diagram of Biometric Model Performance and Privacy Validation used in

UC14_CARDIOID

Table 3.50 lists the activities of the workflow Biometric Model Performance and Privacy Validation.

Table 3.50 List of activities performed by Biometric Model Performance and Privacy Validation

Name Type Description

Biometric Hashing Automated Hash the biometric templates using the generated

salts.

Change Salt of One Subject Automated Re-hash the biometric templates with a different salt.

This is done iteratively for each of the subjects present

in the database.

Comparative Analysis Semi-automated Compare the results of ML Model Validation to

characterize the impact of hashing in biometric

performance.

Evaluate Rejection

Performance of Changed Salt

Semi-automated Assert that the changed salt results in denied access,

even when using the same biometric templates.

ML Model Validation Semi-automated Evaluate ML performance metrics for biometry,

namely EER and FAR.

Salt Generation Automated Generate a random salt to append to the biometric

features in the hashing process.

Biometric Model Performance and Privacy Validation

:Template Dataset:Template Dataset

:Model Parameters:Model Parameters

:Hashing Method:Hashing Method

:Secure Biometric

Performance Report

:Secure Biometric

Performance Report

:Cancellation Power

Report

:Cancellation Power

Report

:Salt Parameters:Salt Parameters

ML Model

Validation

StartWorkflow

Salt

Generation

Salts:

String

Salts:

String

Biometric

Hashing

Hashed

Features

Dataset:

Template

Dataset

Hashed

Features

Dataset:

Template

Dataset

ML Model

Validation

Comparative

Analysis

Performance Report

Original: Model

Performance Report

Performance Report

Original: Model

Performance Report

Performance Report

Hashed: Model

Performance Report

Performance Report

Hashed: Model

Performance Report

Change Salt of

One Subject

Updated Dataset:

Template Dataset

Updated Dataset:

Template Dataset

Evaluate Rejection

Performance of Changed

Salt

StopWorkflow

[Subjects to process]
[All subjects processed]

Final Detailed Description of Improved Process Workflows

152 ECSEL JU, grant agreement No 876852.

3.13.3 V&V Workflows of Hardware in the Loop Validation &

Verification

This V&V workflow intends to streamline the validity of real-time properties of the embedded systems

of CardioWheel that are hard or even impossible to verify through model checking or static code

analysis. Starting from the list of requirements related with runtime and timing properties, and the

system's source code, a set of formal specifications written in MARS will be defined. A verification step

of these specifications prompts the iteration of requirements, assuring that no conflicts arise. After

refining the requirements and producing a final set of specification, those specifications and the system's

source code are used to run the method "Runtime Verification Based on Formal specifications" on an

hardware setup that emulates the embedded systems where the final validated product is deployed.

This method returns the code definitions of the different monitors, an instrumented version of the

system's code, and a report that details the findings of such monitors, either validating or finding

errors/fragilities in the real time properties of the system. With this report, a rapid step of analysis is

performed, either deciding that the system is fully validated, that it needs reworking of the system's

source code, or, if abnormal errors are encountered, that further requirement refinement is needed. In

parallel, a fault injection method is used to test the system's resilience to faults.

Figure 3.80 shows the workflow specification diagram of Hardware in the Loop Validation &

Verification.

Figure 3.80 Workflow Definition diagram of Hardware in the Loop Validation & Verification used in UC14_CARDIOID

Hardware in the Loop Validation & Verification

Monitor's Report: Runtime

Ver. Report

Monitor's Report: Runtime

Ver. Report

Source CodeSource Code

:Requirements:Requirements

Hardware Setup: Test

Suite

Hardware Setup: Test

Suite

Monitor's Code: Source

Code

Monitor's Code: Source

Code

Instrumented Source

Code

Instrumented Source

Code

:Report Analysis Outcomes:Report Analysis Outcomes

:Fault Resilience Report:Fault Resilience Report

Safe Generation and

Instrumentation of Runtime

Verification

Architectures

Specification

Definition MARS Specification:

MARS Specification

MARS Specification:

MARS Specification

StartWorkflow

StopWorkflow

Specification

Validation

Refined

Requirements:

Requirements

Refined

Requirements:

Requirements Conflicts Detected?

