NetLoiter: A Tool for Automated Testing of
Network Applications using Fault-injection

Michal Rozsival
Faculty of Information Technology
Brno University of Technology
Email: michal.rozsival@vut.cz

Abstract—The reliability of a network is a crucial requirement
for applications and systems such as IoT (Internet-of-Things),
cloud-based solutions, client-server, or peer-to-peer architectures.
Unfortunately, real networks cannot be assumed to be fault-
free, especially when considering various hardware problems,
performance issues, or even malicious attacks. Testing network
applications should include the evaluation of fault-tolerance of
a system under various network conditions. The paper intro-
duces a tool which helps developers and verification&validation
practitioners easily analyse their network application’s behaviour
in unexpected network situations. The tool is based on man-
in-the-middle and aims at network nodes communicating using
a single network interface. The tool implements a fault-injection
method; supported faults and attacks are inspired by the real
world, including lossy channels, network jitter, data corruption,
or disconnections.

I. INTRODUCTION

Development and testing of reliable or fault-tolerant net-
work applications regardless of their architecture must take
into account various network conditions. The underlying net-
work may experience faults or even failures caused by a num-
ber of reasons, including configuration errors, line or hardware
failures, intrusions, or traffic spikes. Setup of erroneous testing
environments is, in general, complex as it requires narrow
modification of lower-level networking (either software/OS-
kernel or hardware-based), mostly applied by experienced
engineers. Moreover, the number of test scenarios rises rapidly
with a number of different network conditions on which the
network application must be evaluated.

Most consequences of network conditions are packets being
lost, delayed, reordered, or maliciously corrupted. Packets may
be lost in Ethernet or Wi-Fi networks for many reasons,
including but not limited to physical factors (such as signal
strength or noise) and overflow due to network congestion
or excessive queue memory [1]. Loss of the packets or their
damage may further cause their re-transmission, prolonging
the transmission’s delay. If a delay varies for a stream of
packets, they may be received in a different order than the
order in which they have been sent. If a network is accessible
physically or remotely to an attacker, a tailored combination
of faults must also be taken into account.

We have developed a tool that provides easily configurable
ways to modify the parameters of an underlying network in-
terface such that the network appears faulty. The tool supports

Ales Smrcka
Faculty of Information Technology
Brno University of Technology
Email: smrcka@fit.vut.cz

several types of faults and attacks to be injected into the
network interface. The user may specify under which circum-
stances the faults are enabled depending, e.g., on time, number
of transmitted packets, or specified source and destination.
Moreover, the tool provides an interface via its Rest API so
that the fault-injection may be configured dynamically and
thus automated.

The rest of the paper is organised as follows: The next
section introduces the fault and attack models supported by
the tool. Section III describes three different types of tool
deployment. Section IV provides a tool demonstration and
its usefulness in a real use case. The paper is concluded in
Section V.

A. Related work in testing network applications

Currently, the most common method of simulating faults
on a network communication is using software implemented
fault-injection (SWIFI). The method is based on the idea that
actual faults on a link layer are hard to be controlled, thus it
focuses on the effects the faults cause [2].

Many tools support the injection of faults into network com-
munication. These tools can be divided into two categories:
simulation tools, which deal with simulating model situations
of the network infrastructure, and tools that are deployed
to real systems to evaluate the resulting implementation.
An example of a popular simulation tool is OMNet++ [3],
which allows the modelling of entire network infrastructures
and defines the parameters of the different communication
protocols used. An example of a popular tool used on real
network interfaces is Netem [4], [5]; a network behaviour
emulator that uses the traffic control feature of the Linux
kernel, allowing it to add delay, packet loss, and other queuing
disciplines to outgoing packets.

The NetLoiter tool has similar features to Netem but closes
the gap between the easily used and tailored fault-injection
and rich features to influence network communication.

II. FAULT-INJECTING THE COMMUNICATION CHANNEL

The main features of the NetLoiter include (i) easily
specified faults and attack (what to be used), (ii) tailored
targetted faults (where and when to be used), and (iii) easy
reconfiguration even during run-time enabling a feedback
loop depending on an actual net flow. NetLoiter is based

on a man-in-the-middle attack enhanced with fault-injection
on a single network interface or a communication channel.
Depending on its deployment, the tool uses Linux traffic
control facilities, Linux netfilter [6] QoS, or TCP/UDP socket
proxy infrastructure.

A. Fault and attack models

NetLoiter can model different types of faults and attacks!,
including packet loss, delayed packet delivery, jitter (unstable
latencies between packets) [7], packet reordering, network
speed, and packet content manipulation. The faults may be
persistent or transient, applied on different IP flows (source
and destination addresses and/or ports), protocols and other
packet or frame attributes. The specification of the fault model
to be used is done by configuring rules consisting of pairs
of guards and actions, where guards specify under which
condition the rules will be applied, and actions specify the type
of fault to be injected. The Listing 1 straightforwardly shows
an example of a simple configuration of the fault model, where
if all conditions are met, the packet will be dropped (the only
packet being dropped is every fifth IP packet incoming from
the vutbr.cz subnet). Note that the configuration can be given
during the NetLoiter setup or modified during run-time.

