Translating Natural Language Requirements to Formal
Specifications: A Study on GPT and Symbolic NLP

Iat Tou Leong*,

Raul Barbosa'

University of Coimbra, CISUC, Department of Informatics Engineering
Email: *itleong@dei.uc.pt Trbarbosa@dei.uc.pt

Abstract—Software verification is essential to ensure
dependability and that a system or component fulfils its
specified requirements. Natural language is the most common
way of specifying requirements, although many verification
techniques such as theorem proving depend upon requirements
being written in formal specification languages. Automatically
translating requirements into a formal specification language is
a relevant and challenging research question, because developers
often lack the necessary expertise. In our work we consider the
application of natural language processing (NLP) to address that
research question. This paper considers two distinct approaches
to formalise natural language requirements: a symbolic method
and a GPT-based method. The two methods are evaluated with
respect to their ability to generate accurate Java Modeling
Language (JML) from textual requirements, and the results
show good promise for automatic formalisation of requirements.

Index Terms—Software engineering, Formal specification,
Software verification, Java Modeling Language

I. INTRODUCTION

The proliferation of software has raised concerns about
dependability, particularly in critical fields like healthcare,
aerospace, railway, automotive, among others. To ensure
software dependability, verification and validation methods
are employed once software is developed. However, these
methods necessitate formal requirements to accurately assess
software correctness. Static checking typically requires formal
specifications and dynamic testing usually requires assertions
written in rigorous languages.

Formalising requirements requires expertise in formal
specification languages, which have rigorous syntax and
semantics. However, not all software developers possess
this expertise. Consequently, requirements are frequently
composed in natural language. It is therefore a crucial aspect
of V&V to translate those requirements into a specification
language.

When verifying software correctness, natural language
requirements must be translated into formal requirements.
However, words can have different meanings depending on
their usage. For example, the word “prime” can refer to
“supremacy” in everyday conversation and to a number
without factors other than one in mathematics. Errors in
interpreting meanings can result in disastrous consequences.
Furthermore, manually translating requirements requires effort
and expertise.

This paper addresses the challenges of applying NLP to
automatically translate natural language requirements into

formal requirements in JML [1]. We consider two distinct NLP
approaches: 1) obtaining JML translated using GPT [2] via
ChatGPT; 2) a symbolic approach designed by the authors
in which a compiler translates higher-order logic meaning
representations, generated from natural language requirements
using ccg2lambda [3], into formal requirements in JML. The
two translations are evaluated by using OpenJML [4] with
z3 [5] to check both the syntax and semantics correctness of
the generated JML, as well as the correctness of programs with
the generated JML. The overall goal of this paper is to study
existing NLP techniques as a means to save high time and
costs in software development, by translating natural language
requirements into formal requirements that are needed in
deductive verification.

The remainder of the paper is organised as follows:
Section II briefly introduces the concepts related to this study.
Section III provides explanations of the two approaches.
Section IV provides a case study to the approaches. Section V
surveys the related concepts and literatures. Section VI
presents the conclusion.

II. BACKGROUND

Automatically translating natural language requirements
into formal requirements involves using NLP to translate
textual requirements into a formal specification language.

A. Formal Specification Languages

A formal specification language is a language used to
describe software in a precise, unambiguous and machine-
readable way. Often, verifying the correctness of formally
specified software can be achieved with deductive verification
using theorem proving, among other techniques. JML
specifications are written in code comments annotating Java
programs. Method behaviour specifications start with //@
followed by keywords like requires for preconditions
and ensures for postconditions. Quantifiers (i.e., forall,
exists) and boolean expressions can be used to specify
behaviour, such as checking for sorted values in an array. There
is wide support for JML, including tools like OpenJML [4] and
ESC/Java [6] that support deductive verification.