Report Analysis

:Report

Analysis

Outcomes

:Report

Analysis

Outcomes

Abnormal failures

detected?

Software-

Implemented

Fault Injection

[YES]

[YES]

[NO]

[NO]

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 153

Table 3.51 lists the activities of the workflow Hardware in the Loop Validation & Verification.

Table 3.51 List of activities performed by Hardware in the Loop Validation & Verification

Name Type Description

Activity: Safe Generation and

Instrumentation of Runtime

Verification

Architectures (CallBehavior)

Semi-Automated Execution of the system under test together with the

runtime monitors generated by MARS.

Activity: Software-

Implemented Fault Injection

(CallBehavior)

Automated Purpose: The purpose of software implemented fault

injection is the deliberate insertion of upsets (faults or

errors) in computer systems and/or components to evaluate

its behaviour in the presence of faults or validate specific

fault tolerance mechanisms in the target system

Description: Software-implemented fault injection,

abbreviated as SWIFI, uses a variety of software-based

techniques for inserting faults or errors in a system-under-

study.

Report Analysis Semi-automated This activity quickly evaluates the full report produced by

the method "Runtime verification based on formal

specifications" to identify abnormal failure points that

might indicate incorrect requirement definition, prompting

a return to the specification definition step.

Specification Definition Manual Re-writing of system requirements in MARS domain

language to be integrated as monitor specifications within

the instrumented code produced in the method Runtime

Verification Based on Formal Specifications.

Specification Validation Manual Validation step that checks the produced specification set

for conflicts or lack of coverage.

3.13.4 V&V Workflows of Safe Generation and Instrumentation of

Runtime Verification Architectures

Development of a toolchain to (1) formally specify monitors and their deployment environment, and to

(2) generate monitors that comply with safety properties of a target system, according to the

corresponding VVML diagram.

When making use of monitors in critical systems, it must be ensured that they neither negatively

influence the security aspects of the original system nor affect the functional and the safety non-

functional requirements of the system (e.g., task scheduling). Guaranteeing that the deployment of such

solutions does not negatively influence the dependability properties of systems can be overly

complicated and time-consuming when no proper integration methods are used.

Final Detailed Description of Improved Process Workflows

154 ECSEL JU, grant agreement No 876852.

To abstract the formalities of correctly integrating monitoring architectures in the target system and

reduce the steep learning curve associated with the usage of formal specification languages, which is

common with Runtime Verification (RV) based on formal specifications, we propose a new domain

specific language (and associated tools) named MARS. MARS will let developers focus what needs to

be monitored instead of worrying about how to safely integrate such monitoring solutions to their target

systems. To achieve that, MARS will allow users to associate RV specifications with the components of

a target system, providing support for a timing analysis over the combined system coupled with the

instrumented monitors. MARS will ensure compliance with timeliness requirements and will support

the generation of monitors from the formal specifications following a correct-by-construction approach.

The generated monitors will be coupled with the target system via a runtime monitoring architecture

that will link the interfaces of the system with those of the generated monitors.

Figure 3.81 shows the workflow specification diagram of Safe Generation and Instrumentation of

Runtime Verification Architectures.

Figure 3.81 Workflow Definition diagram of Safe Generation and Instrumentation of Runtime Verification Architectures

used in UC14_CARDIOID

Table 3.52 lists the activities of the workflow Safe Generation and Instrumentation of Runtime

Verification Architectures.

Table 3.52 List of activities performed by Safe Generation and Instrumentation of Runtime Verification Architectures

Name Type Description

Build-Script Generation Automated This step generates a set of scripts instructing the compiler

to instrument the generated monitors in the target system's

source code for a given user-selected platform.

