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Abstract—The control of complex systems is typically de-
signed describing the physical system with differential equations.
The standard approach to their verification employs numerical
analysis, which is suitable to prove stability properties, but is
susceptible to numerical errors. On the other side, symbolic
techniques give precise analysis results but typically do not scale
to industrial size problems.

In this paper, we consider the control design of an aircraft
engine. The engine model is represented by a linear state
space model of 18 internal state variables, 4 outputs, and 3
inputs. The control switches between two PI controllers, one for
thrust control and another for low-pressure compressor spool
speed control, based on the engine state and pilot commands.
After reformulating the PI controllers in terms of differential
equations, we obtain a hybrid system with 21 state variables
and two modes, for which we want to prove with symbolic
techniques the robustness of the stable states to perturbation.
We achieved the verification with standard methods to synthesize
quadratic Lyapunov functions and SMT techniques to synthesize
neighborhoods of the stable states for which we have symbolic
proof of stability.

I. INTRODUCTION

The benefits of revolutionary new aircraft systems and
architectures with high potential for energy efficiency gains are
complex and difficult to assess with confidence, particularly
in relation to their impact on large parallel systems and
interconnected components. As air transport is one of the
largest consumers of total primary energy, it is pivotal for safe
and green-aware transportation initiatives to be transitioned
to the industry as fast as possible. Thus, it is crucial for
analysis and verification tools of advanced engine concepts
to accurately and efficiently validate the associated control
approaches.

One of the most studied properties of control system is
stability, which requires that, after a variation of the input, the
control brings the system to a steady state. This is typically a
state where the output of the system reaches a reference value
set in the input. Well-known control theories (e.g., Lyapunov
theory) define various sufficient and necessary conditions for
the stability of linear systems, where the dynamics is defined

by linear differential equations. The standard approach to study
stability is based on numerical analysis, which is very effective
on linear systyems, but is susceptible of numerical errors.
Moreover, one does not have guarantees on the output of the
analysis. For example, on complex systems, it may happen that
the function obtained with standard optimization algorithms
to produce a Lyapunov function is indeed not positive or not
decreasing on all points and this can be proved with symbolic
techniques.

Related to stability, another relevant problem is the robust-
ness of the control with respect to perturbation of the pa-
rameters. In particular, we are interested in finding guarantees
that, for small variations of the states or of the references, the
system does not switch control.

In this paper, we consider the control design of an aircraft
engine. The engine model is represented by a linear state space
model of 18 internal state variables, 4 outputs, and 3 inputs.
The control switches between two PI controllers, one for
thrust control and another for low-pressure compressor spool
speed control, based on the engine state and pilot commands.
After reformulating the PI controllers in terms of differential
equations, we obtain a hybrid system with 21 state variables
and two modes, for which we want to prove stability with
symbolic techniques.

We first proved stability for specific reference values in each
mode using Lyapunov methods and proving the properties
of the obtained Lyapunov function with SMT techniques.
This activity provided interesting insights on the reliability of
numerical methods, as in some cases the synthesized functions
were not satisfying the Lyapunov conditions. We also tried
to synthesize piecewise Lyapunov for proving stability of the
switched system, but all attempts failed due to numerical
errors. Finally, we synthesized a region around the stable states
that is proved to be robust to perturbation of the state. From
this, we derive bounds on the variation of parameters for which
we are guaranteed to stabilize without switching control.

Structure of the paper: The rest of the paper is organized as
follows. In Section II, we clarify the connections with related



works. In Section III, we recall some basic notions of linear
and affine dynamical systems, piecewise-affine switched sys-
tems and their stability properties. In Section IV, we explain
how we reformulate a linear system whose inputs are coupled
with a switched Proportional-Integral (PI) controller into an
autonomous piecewise-affine switched system. In Section V,
we detail the industrial case study. In Section VI we report
on the verification results obtained on the case study. Finally,
in Section VII, we draw some conclusions and directions for
future works.