B. Natural Language Processing

Natural language processing is a research area aiming
to develop computational models that can understand and
interpret human language. NLP can be broadly categorized

Java source code
with natural
language
requirements

Preprocessing E
Program specific
semantic
interpretation library

Preprocessing
rules

MR to formal
specification
Compiler

ccg2lambda

Higher-order logic
MRs

Standard semantic
interpretation library

Fig. 1. Symbolic approach to automatic formalisation of textual requirements.
Higher-order logic meaning representations are constructed through CCG
derivation and our compiler translates those into JML.

into two approaches based on how it processes language:
symbolic and deep learning. Symbolic NLP uses explicit
representations, ranging from simple regular expressions to
complex grammars, and algorithms to interpret the syntax and
semantics of a language [3]. Deep learning NLP employs deep
neural networks to learn the patterns and structures of language
from large amounts of data [2].

III. APPROACHES

To produce formal requirements in JML, the symbolic
approach is based upon a compiler designed by the authors
and the deep learning approach is based upon GPT.

A. Symbolic approach

We have constructed a compiler that takes as meaning
representation (MR) derived from input textutal requirements
in code comments and follows the approach depicted
in Figure 1. Text is preprocessed with extensible rules to
replace words which might be incorrectly classified by the
NLP tool. For instance, Java keywords representing literals
(e.g., true, false, null) are replaced by ‘a [keyword]_value’
(e.g., a true_value). Such words are usually tagged as
adjectives by the part-of-speech (POS) tagger, but they should
be tagged as nouns because they are commonly used in
boolean and object reference comparisons.

Each preprocessed sentence undergoes a translation
process using ccg2lambda [3], which involves tokenization,
combinatory categorical grammar (CCG) tree derivation, and
semantic composition. A sentence is tokenized using white
spaces as delimiters, and then tagged as well as parsed by
the C&C parser to generate a CCG tree. Once the leaves and
nodes are matched with the rules in the template written in
NLTK [7] lambda calculus format, semantics are given to the
words in the nodes, resulting in a higher-order logic MR. To
enhance the MR, we annotate all MR predicates with their
respective syntactic categories.

A compiler, which we named Meaning Representation
Compiler (MEARC), has been designed and implemented
for translating an MR to its corresponding JML (publicly
available at https://github.com/itlchrisss MEARC). The core
concept of the translation is to match predicates with semantic
interpretations (SIs) using their syntactic categories and arities.
Each SI is a JML construct that accepts arguments to form
a JML expression. The translation starts with building an
abstract syntax tree (AST) by parsing the MR with an LR(1)
grammar. Internal nodes are either connectives (i.e., and(&),
or(|), etc.) or predicates. Leaf nodes are variables that are
arguments of the predicates.

An analysis is applied to all predicate nodes to match their
SI in an extensible SI library. If a predicate node has no SI
matched, and it is being an argument to another predicate,
an error is thrown to signal an SI must be provided. After
mapping the SIs to predicates, JML constructs are synthesised
from subtrees by substituting leaf nodes to the arguments of
the SI. Synthesised JML constructs are stored in the internal
nodes, and the leaf nodes are removed. Finally, target JML is
produced by post-order traversing the tree.

B. GPT approach

Training the GPT model [2] can be divided into two stages.
The first stage is an unsupervised pre-training process on a
large corpus of text without any explicit labeling. The second
stage is a supervised fine-tuning process, which involves
training the model on a labeled dataset to adapt it to a specific
NLP task. To utilize the GPT model for translation, ChatGPT
can be employed by inputting queries into the model. For each
query, translation of a requirement to JML is explicitly asked
for, and the JML is returned with some additional explanations.

IV. EVALUATION AND DISCUSSION

To assess the approaches, we have written ten different
requirements as input. For GPT, we used the query
“Please convert this sentence to JML: [requirement]”’, where
“[requirement]” is the textual specification. For both the
symbolic approach and GPT, the resulting JML is checked
for syntactic and semantic correcness using OpenJML [4].
Correctness with respect to the corresponding Java program is
statically checked by OpenJML with the z3 [5] theorem prover.
In the results that follow, a JML specification is considered
correct only if it satisfies the syntax and semantics checks, as
well as the verification checks performed by the z3 theorem
prover.