Code Instrumentation Semi-automated This step performs modifications on the source code,

adapting the system to incorporate the generated monitors

in the next steps.

Safe Generation and Instrumentation of Runtime Verification

Architectures

System's Source

Code: Source Code

System's Source

Code: Source Code

:Runtime Ver. Report:Runtime Ver. Report

System's Source Code:

Source Code

System's Source Code:

Source Code

Monitor's Code:

Source Code

Monitor's Code:

Source Code

:MARS Specification:MARS Specification

Source Code

Analysis

:Abstract

Specification

:Abstract

Specification

StartWorkflow

Semantic

Analysis

:Monitor

Specification

:Monitor

Specification

:Instrumented

System Specification

:Instrumented

System Specification

Monitor

Generation

:Monitor

Specification

:Monitor

Specification
Monitor's Code:

Source Code

Monitor's Code:

Source Code

Build-Script

Generation

:Instrumented System

Specification

:Instrumented System

Specification

:Build

Scripts

:Build

Scripts

Code

Instrumentation

Instrumented Source Code:

Source Code

Instrumented Source Code:

Source Code
:System's Source Code:System's Source Code

System Build

Monitor's Code:

Source Code

Monitor's Code:

Source Code

:Full Build:Full Build

StopWorkflow

System

Execution
:Runtime Ver. Report:Runtime Ver. Report

MARS specification /

system's source code

refinement

:System's

Source

Code

:System's

Source

Code
:MARS

Specification

:MARS

Specification

No problems found

Problems found

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 155

Name Type Description

MARS specification / system's

source code refinement

Semi-Automated Whenever the semantic analysis identifies safety problems

(e.g., the monitors would turn the system not schedulable),

the developers must perform refinements in the MARS

specification and/or the system's source code. The refined

inputs are then fed back to the toolchain for another round

of analysis.

Monitor Generation Automated Given a formal specification of what a target system should

do, this step generates a correct-by-construction standalone

monitor in a target language.

Semantic Analysis Automated In this step, a set of static formal verification is performed to

verify the compliance of the integration of the specified

monitors into the target system and the target system's

safety requirements. Examples of possible safety

verifications include, but are not limited to, schedulability

analysis of real-time systems and memory checks.

Source Code Analysis Semi-automated This initial step is responsible for analysing the monitor

specifications written in MARS and the system's source

code and abstracting them for the analysis performed in the

next step.

System Build Semi-automated This step builds the final system by binding the generated

monitors, the original system's source code, the instructions

on how these monitors should be integrated into the system,

and the target platform where the system will run.

System Execution Semi-automated This step describes the actual execution of a system

instrumented with monitors. These monitors will verify

(following a user-defined periodicity/trigger policy) if the

system is performing as expected and issue verdicts about

it.

3.13.5 V&V Workflows of Software-Implemented Fault Injection

This workflow details the process needed to continuously build a robust dataset against which driver

monitoring mod

The method takes the system-under-test, the faultload and the workload as input and produces a results

report describing the failure modes and probabilities and other dependability-related metrics of the

system.

Figure 3.82 shows the workflow specification diagram of Software-Implemented Fault Injection.

Final Detailed Description of Improved Process Workflows

156 ECSEL JU, grant agreement No 876852.

Figure 3.82 Workflow Definition diagram of Software Implemented Fault Injection used in UC14_CARDIOID

Table 3.53 lists the activities of the workflow Software-Implemented Fault Injection.

Table 3.53 List of activities performed by Software-Implemented Fault Injection

Name Type Description

Execute system with

workload

Automated Execute the system-under-test with the chosen workload.

Generate faults Automated Generate the faults that will be injected in the system-under-

test according to the faultload and the workload.

Generate report Automated After all the faults have been injected, compile the results

into a report that should contain, at least, information about

the experienced failure modes and their probabilities. This

report can include more detailed information, such as which

faults were more likely to cause failures, what was the

failure latency and others.