Listing 1
EXAMPLE OF A CONFIGURATION OF THE FAULT MODEL.
rules:
- $type: All
guards :
- $type: IP
sip: vutbr.cz/16
— $type: EveryN
n: 5
actions:
— $type: Drop

NetLoiter supports the following faults (so-called actions):

o Delay(N)—wait N seconds with packet; N may be a frac-
tion of a second,

o Drop—stop packet processing and do nothing,

o Finish—stop packet processing and pass it further,

o Reorder—change the order (either random or reverse) of
N captured packets,

« Replicate(N)—create N copies of a packet,

« Restart—place the packet back into the packet queue and
restart its processing,

o Throttle—reduce the maximal throughput (Bytes/s),

« BitNoise—introduce single or multiple bit-flips in a pay-
load,

o SocketTCP(S)—send a packet to a remote socket S which
can modify it and potentially return a decision (drop,
finish). Note that this action enables a user to monitor
(so-called packet sniffing), and modify the network flow
during run-time, which can be used, among others, to
simulate purpose-specific attacks.

IRurther, we will only use the term fault as we see attacks as malicious
types of fault

The tool supports the following conditions (so-called
guards), where and when the faults will be injected. Each of
the conditions expresses the predicate which is evaluated on
the processed packet if its occurrence, type, or attribute holds
(or does not hold, depending on parameters) a specific value.

o EveryN—holds for every N-th packet,

o ICMP—holds for specific ICMP type messages,

o IP—holds for IP packets and their src. or dst. addresses,

o Port—holds for TCP/UDP specific src. or dst. ports,

e Prob—true with probability P,

e Protocol—holds for specific IP protocol number,

o Time—holds after a specified time for a specified duration
(or forever),

o Count—holds after a specified number of processed pack-
ets for a specified number of packets (or forever),

o TimePeriod/CountPeriod—alternate based on time peri-
od/packet count,

e Size—holds if a packet size is above or below the
threshold.

Most of the guards and actions are parametrised and to
increase the potential of automated testing or to approximate
the real effects of injected faults, numerical parameters can be
specified by function symbols instead of a constant:

o Uniform—generates a random value (a float or an integer)
in a specified interval,

o Normal—generates a random value (a float or an integer)
based on a normal distribution with mean and standard
deviation,

e SeqCount—provides values in ascending/descending or-
der within a specified interval and a step.

B. Extensibility of the Tool

NetLoiter is a modular tool which comes with a predefined
set of guards and actions. The usage of the tool is not
limited to these fault models, the tool can be extended by
purpose-specific guards and actions. Due to the limited scope
of this paper, only an example of the extension module is
provided. NetLoiter is a tool with the main control loop
written in Python language; all extensions should be specified
as uniquely identified classes and inherit from GuardBase or
ActionBase. An example in Listing 2 defines a new guard
which holds for application layer packets (L4) with a payload
size less than 32 (or other limit specified by a parameter in
fault model configuration). Now assume an example of an
encrypted UDP channel transferring audio stream (in large
datagrams) interleaved with small control commands. A fault
model combining IP, Port, Tiny, and Prop guards together
with the Drop action can easily simulate an attack on control
commands without the knowledge of decryption keys. Cur-
rently, the tool supports a number of attributes of frames (L2),
packets (L3), or segments/datagrams (L4) which may be used
in fault model extensions. These keys are listed and described
in Table I.

Listing 2
EXAMPLE OF IMPLEMENTATION OF A NEW GUARD.

class Tiny (GuardBase):

def __init__(self, threshold = 32):
self.threshold = threshold
def fulfilled (self, packet):

key = ExtractableKey .4 PAYLOAD_RAW
if packet.has_value(key):
if len(packet.get_value(key)) < \
self.threshold:

return (True, None)
return (False, None)
TABLE I

SELECTED ATTRIBUTES (KEYS) OF PACKETS PROCESSED BY NETLOITER.
THE KEYS ARE GROUPED DEPENDING ON THE NETWORK LAYER WHERE
THE TRANSMITTED DATA ARE PROCESSED.