Table I shows the outcomes for both approaches on
the natural language requirements. The symbolic approach
successfully produced correct JMLs in 7 out of 10 translations.
In the 3rd and 5th rows the MRs were incorrectly generated,
resulting in the absence of generated JML from the compiler.
Further development of language interpretation is necessary
to improve the MR derivation for such cases. Regarding row
number 2, the generated JML compares the contents of two
arrays, but the deep equals method in Java implements nested
array comparison, leading to rejection by the theorem prover.

TABLE I

RESULTS OF TRANSLATING NATURAL LANGUAGE REQUIREMENTS TO JML USING SYMBOLIC NLP AND GPT.

Natural Tanguage requirement [JML generated by the symbolic approach [Correct [JML generated by GPT [Correct
1. The array should not be null. Jrequires (array = null); Y requires array = null; Y
2. If parameter x deeply equals|ensures(((((x == null && y == null) && ((x ==|N requires x.deepEquals(y); N
parameter y, then result is true. y) || (x.equals(y)) || Arrays.equals(x, y))) || ((x ensures \result == true;

= null && y != null && x.length == y.length)

&& (\forall int i; 0 <= i < x.length; ((x[i]

== null && y[i] == null) || (x[i] != null &&

y[i] != null && (!x[i].getClass().isArray()

&& ly[i].getClass().isArray() &&

x[i].equals(y[i])))))))) ==> (\result==true));
3. If and only if parameter x deeply|— N requires X.deepEquals(y) <==> \result == true;|N
equals parameter y, then result is
true.
4. If the input n is a prime number, [ensures((n == 2 [(n > 2 && (\forall int k; n >[Y requires isPrime(n); N
the result is true. 2&&2 <=k && k <=1n/2;n % k !=0))) ==> ensures \result == true;

(\result==true));
5. If and only if the input n is|— N requires isPrime(n) <==> \result == true; N
prime, the result is true
6. If the result is true, the input|ensures((\result==true) ==> (number % 2 ==|Y requires isEven(n) == result == true; N
number is even 0));
7. If the result is false, the input|ensures((\result==false) ==> (!(number % 2 ==|Y requires !isEven(n) ==> \result == false; N
number is not even 0)));
8. The input arr should be sorted|ensures (\forall int i; 0 <=1 && 1 < arr.length|Y requires (\forall int 1, j; 0 <=1 && 1 < j && j|Y (7)
in descending order - 1; arr[i] >= arr[i + 1]); < arrlength; arr[i] >= arr[j]);
9. The result is less than or equal to[ensures((\result >= 0) && (\result <= 2000)); [Y ensures \result >= 0 && \result <= 2000; Y
2000 and the result is greater than
or equal to 0.
10. The input numI is Tess than or|requires((num2 <= 1000) && (numI <= 1000));[Y requires numl <= 1000 && num2 <= 1000; [Y
equal to 1000 and the input num2
is less than or equal to 1000.

Regarding the GPT results, 4 out of 10 translations are fully
correct, although quite a few others come close. In rows 2, 4,
5, 6 and 7, the translations are incorrect due to a method used
in the specification not existing or its call being disallowed.
This is likely due to GPT missing contextual information and
causes a semantic error in the JML specification. Furthermore,
the deepEquals method usage in row number 2 is syntactically
incorrect (the method takes two arguments instead). At rows
number 3, 5, 6, and 7 the translations have syntax errors due to
referring to results in preconditions (“\result’ is disallowed in
‘requires’ clauses). Overall, these findings indicate that GPT
requires a specific training corpus to acquire the necessary
knowledge, such as Java API specifications.