Inject one fault Automated While the workload is executing, choose one of the faults

from the set of faults that are yet to be injected and inject it

in the system.

3.13.6 V&V Workflows of Verification of Driver Monitoring Models

This workflow details the process needed to continuously build a robust dataset against which driver

monitoring models, such as drowsiness detection, can be tested.

The continuous update of the database serves to facilitate constant development of the driver

monitoring models, making them more robust against different physiological signal measurement

conditions, as well as to mitigate inter-subject variability related uncertainty within these models.

Software-Implemented Fault Injection

:Workload:Workload

:Faultload:Faultload

:System-under-test:System-under-test

:Results report:Results report

StartWorkflow StopWorkflow

Generate faults

:System-under-test:System-under-test

:Faultload:Faultload

:Faultload:Faultload

Execute system with workload

:Workload:Workload :System-under-test:System-under-test

:Failure classification:Failure classification

Inject one fault

:Faultload:Faultload

:Fault details:Fault details

Have all faults been injected?

Generate report

:Failure classification:Failure classification:Fault details:Fault details

No

Yes

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 157

Figure 3.83 shows the workflow specification diagram of Verification of Driver Monitoring Models.

Figure 3.83 Workflow Definition diagram of Verification of Driver Monitoring Models used in UC14_CARDIOID

Table 3.54 lists the activities of the workflow Verification of Driver Monitoring Models.

Table 3.54 List of activities performed by Verification of Driver Monitoring Models

Name Type Description

Drowsiness Data Collection

on Driver Simulator

Semi-automated Driver Drowsiness data collection protocol, using a driving

simulator where real drivers have their ECG collected, as

well as other biosignals to infer drowsiness levels.

Machine Learning Model

Validation

Automated Measurement of ML model performance when using an

annotated dataset, as well as behaviour observation against

corrupted and unobserved data when implementing Safety

Cage systems.

Verification of Driver Monitoring Models

:Volunteers:Volunteers

:CardioWheel Ecossystem:CardioWheel Ecossystem

:Drowsiness Metric:Drowsiness Metric

:Drowsiness Model:Drowsiness Model

:Driver Drowsiness Dataset:Driver Drowsiness Dataset

:Model Performance Report:Model Performance Report

:Driving Simulator:Driving Simulator

StartWorkflow

Drowsiness Data

Collection on Driver

Simulator

Machine Learning

Model Validation

Sufficient

Data?

StopWorkflow

[YES]

[NO]

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 159

4 Conclusion

This document shows the final results of Task 4.2: the approach for the workflow modelling of V&V

activities (VVML) and the final state of the 42 V&V workflows that have been developed for the project

use cases using VVML.

The modelling language VVML has been developed as a domain-specific language for describing

validation and verification activities. It enables the design of re-usable workflow assets such as V&V

activities and artifacts that are exchanged between workflows. VVML is applicable and tailorable to

different industrial domains and their specific constraints, V&V methods, and toolchains. The outcome

of the V&V workflow modelling activity for all use cases is shown and described in the document.

In order to facilitate the modelling with VVML, appropriate tool support has been provided. A

dedicated plug-in for the state-of-the-art modelling tool Enterprise Architect (EA) has been developed

and adapted to the needs of the test experts in the different use cases. The wide use of VVML models

and results from EA is supported by the export function to standardized XML/XMI formats, which can

be processed by other modelling tools.

The main benefit of the workflow modelling approach is to enable system and domain experts as well

as V&V experts to design, discuss, and improve V&V activities in the development processes of complex

technical systems. The notation is kept simple with few modelling elements and the ability to reuse

existing workflows and gradually compose them into more complex V&V processes. The applicability

of the approach to industrial use cases with different quality properties, V&V methods, tools, and levels

of granularity have been shown in the final phase of Task 4.2.