Key Description

L2 frames key

TYPE_ID protocol type in the Ethernet frame
ETHERNET_RAW Ethernet frame as bytes
SMAC, DMAC source/destination MAC address

L3 packets keys

PROTO protocol type in the IP packet
1Pv4, 1IPv6 IP packets version 4 resp. 6
SIP, DIP source/destination IP address

L4 packets keys

L4 unified structure of L4 data packets (TCP, UDP)
TCP, UDP TCP/UDP segment/datagram

TCP_RAW TCP segment as a sequence of bytes
UDP_RAW UDP datagram as a sequence of bytes

SPORT, DPORT
L4_PAYLOAD_RAW

source/destination port number

L4 packet’s payload as a sequence of bytes

III. TESTING ENVIRONMENTS

NetLoiter is designed in three variants, one hardware and
two software. The hardware solution is an external device
connected between the communicating stations, representing
a bridge (Layer 2) or an IP network router (Layer 3). On the
other hand, the software solutions are run directly on one of
the communicating stations, either in a hidden form, in which
it intercepts their communication without the knowledge of
the communicating parties, or in a visible form, in which
TCP or UDP streams must be redirected. NetLoiter intercepts
communication between two or more nodes. All the traffic
specified by the flow definition is sent to the NetLoiter where
the traffic processing depends on the rules defined by the fault
model. For a more thorough analysis, NetLoiter can report all
the events and actions during run-time.

The three variants are described in the following subsec-
tions, where the meaning of the nodes and connections (A)-
(E) are related to Figure 1.

C D
(A) {—() > NetLoiter < D) » B
AL
fault o)) flow report
model | " | definition P

Fig. 1. Overall NetLoiter architecture.

A. Hardware-in-the-loop — Real Network Interfaces

The processing part of NetLoiter is installed on an external
hardware device, e.g., a Linux-based minicomputer such as
Raspberry Pi, with at least two network interfaces—(C) and
(D). The device simulates a network bridge or IP router that
receives the communication and forwards it transparently to
its destination—(A) and (B). Fault model (E) can be set up
statically by a configuration file or dynamically using Rest
API via the reserved net flow from one of the communication
nodes.

The main advantage of this approach comes from the black-
box nature, where no intervention to the communicating nodes
is required. Such an approach can be applied to testing in-
the-field of a system using real network interfaces (such
as cyber-physical devices or solutions accessing the external
networks without the means of their control). This also comes
with its disadvantage as it can hardly be used in remote
testing solutions such as continuous integration/continuous
deployment (CI/CD) pipelines, where in-the-lab testing relies
mainly on virtual networks.

B. Hidden Software Solution — Virtual Network Interface

NetLoiter is installed on one of the communicating nodes,
(A) or (B), where the desired traffic is rerouted to the tool
via underlying technology. NetLoiter creates a virtual network
or applies routing rules, (C) and (D), to catch and process all
the data transferred within the tested system. The advantage
of such a solution is that it can be used during testing in-
the-lab, in CI/CD pipelines, or in a developer’s computer. At
the same time, the intercepting process is hidden to the tested
network application—no need to apply dependency injection
to mock network services. Another advantage is the easy
way of dynamically changing the fault model via NetLoiter’s
Rest API interface (E). NetLoiter relies on traffic control or
netfilter’s NFTables, both of which are supported on Linux-
based systems only—the disadvantage of this solution is the
limitation that at least one of the nodes must run the Linux
operating system. Another disadvantage is the requirement
for advanced user permissions to access and modify virtual
networks.

C. Visible Software Solution — TCP/UDP Proxy Application

Another possible solution for software testing of network
applications without privileged access to the Linux-based
system is to use NetLoiter as TCP/UDP proxy application.

Assuming one of the nodes is a client (A), and one is the
server (B), such a solution requires the client to be modified
or reconfigured internally to send outgoing traffic (C) to the
NetLoiter mediator. NetLoiter will listen on specified TCP or
UDP ports and forward the traffic to a specified destination,
(B) and (D). NetLoiter, in such a case, has limited features as
it can only inject faults in Layer 4—no access to underlying
layers is available. For instance, messages (or data stream)
already accepted on a TCP client side cannot be reordered on
the server side as this has no rationale in real network faults
since TCP/IP stacks ensure that received packets are reordered
to restore the original data stream correctly. Static delays,
reduced network throughput, and man-in-the-middle attacks
aimed at application protocols are the main faults targeted by
this solution.

IV. TESTING SCENARIO

The tool has successfully been used for the validation of
minimum requirements on the quality of a network link.
NetLoiter has been used for searching the conditions under
which the analysed system works correctly. NetLoiter has been
applied as a hidden solution on a network interface shared by
the communicating parties.

The scenario takes place in a teleoperation system [8]
consisting of a computer station managing an actual vehicle
remotely. The remote station and vehicle communication is
managed by several TCP and UDP streams for connection
management and for the transfer of driving commands, status
data, video streams, and heartbeat messages.

This experiment aims to impact mentioned heartbeat mes-
sages, whose interruption may indicate a loss in the connection
between the vehicle and the remote station. The connection
failure between the remote station and the car can lead to
loss of control, which can cause severe problems in real-
world traffic. The goal of this experiment was to simulate the
conditions of a real non-ideal network using delay, reordering,
discarding, and replication of IP packets to find the limits of
a reliable network connection.