II. RELATED WORKS

Some general approaches to the problem of proving the
stability of a piecewise-linear hybrid system are surveyed in
[12] and [11]; among them are common Lyapunov functions,
piecewise quadratic Lyapunov functions, multiple Lyapunov
functions, and higher order Lyapunov functions [9], [4], [15].
Some generalizations of the standard stability properties have
also been considered, still with the aim of proving safety
properties. In [16] the authors introduce region stability, which
allows to formalize hybrid systems whose trajectories all
eventually end up in a given region even though they may
continue to oscillate within the allowance prescribed by the
region. In [19] the authors discuss a similar stronger property
that they call persistence. The idea is again to not require
convergence to a single equilibrium point, but instead to ask
that the system state eventually becomes always trapped within
some set of states. More directly relevant to our problem is
the stabhyli tool developed by a group at the University
of Oldenburg [13]. This tool applies to linear and non-linear
hybrid systems, and aims to provide a certificate of stability
by means of Lyapunov function techniques combined with a
decompositional proof scheme. To the best of our knowledge,
this is the largest hybrid system (in terms of state variables)
so far treated with symbolic techniques.

III. BACKGROUND

We denote by N the set of natural numbers, by R the set of
real numbers and by R+ the set of non-negative real numbers.
We use boldface letters for vectors, e.g. x ∈ Rn; the transpose
of a matrix A is denoted by AT, the Hermitian transpose by
A†, and the scalar product of two vectors a and b by aTb.

A. Linear dynamical systems

A continuous-time linear dynamical system with state space
Rn is defined by a pair of matrix equations of the form{

ẋ = Ax+Bu

y = Cx
(1)

where x ∈ Rn is the state vector, ẋ denotes the time derivative
of x, u ∈ Rm (for some m ≥ 0) is the input vector, y ∈ Rp

(for some p ≥ 0) is the output vector and A, B and C are
matrices of compatible sizes. The first equation in the system
(1) specifies the temporal evolution of the state vector x,
whereas the second equation defines the outputs of the system
as a function of the state. A linear system is called autonomous

when m = 0 (i.e., the system has no inputs). An equilibrium
point for an autonomous linear system ẋ = Ax is a state
xeq ∈ Rn such that ẋeq = 0.

B. PI controllers

Let S = (A,B,C) be a linear system, as defined in Section
III-A. We assume the matrix A is not singular, so that the
system has a single equilibrium point.

Given a vector of reference values r ∈ Rp for the outputs of
S, the corresponding error vector is then defined by e

.
= r−y.

A PI (Proportional-Integral) controller for S is defined by
imposing an input-output relation of the following form:

u = KPe+KI

∫ t

0

e(τ) dτ (2)

where KP and KI are matrices realizing appropriate (linear)
functions of the instantaneous error. We assume that every
input of system S is controlled, so that both KP and KI are
r × p matrices (not necessarily of full rank).

C. Switched systems

A switched system is a dynamical system in which the
continuous evolution of the state is mixed with discrete
“switching” events which may instantaneously alter the state
and/or the evolution law of the system. Switched systems
represent one of the simplest class of hybrid systems and have
been extensively studied in the literature (see e.g. [10]).

In this paper we are only interested in a very specific class
of such systems, in which the switching law is:

• state-dependent, that is, switching events are determined
by the state evolution crossing certain switching surfaces
defined in the state space;

• autonomous, which means that the switching events do
not depend on external inputs;

• continuous, that is, the switching only involves a change
in the evolution law and does not cause a discrete jump
in the state.

Thus we assume that the state space Rn is partitioned into
a finite number of operating regions or modes (Ri)i∈M by
means of a family of switching surfaces (or guards). In each
of these regions a differential equation specifies the evolution
of the state variable:{

ẋ = fi(x)

y = gi(x)
if x ∈ Ri. (3)

Whenever the system trajectory hits a switching surface, the
continuous state continues to evolve subject to a different
evolution law.

We shall further specialize this setting by adopting the
following two assumptions:

1) each (fi, gi) is a pair of affine functions of x, in which
case one speaks of a piecewise-affine systemor PWA
system for short. The system (3) then becomes{

ẋ = Aix+ bi

y = Cix+ di
(4)



for some n×n matrices (Ai)i∈M, n-dimensional vectors
(bi)i∈M, p × n matrices (Ci)i∈M and p-dimensional
vectors (di)i∈M.