Greater effort has been devoted to ongoing trainings and reviews to assist users in starting, improving,

and optimizing their V&V modelling activities. The rules, guidelines, and lessons learnt will be

compiled in the VVML handbook, a document that will be made available to the community at the end

of the VALU3S project.

The V&V Workflows will be implemented and supported by V&V tools and tool chains, which have

been developed and extended in Task 4.3 of the project. An important prerequisite for the application

of tools and tool chain in the development process for complex safety-related systems is the so-called

tool qualification, which is a formal process for demonstrating the quality of tools and tool chains with

regard to defined properties. Challenges and possible strategies for tool qualification of VALU3S V&V

tools and tool chains are being discussed between the partners. The results will be prepared and

published as part of the final activities and deliverables in WP5, which deals with project demonstrators

and evaluation.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 161

References

[1] Fraunhofer IESE et al., “Deliverable D4.6 - Interim detailed description of improved process

workflows,” VALU3S Consortium, 2022.

[2] Fraunhofer IESE et al., “Deliverable D4.3 - Concept for using virtual prototypes (e.g., digital twins)

in the context of the simulated verification,” VALU3S Consortium, 2021.

[3] Siemens, “Active Safety System Simulation | Siemens Software,” [Online]. Available:

https://www.plm.automation.siemens.com/global/en/products/simulation-test/active-safety-

system-simulation.html.

[4] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez and V. Koltun, “CARLA: An Open Urban Driving

Simulator,” in Proceedings of the 1st Annual Conference on Robot Learning, 2017.

[5] LG, “An autonomous vehicle simulator based on Unity,” [Online]. Available:

https://www.lgsvlsimulator.com/.

[6] GmbH, BeamNG, “A dynamic soft-body physics vehicle simulator capable of doing just about

anything,” [Online]. Available: https://www.beamng.gmbh/research.

[7] ISO (International Standard Organization), ISO 21448:2022 - Road vehicles — Safety of the intended

functionality, ISO, 2022.

[8] AMLAS, “Guidance on the Assurance of Machine Learning in Autonomous Systems (AMLAS)”.

[9] UNECE, “UNECE World Forum for Harmonization of Vehicle Regulations (WP.29),” [Online].

Available: https://unece.org/wp29-introduction. [Accessed 2022].

[10] S. Christoph, S. Bernhard and K. Sandra, “Asset Driven ISO/SAE 21434 Compliant Automotive

Cybersecurity Analysis with ThreatGet,” in CCIS,volume 1442, 2021.

[11] T. Kuhn, T. Forster, T. Braun and R. Gotzhein, “Feral - framework for simulator coupling on

requirements and architecture level,” ACM/IEEE MEMOCODE, p. 11–22, 2013.

[12] D. Giannakopoulou et al., “Generation of Formal Requirements from Structured Natural

Language,” in Requirements Engineering: Foundation for Software Quality. REFSQ 2020, 2020.

Final Detailed Description of Improved Process Workflows

162 ECSEL JU, grant agreement No 876852.

[13] A. Champion et al., “CoCoSpec: A Mode-Aware Contract Language for Reactive Systems,” in

Software Engineering and Formal Methods. SEFM 2016, 2016.

[14] EN 50129 Railway applications. Communication, signalling and processing systems. Safety related

electronic systems for signalling, CENELEC, 2018.

[15] AIT and TU Graz, “MoMut,” 2022. [Online]. Available: https://momut.org/.

[16] A. David, K. G. Larsen, A. Legay, M. Miku£ionis and D. B. Poulsen, “Uppaal SMC tutorial,” STTT,

vol. 17, no. 4, pp. 397-415, 2015.

[17] “Vivado Design,” 2022. [Online]. Available: https://www.xilinx.com/products/design-

tools/vivado.html.

[18] ISO (International Standard Organization), ISO 10218-2:2011 - Robots and robotic devices — Safety

requirements for industrial robots, ISO, 2011.