GPT’s result at row number 8 is arguably correct. The
condition body is correctly translated (i.e., the \forall clause
for ‘sorted in descending order’). However, it is considered to
be a precondition while it arguably should be a postcondition
(the method does not refer to a‘result’, which hints to a
postcondition). Without context, the requirement could be a
postcondition of a sorting method or a precondition of a binary
search implementation. This suggests a research opportunity
to improve the deep learning approach by providing contextual
information from programs. (e.g., void return type of a pure
method hints that it modifies its arguments).

To further investigate the issue of incorrect method calls
in specifications, we modified the ChatGPT queries for
requirements number 2 and 4 by adding the phrase “without
calling a separate function”. The results, shown in Table I,
show that in both cases the generated JML correctly replaces
‘requires’ with ’ensures’. However, that was not our aim when

modifying the queries. This exposes some non-determinism
in the results provided by GPT (a known characteristic).
Furthermore, GPT removes the method call inconsistently
among the two queries. Method behaviour is correctly
specified for ‘prime’, while the usage of ‘deepEquals’ remains
in the first row of Table I.

Finally, comparing the two approaches, GPT is more
accurate in interpreting the meaning of natural language
sentences. However, it does not handle perfectly the
characteristics of the Java API and language. Further training
specifically using the corpus of the Java APIs would likely
improve GPT with this respect. The results also indicate
that contextual information from programs and idioms from
software engineering play a crucial role in the translation
process. Hence, although the symbolic approach is more
limited in language interpretation, it provides more accurate
JML whenever the language is correctly interpreted.

V. RELATED WORK

This paper focuses on automatically formalising natural
language requirements. Several existing methods achieve this
using restricted sets of natural language using structured
models [8], [9] and internal predefined rules [10], heuristics
with models [11], [12], based on analysis and heuristics [13],
[14], redefining logic and its parser [15]. In contrast, the
two approaches employed in this paper do not impose any
intentional restrictions on the natural language input.

The symbolic approach presented in this paper is related
to ARSENAL [16]. While ARSENAL is designed to generate
linear temporal logic, the symbolic approach presented here

TABLE II
RESULTS OF MODIFYING THE QUERY TO CHATGPT. THE ORIGINAL QUERY IS “PLEASE CONVERT THIS SENTENCE TO JML: [REQUIREMENT]”. THE
MODIFIED QUERY APPENDS “WITHOUT CALLING A SEPARATE FUNCTION”.

Natural language requirement [JML produced by original query

[IML produced by modified query [Correct

If parameter x deeply equals parameter
y, then result is true.

requires x.deepEquals(y);
ensures \result == true;

ensures (\result == true && x.deepEquals(y)) || (\result | N
== false && !x.deepEquals(y));

If the input n is a prime number, the
result is true.

requires isPrime(n);
ensures \result == true;

ensures (\result == true && (\forall inti; 2 <=1 && | Y
i<nn%i!=0) — (\result == false && (\exists
inti; 2 <=1&&1i<nn%i==0));

can handle higher-order logic. As a result, the input complexity
of the two approaches differs significantly, as linear temporal
logic does not support quantifications. Another key difference
is that the symbolic approach generates JML specifications
which may be verified using theorem proving.

An approach named FRET [17] formalises structured
natural language requirements, with an industrial application
demonstrating promising results. However, the requirements
accepted by FRET does not support quantifications. It would
be relevant to explore the use of GPT to convert unrestricted
natural language requirements to FRETish requirements.

VI. CONCLUSION

Analysing software using natural language remains a
challenging problem with relevant time and cost implications
for any organization applying V&V techniques. To tackle
this issue, a possible solution is to translate natural language
requirements into formal requirements and then utilize
deductive verification to assess the translated requirements.

This paper assesses the feasibility of two distinct methods
for automatically formalising natural language requirements.
The first method employs a symbolic approach that utilizes
ccg2lambda [3] to translate meaning representations derived
from natural language into formal requirements. The second
method involves submitting queries to GPT [2]. Both methods
are able generate JML specifications as the target language.