2) We shall assume that each region Ri is a convex
polytope, possibly unbounded, in Rn. Such polytopes
can always be represented as the intersection of a finite
set of half-spaces. A half-space in Rn can be represented
by a vector g ∈ Rn and a scalar h ∈ R, as the locus of
solutions of the affine inequality

gTx+ h▷ 0, (5)

where ▷ ∈ {≥, >}.

D. Stability
An equilibrium point xeq of an autonomous dynamical

system ẋ = f(x) is called:
• stable if ∀ε > 0 ∃δ > 0 such that ∥x(0)− xeq∥ < δ

implies ∥x(t)− xeq∥ < ε for every t ≥ 0;
• asymptotically stable if it is stable and δ may be taken

such that ∥x(0)− xeq∥ < δ implies that x(t) converges
to xeq for t → ∞;

• exponentially stable if there exist positive reals c, K
and λ such that ∥x(t)− xeq∥ ≤ K ∥x(0)− xeq∥ e−λt

whenever ∥x(0)− xeq∥ < c.
In general, exponential stability implies asymptotic stability;
for a linear system the opposite implication also holds, so the
two concepts are logically equivalent.

A Lyapunov function for the system ẋ = f(x) with
equilibrium point xeq is a function V : Rn → R satisfying
the following conditions:

1) V (xeq) = 0 and V (x) > 0 for every x ̸= xeq;
2) V̇ (x) < 0 for every x ̸= xeq, where V̇ denotes the

Lie derivative of V along the vector field f (i.e., V̇ =
∇V · f ).

According to Lyapunov’s theorem, the existence of a Lyapunov
function guarantees that the equilibrium point xeq is asymp-
totically stable. If in addition V satisfies the stronger property

V̇ (x) ≤ −αV (x) (6)

for some α ∈ R+ then the equilibrium point is also exponen-
tially stable.

E. Methods for Lyapunov function synthesis
We briefly summarize three different strategies that can be

used to synthesize a Lyapunov function for an autonomous
linear system ẋ = Ax.

a) Lyapunov equation: The classic method is to look for
a quadratic Lyapunov function V (x) = xTPx by solving the
(continuous-time) Lyapunov equation:

ATP + PA+Q = 0 (7)

where Q is any symmetric positive definite matrix. This
amounts to solving a linear system in n(n + 1)/2 unknowns
(the entries of the symmetric matrix P ), which is usually done
using numerical algorithms tailored to the specific form of the
problem. In the absence of other clues, one often takes Q to
be just the identity matrix.

b) Lyapunov function derived from a modal matrix: As
a particular case of the previous construction, let us suppose
that the matrix A is diagonalizable and let M be any modal
matrix for A, i.e. an invertible matrix such that M−1AM = D
with D diagonal. The entries of D are exactly the eigenvalues
of A; since A is a real matrix, these eigenvalues are either
real or pair of complex conjugate numbers. Then the matrix
product

P = M−1†M−1 (8)

defines a Lyapunov function for the linear system ẋ = Ax.
Indeed it is not hard to verify that P solves the Lyapunov
equation (7) for Q = −M−1†(D+D)M−1. This matrix is real
and symmetric by construction and positive definite when the
matrix A is stable, since D+D = 2ReD and the eigenvalues
of a stable matrix have strictly negative real part.

Compared to the previous method, here we trade the task
of solving the linear system (7) with the task of diagonalizing
(and finding a modal matrix for) the matrix A.

c) Lyapunov function synthesis via LMIs: Another way
to synthesize the matrix P is by solving a system of linear
matrix inequalities (LMI) [3]. In its simplest version, the LMI
problem reads as follows: find P = PT such that{

P > 0

ATP + PA < 0
(9)

Here a notation like X > 0 (resp. X < 0) means that the
matrix X is required to be positive definite (resp. negative
definite). The advantage of this setting is that one can modify
slightly the LMI problem (9) in order to obtain Lyapunov
functions with stroger properties. For instance, a solution for
the LMI problem{

P > 0

ATP + PA+ αP < 0
(10)

where α ∈ R+ is a fixed parameter, yields a Lyapunov function
satisfying property (6); the best possible value of the parameter
α gives a quantitative measure of the speed of convergence to
the equilibrium point which can be used to estimate the settling
time of the system.