[19] ISO (International Standard Organization), ISO/TS 15066:2016 - Robots and robotic devices —

Collaborative robots, ISO, 2016.

[20] Y. Yang et al., “Man-in-the-middle attack test-bed investigating cyber-security vulnerabilities in

smart grid SCADA systems.,” in International Conference on Sustainable Power Generation and Supply

(SUPERGEN 2012), 2012.

[21] A. Bechtsoudis and N. Sklavos, “Aiming at higher network security through extensive penetration

tests,” IEEE Latin america transactions, vol. 10, no. 3, pp. 1752-1756, 2012.

[22] “Denial-of-service attack,” [Online]. Available: https://en.wikipedia.org/wiki/Denial-of-

service_attack .

[23] M. e. a. Denis, “Penetration testing: Concepts, attack methods, and defense strategies,” in IEEE

Long Island Systems, Applications and Technology Conference (LISAT), 2016.

[24] L. E. Bassham et al., “A Statistical Test Suite for Random and Pseudorandom Number Generators

for Cryptographic Applications - SP 800-22 Rev. 1a.,” National Institute of Standards and

Technology, 2010..

[25] P. L'Ecuyer and R. Simard, “TestU01: A C library for empirical testing of random number

generators,” ACM Trans. Math. Softw., vol. 33, no. 4, 2007.

[26] “Die Harder Web-site,” [Online]. Available:

https://webhome.phy.duke.edu/~rgb/General/dieharder.php.

Final Detailed Description of Improved Process Workflows

ECSEL JU, grant agreement No 876852. 163

[27] H. Kaysici and S. Ergün, “Random Number Generator Based on Metastabilities of Ring Oscillators

and Irregular Sampling,” in 27th IEEE International Conference on Electronics, Circuits and Systems

(ICECS), 2020.

[28] B. Acar and S. Ergün, “A Robust Digital Random Number Generator Based on Transient Effect of

Ring Oscillator,,” in IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS), 2020.

[29] S. Ergün, “Attack on a Microcomputer-Based Random Number Generator Using Auto-

synchronization,” in Asian Hardware Oriented Security and Trust Symposium (AsianHOST), 2019.

[30] D. Nickovic, “RTAMT Web-site,” [Online]. Available: https://github.com/nickovic/rtamt.

www.valu3s.eu

This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 876852. The JU
receives support from the European Union’s Horizon 2020 research and innovation programme and Austria, Czech Republic,

Germany, Ireland, Italy, Portugal, Spain, Sweden, Turkey.

http://www.valu3s.eu/

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Scope
	1.2 Document Structure