The paper evaluates both approaches on a set of
requirements and the main conclusion is that both the symbolic
approach and GPT provide meaningful and promising results.
In terms of language comprehension, GPT outperforms the
symbolic approach as it always interprets the meaning of
the textual requirements. However, the symbolic approach
is more accurate in generating JML when it is able
to interpret the textual input and construct a meaning
representation. Therefore, both approaches can make a
significant contribution to automate the formalisation of
natural language requirements, and thus reduce the effort of
applying formal techniques.

REFERENCES

[1] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of jml:
A behavioral interface specification language for java,” SIGSOFT Softw.
Eng. Notes, vol. 31, no. 3, p. 138, May 2006.

A. Radford and K. Narasimhan, “Improving language understanding by
generative pre-training,” 2018.

P. Martinez-Gémez, K. Mineshima, Y. Miyao, and D. Bekki,
“ccg2lambda: A compositional semantics system,” in Proceedings of
ACL 2016 System Demonstrations. Berlin, Germany: Association for
Computational Linguistics, August 2016, pp. 85-90.

[2]

[4]

[5]

[6]

[7]
[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

D. R. Cok, “Openjml: Jml for java 7 by extending openjdk,” in
NASA Formal Methods, M. Bobaru, K. Havelund, G. J. Holzmann, and
R. Joshi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 472-479.

L. de Moura and N. Bjgrner, “Z3: An efficient smt solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 337-340.

D. R. Cok and J. R. Kiniry, “Esc/java2: Uniting esc/java and jml,” in
International Workshop on Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices. Springer, 2004, pp. 108—128.

S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python, 1st ed. O’Reilly Media, Inc., 2009.

I. S. Bajwa, B. Bordbar, and M. G. Lee, “Ocl constraints generation
from natural language specification,” in 2010 14th IEEE International
Enterprise Distributed Object Computing Conf., 2010, pp. 204-213.

C. Wang, F. Pastore, and L. Briand, “Automated generation of constraints
from use case specifications to support system testing,” in 2018 IEEE
11th International Conference on Software Testing, Verification and
Validation (ICST), 2018, pp. 23-33.

A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezze,
and S. D. Castellanos, “Translating code comments to procedure
specifications,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2018. New
York, NY, USA: Association for Computing Machinery, 2018, p.
242253.

Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall,
“Analyzing apis documentation and code to detect directive defects,”
in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), 2017, pp. 27-37.

J. Zhai, Y. Shi, M. Pan, G. Zhou, Y. Liu, C. Fang, S. Ma, L. Tan,
and X. Zhang, C2S: Translating Natural Language Comments to
Formal Program Specifications. New York, NY, USA: Association
for Computing Machinery, 2020, p. 2537.

L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/*icomment: Bugs or bad
comments?*/,” in Proceedings of Twenty-First ACM SIGOPS Symposium
on Operating Systems Principles, ser. SOSP ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 145158.

L. Tan, Y. Zhou, and Y. Padioleau, “Acomment: Mining annotations
from comments and code to detect interrupt related concurrency bugs,”
in Proceedings of the 33rd International Conference on Software
Engineering, ser. ICSE "11. New York, NY, USA: Association for
Computing Machinery, 2011, p. 1120.

C. Menghi, S. Nejati, K. Gaaloul, and L. C. Briand, “Generating
automated and online test oracles for simulink models with continuous
and uncertain behaviors,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2019. New
York, NY, USA: Association for Computing Machinery, 2019, p. 2738.
S. Ghosh, D. Elenius, W. Li, P. Lincoln, N. Shankar, and W. Steiner,
“Automatically extracting requirements specifications from natural
language,” CoRR, vol. abs/1403.3142, 2014.

M. Farrell, M. Luckcuck, O. Sheridan, and R. Monahan, “Fretting
about requirements: Formalised requirements foranaircraft engine
controller,” in Requirements Engineering: Foundation for Software
Quality, V. Gervasi and A. Vogelsang, Eds. Cham: Springer
International Publishing, 2022, pp. 96-111.