F. Lyapunov functions for hybrid systems

The theory of Lyapunov stability also applies to hybrid
systems; we refer the reader to [14] for a review of this topic.
Assuming that the PWA system (4) has a single (globally
stable) equilibrium point, we can try to synthesize a global
Lyapunov function which directly witnesses this fact. The
simplest approach is to consider a piecewise-quadratic Lya-
punov function, namely a function defined by a quadratic form
xTPix for each region Ri, where the matrices (Pi)i∈M are
parameterized in such a way to ensure the continuity of V (x)
on each boundary between regions. Such a Lyapunov function
can be synthesized using an appropriate generalization of the
LMI problem (9), in which the global Lyapunov constraints are
applied locally in each region using the so-called S-procedure
[3]. The details of the LMI problem used can be found in



[14, Theorem 3.10]. A drawback of this approach is that the
class of Lyapunov functions considered in this way can be too
rigid, precluding the successful solution of the LMI problem.
The S-procedure is also known to be conservative in general,
providing only a sufficient (but not necessary) condition for
the local validity of the Lyapunov conditions.

IV. SWITCHED PI CONTROLLER AND REFORMULATION OF
THE CLOSED-LOOP DYNAMICS

A. Switched PI Controller

In this paper we are interested in switching controllers, that
is controllers in which the linear functions appearing in the
feedback law (2) may change according to some switching
conditions formulated as linear inequalities on the outputs of
the system. Accordingly, the matrices KP and KI appearing
in equation (2) are replaced by a pair of finite set of matrices,

(KI,i)i∈M (KP,i)i∈M (11)

where M is the set of operating modes of the switching
controller. For each mode i ∈ M the input-output relation
becomes

u = KP,ie+KI,i

∫ t

0

e(τ) dτ. (12)

By the assumptions made in III-C, for each i ∈ M we can
write the activating conditions of mode i as a finite system of
affine inequalities of the form

(g
(i)
1 )

T

y + h
(i)
1 ▷(i)

1 0
...

(g
(i)
ℓi
)
T

y + h
(i)
ℓi

▷(i)
ℓi

0

for some ℓi > 0, (13)

where ▷(i)
1 , . . . ,▷(i)

ℓi
∈ {≥, >}, g(i)

1 , . . . , g
(i)
ℓi

are vectors in
Rp and h

(i)
1 , . . . , h

(i)
ℓi

are scalars in R.
Substituting y = Cx we can rewrite the k-th inequality in

the system (13) as

(g
(i)
k )

T

Cx+ h
(i)
k ≥ 0 (14)

B. Reformulation into a Switched System

Let S = (A,B,C) be the open-loop linear system and π =
(KP,i,KI,i)i∈M the associated switching PI controller.

To model the closed-loop system obtained by the feedback
connection between S and π we build a PWA switched system
as follows.

• The state space is Rn+r, coordinatized by the vector
obtained by concatenating the state vector x ∈ Rn and
the input vector u ∈ Rr:

w
.
=

(
x
u

)
(15)

• The set of modes is the same set M specified by the
switching controller π; the corresponding partition of the
state space is defined by reinterpreting the conditions
(13) as inequalities on Rn+r which do not involve the
coordinates wn+1 = u1, . . . , wn+r = ur.

• The flow in region Ri (i ∈ M) is given by the dif-
ferential equations of the original linear system (with u
reinterpreted as a state variable),

ẋ = Ax+Bu (16)

supplemented by the differential equations obtained by
taking the time derivative of both sides of the PI control
relation (12) (assuming constant reference values):

u̇ = −KP,iẏ +KI,i(r − y) (17)

Substituting y = Cx and rearranging we get

u̇ = −KP,iCẋ−KI,iCx+KI,ir (18)

and using equation (16) we obtain finally

u̇ = (−KP,iCA−KI,iC)x−KP,iCBu+KI,ir (19)

In terms of the vector w, the system of ODEs consisting
of equations (16) and (19) can be written more compactly
as

ẇ =

(
A B
Ni Mi

)
w +

(
0

KI,i

)
r (20)

where we have defined Ni
.
= −KP,iCA − KI,iC and

Mi
.
= −KP,iCB.

• The outputs of the reformulated systems are simply the
outputs of S, extended to the new state vector in the
trivial way (no dependence on u):

y =
(
C 0

)(x
u

)
. (21)

We shall denote by Sπ the reformulated system obtained in this
way. Note that Sπ is an autonomous switched PWA system,
so its stability properties can be analyzed using the standard
tools recalled in Section III.