	2 V&V Workflow Modelling Languages
	2.1 Diagram Types
	2.1.1 V&V Method Definition
	2.1.2 V&V Workflow Definition

	3 VALU3S V&V Workflows
	3.1 V&V Workflow of UC1 CAMEA
	3.1.1 Artifacts used in UC1_CAMEA
	3.1.2 V&V Workflows of V&V of Machine Learning-Based Systems Using Simulators
	3.1.3 V&V Workflows of Model-Based Threat Analysis
	3.1.4 V&V Workflows of Assessment of Implementation of Network Communication
	3.2 V&V Workflow of Use Case 2 ROBO
	3.2.1 Artifacts used in UC2_ROBO
	3.2.2 V&V Workflows of UC2 ROBO V&V Workflow
	3.2.3 V&V Workflows of Simulated Fault-Injection of a Network Link
	3.2.4 V&V Workflows of Simulation-Based Fault and Attack Injection at System-level Improved
	3.2.5 V&V Workflows of UC2 Daily Regression Test
	3.3 V&V Workflow of Use Case 3 NXP
	3.3.1 Artifacts used in UC3_NXP
	3.3.2 V&V Workflows of Use Case 3 Radar Systems for ADAS
	3.3.3 V&V Workflows of Doppler Division Multiplexing Access (DDMA)
	3.4 V&V Workflow of Use Case 4 PUMACY
	3.4.1 Artifacts used in UC4_PUMACY
	3.4.2 V&V Workflows of Combined Virtual Validation and Failure Detection Diagnosis
	3.4.3 V&V Workflows of Failure Detection Diagnosis
	3.4.4 V&V Workflows of Virtual Validation
	3.5 V&V Workflow(s) of UC5 UTRCI
	3.5.1 Artifacts used in UC5_UTRCI
	3.5.2 V&V Workflows of Verifying and Refactoring Formalised Requirements
	3.5.3 V&V Workflows of Model-implemented Fault and Attack Injection with Pre-Injection Analysis
	3.5.4 V&V Workflows of SiLVer (SimuLation-based Verification)
	3.6 V&V Workflow of Use Case 6 ESTE
	3.7 V&V Workflow of Use Case 7 ALDAKIN
	3.7.1 Artifacts used in UC7_ALDAKIN
	3.7.2 V&V Workflows of MGEP V&V Workflow
	3.8 V&V Workflow of Use Case 8 RGB
	3.8.1 Artifacts used in UC8_RGB
	3.8.2 V&V Workflows of Tailored Model-Based Assurance and Certification
	3.8.3 V&V Workflows of Model Based Safety Analysis FLA
	3.8.4 V&V Workflows of Compliance-Aware Extended Knowledge-Centric System Artefact Quality Analysis
	3.8.5 V&V Workflows of Extended Knowledge-Centric System Traceability Management
	3.8.6 V&V Workflows of Single Experiment
	3.8.7 V&V Workflows of TC Automated Experimenting
	3.8.8 V&V Workflows of TC Management
	3.9 V&V Workflow of Use Case 9 CAF
	3.9.1 Artifacts used in UC9_CAF
	3.9.2 V&V Workflows of Overall UC9 Method
	3.9.3 V&V Workflows of Simulation-Based V&V of Computer Vision System
	3.10 V&V Workflow of Use Case 10 BT
	3.10.1 Artifacts used in UC10_BT
	3.10.2 V&V Workflows of UC10 Overall Method
	3.10.3 V&V Workflows of Model Checking Families of Real-Time Specifications
	Annotated Specifications
	Product Line of Specifications

	3.10.4 V&V Workflows of Optimize Fault Injection Experiments Using Model-Based Mutation Testing
	3.10.5 V&V Workflows of Behaviour-Driven Model Development and Test-Driven Model Review
	3.11 V&V Workflow of Use Case 11 OTOKAR
	3.11.1 Artifacts used in UC11_OTOKAR
	3.11.2 V&V Workflows of Model-Based Formal Specification and Verification of Robotic Systems
	3.11.3 V&V Workflows of Penetration Testing
	3.11.4 V&V Workflows of Simulation-Based Verification
	3.11.5 V&V Workflows of Vulnerability Analysis of FPGA Based Cryptographic Modules Against Hardware-Based Attacks
	3.12 V&V Workflow of Use Case 13 SIEMENS
	3.12.1 Artifacts used in UC13_SIEMENS
	3.12.2 V&V Workflows of UC13 - SIEMENS
	3.12.3 V&V Workflows of Model-Based Mutation Testing
	3.12.4 V&V Workflows of Monitoring Enriched Test Execution
	3.12.5 Mutation-Driven Model-Based Test Case Generation
	3.13 V&V Workflow of Use Case 14 CARDIOID
	3.13.1 Artifacts used in UC14_CARDIOID
	3.13.2 V&V Workflows of Biometric Model Performance and Privacy Validation
	3.13.3 V&V Workflows of Hardware in the Loop Validation & Verification
	3.13.4 V&V Workflows of Safe Generation and Instrumentation of Runtime Verification Architectures
	3.13.5 V&V Workflows of Software-Implemented Fault Injection
	3.13.6 V&V Workflows of Verification of Driver Monitoring Models

	4 Conclusion
	References