The experiment was supported by 6 automated test cases in-
corporating the real remote station, the vehicle communication
module, and the simulated scenario as a sequence of driving
commands. NetLoiter was set to the hidden software solution
with the HTTP server processor, allowing it to dynamically
change NetLoiter’s fault configuration using its Rest API
configuration management. Capturing and processing the IP
packets was set to influence the heartbeats between the remote
station and the vehicle. NetLoiter’s configuration has been
systematically and automatically changing during repetitive
execution of the test cases to quickly find the boundaries of
fault-injection setup, which leads to failing tests (and thus to
the detection of the unreliable link).

The findings of the experiment are shown in Table II. We
aimed to influence the flow of IP packets (i) from the remote
station only, (ii) to the remote station only, and (iii) both ways
(duplex) between the remote station and the vehicle.

TABLE I
EVALUATED NETWORK CONDITIONS IMPACTING THE STREAM WITH
HEARTBEATS IN A REMOTELY CONTROLLED CAR EXPERIMENT. IF ANY
NETWORK CONDITIONS ARE MET, THE LINK BETWEEN THE REMOTE
STATION (RS) AND THE VEHICLE IS ASSUMED TO BE UNRELIABLEZ.

’ Injected fault H Duplex From RS To RS
Delay for x [s] z>04 x> 0.7 x> 0.7
Drop every N N <4 N <2 N<1

Drop with prob. x x>045 | £>0.25 | > 0.95
Reorder N N > 12 N>2 N > 17

V. CONCLUSION

The paper introduced the NetLoiter tool for testing the
robustness of network applications and how they perform
in different network conditions. The tool implements fault-
injection on a network layer, simulating a number of faults
and attacks which unreliable or even insecure networks may
cause. NetLoiter is modular, dynamically reconfigurable, easy
to use, and can be deployed for in-the-field and in-the-lab
testing. This makes it a valuable tool for the functional testing
of network applications.

ACKNOWLEDGMENT

This paper was supported by the VALU3S project which
has received funding from the ECSEL Joint Undertaking
(JU) under grant agreement No 876852. The JU receives
support from the European Union’s Horizon 2020 research and
innovation programme and Austria, Czech Republic, Germany,
Ireland, Italy, Portugal, Spain, Sweden, and Turkey. The views
expressed in this document are the sole responsibility of the
authors and do not necessarily reflect the views or position
of the European Commission. The authors, the VALU3S
Consortium, and the ECSEL JU are not responsible for the
use which might be made of the information contained here.

REFERENCES

[1] C. A. G. D. Silva and C. M. Pedroso, “Mac-layer packet loss models
for wi-fi networks: A survey,” IEEE Access, vol. 7, pp. 180512-180531,
2019.

[2] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability
with software fault injection: A survey,” ACM Comput. Surv., vol. 48,
no. 3, feb 2016. [Online]. Available: https://doi.org/10.1145/2841425

[3] OMNet++, “Discrete event simulator.” [Online]. Available: https:
/lomnetpp.org/

[4] H. Stephen, “Network emulation with netem,” in Proceedings of the 6th
Australia’s National Linux Conference, 2005, pp. 1-8.

[5] Linux Manual Page, “NetEm - Network Emulator,” 2011. [Online].

Available: https://www.man7.org/linux/man-pages/man8/tc-netem.8.html

Netfilter contributors, “Netfilter.org Project,” 2023. [Online]. Available:

https://netfilter.org/

V. Kartashevskiy and M. Buranova, “Analysis of packet jitter in multi-

service network,” in 2018 International Scientific-Practical Conference

Problems of Infocommunications. Science and Technology (PIC S&T),

2018, pp. 797-802.

VALU3S Consortium, “VALU3S Automotive use cases,” 2020. [Online].

Available: https://valu3s.eu/automotive-use-cases/

[6

[}

[7

—

[8

[l

%Disclaimer: The results do not represent the requirements on the network
conditions of the teleoperation in real-world situations; they only reflect the
configuration settings for the simulated in-the-lab execution.

https://doi.org/10.1145/2841425
https://omnetpp.org/
https://omnetpp.org/
https://www.man7.org/linux/man-pages/man8/tc-netem.8.html
https://netfilter.org/
https://valu3s.eu/automotive-use-cases/

	Introduction
	Related work in testing network applications

	Fault-injecting the communication channel
	Fault and attack models
	Extensibility of the Tool

	Testing Environments
	Hardware-in-the-loop – Real Network Interfaces
	Hidden Software Solution – Virtual Network Interface
	Visible Software Solution – TCP/UDP Proxy Application

	Testing Scenario
	Conclusion
	References