V. CASE STUDY

Fig. 1. An example of a dual spool engine



A. Basic Engine Operation

A basic outline of an aircraft turbofan engine is depicted in
Figure 1; the main components, in order from left to right, are:
the inlet (engine front), the compressor (low and high pressure
stages), the combustion chamber, the gas turbine (high and
low stages) and the exhaust nozzle (back of the engine).
An aircraft engine provides a constant supply of air for the
pressure vessel, passing through the two-stage compression
operation (low and high pressure) and mixed with fuel in
the combustion chamber to generate thrust. Several control
sections must be governed by the engine control system to
perform basic steps of intake, compression, combustion, and
exhaust. During this operation, and apart from performance
requirements, several critical safety parameters need to be
respected concerning safety. These parameters relate to engine
surge and stall avoidance, combustion chamber temperature
limits and so on. It is, therefore, of paramount importance
that any control approach designed on the engine’s embedded
controllers be verified and certified against certain safety
requirements.

B. Use Case Description

The framework presented in the paper is demonstrated for
a jet engine control system application. More specifically, the
control design problem of a turbofan engine in [18], [17] is
addressed using single input single output PI (proportional
plus integral) controllers [5] in contrast to the multivariable
controllers in [18], [17]. The control architecture choice above
is made because of the simplicity of the PI controller as
opposed to the multivariable designs in [18], [17]. This enables
a lean control implementation with minimal complexity and
creates a suitable use case that is comprehensible by non-
experts in control. This by no means limits the scalability
of the analysis and method of this paper, which is equally
applicable to more complex control system designs as in
[18], [17]. Such demonstrations are outside the illustration
purposes of the present paper and would be the subject of
future research.

Fig. 2. UC5 engine control model

A block diagram of the control system under study is
shown in Figure 2. There are four PI controllers, controlling
the Low Pressure Compressor (LPC) Spool Speed, the High
Pressure Compressor (HPC) Pressure Ratio, the Mach Exit

Number and the HPC Spool Speed. The above quantities
are denoted as y0, y1, y2 and y3, respectively, and con-
stitute the engine’s four measured output signals which are
further grouped as the system (engine) output column vector
y =

(
y0 y1 y2 y3

)T
. The respective desired reference

values for the engine outputs, denoted by r0, r1, r2, and r3
are the command signals coming from a supervisory engine
management system and grouped as the system reference
(command) vector r =

(
r0 r1 r2 r3

)T
. As Figure 2

shows, each reference signal and the corresponding engine
output are inputs to a single PI controller. The signal outputs
of the PI controllers are used to determine the actuation signals
for the Fuel flow, the Nozzle Area at the engine exhaust,
and the Inlet Gain Vane (IGV) Angle at the HPC. The above
three control signals are denoted as u0, u1, u2 and they form
the control signal vector u =

(
u0 u1 u2

)T
. It is worth

noting that the Fuel Flow actuation signal u0 is determined
by switching operational modes between the Thrust and LPC
Spool Speed controllers. More specifically, if y0 is greater than
r0, then the Flow Rate is determined by the signal output of
the LPC Spool Speed controller; otherwise, it is determined
by the minimum of HPC Pressure Ratio and LPC Spool
Speed control outputs. The above switching operation ensures
safety protection from engine compressor surge instabilities
by limiting the LPC Spool Speed (r0 command). On the other
hand, when no LPC Spool Speed constraints are enforced (i.e.
y0 ≤ r0) then the minimum signal selection above will always
result in fuel savings [17]. Whenever the switching between
the Thrust and the LPC Spool Speed controller occurs, the
integrator of the activated controller is initialised (reset) to
the value of the current state of the deactivated integrator.
The Nozzle Area actuation signal u1 is determined solely
by the Mach Exit Number controller, while the IGV Angle
actuation signal u2 is determined solely by the HPC Spool
Speed controller.

The mathematical model of the engine system in [18],
[17] is a linear system of eighteen continuous time ordinary
differential equations that can be written in matrix form as in
Equation (1), with x ∈ R18 the vector of internal variables
and y, u the engine output and control signal vectors as
described previously. The engine model parameters A, B and
C, are constant real matrices of appropriate dimensions, the
numerical values of which can be found in [18].

The PI controllers designs in continuous time [5] are given
by the equations (12), with M = {0, 1} as the set of modes.
The matrices (11) expressing the integral and proportional
controller gains are given by

KI,0 =

10 0 0 0
0 0 100 0
0 0 0 2

 KI,1 =

0 20 0 0
0 0 100 0
0 0 0 2



KP,0 =

1 0 0 0
0 0 10 0
0 0 0 0.5

 KP,1 =

0 0.1 0 0
0 0 10 0
0 0 0 0.5





Based on the previously mentioned functional operation of the
control system and the safety switching, the switching law is
determined as follows:

i =

{
0 if r0 − y0 < Θ

1 otherwise

where Θ is a safety margin to switch the control. In our case,
we fix Θ = 1. The two operating regions R0 and R1 are then
defined (in the notations of Section IV) by taking ℓ0 = ℓ1 = 1
and

g(0) = (1, 0, 0, 0)
T

h(0) = Θ− r0 ▷(0) =>
g(1) = (−1, 0, 0, 0)

T
h(1) = r0 −Θ ▷(1) =≥

with R0 corresponding to the nominal operation region.
Applying the reformulation described in Section IV-B, we

obtain a hybrid system of the form

ẇ =

{
A0w +B0r if gTw < h

A1w +B1r otherwise
.

VI. VERIFICATION

A. Reduced models

The entire system consisting of 18 internal variables is
difficult to handle. To assess the scalability of the methods
presented, we consider several reduced models that preserve
some properties of the full system while being more approach-
able from the computational point of view. By using Balanced
Truncation Model Reduction on the full system, we obtained
reduced models with 3, 5, 10, 15 state variables respectively.
For sizes 3, 5, 10, we also consider truncated version of the
system matrices, obtained by rounding entries to the closest
integer values.

B. Synthesis and validation of Lyapunov

1) Single modes: For the synthesis of Lyapunov functions
for a single operating mode, we consider 6 different methods
derived from the strategies described in Section III-E.

• eq-smt: solves symbolically Equation 7 with SymPy;
• eq-num: solves numerically Equation 7 with module

Control;
• modal: numerically derives a Lyapunov function from a

modal matrix, as in Equation 8;
• LMI: finds a Lyapunov function solving the LMI problem

of Equation 9 using Picos module, which gives access
to different backend solver for the semidefinite program-
ming: CVXOPT, Mosek, SMCP;

• LMIα: modifies the problem of method LMI with addi-
tional parameters for α, as in Equation 10;

• LMIα+: modifies the problem of method LMIα by using
constraint P − νI > 0, where ν ∈ R+ is a fixed
parameter. In this way, we force the solution to have
greater eigenvalues.

The function obtained applying these methods is of the form

V r
i (w) = (w −weqi)

TPi(w −weqi)

where weqi is the equilibrium point of each linear dynamical
system. With the only exception of eq-smt, the aforemen-
tioned methods are numerical and can only synthesize a
candidate Lyapunov function, whose correctness with respect
to requirements 1 and 2 (described in Section III-D) is still
to be validated. We do so symbolically by employing SMT
solvers and check the validity of conditions 1 and 2, expressed
as quantifier-free non-linear real arithmetic formulae.

Experimental setup: We ran out experiments on 2.40GHz
CPUs with 30 GB memory limit and 2 hours time limit.

In Table I we report the results of the synthesis and valida-
tion of Lyapunov functions from every operating mode of the
considered models. For the different benchmarks, clusterized
based on their size (columns "size 3",... "size 18"), and for
all synthesis method used, we report the average time for ob-
taining a candidate Lyapunov function (column "synth.time"),
and the ratio of successfully validated ones (column "valid").
Between the synthesis methods, solver SMCP is the least
efficient one. Nonetheless, the 192 cases, time outs (i.e., cases
where none of the tried validation methods succeeded) interest
only the eq-smt approach, for sizes 15 and 18. In only two
instances the numerical methods returned an invalid result
(LMIα+ with Mosek for both operating modes of size 18).
The candidate Lyapunov functions were validated rounding
the entries of the numerically synthesized matrices at the 10th
significative figure. Rounding at the 6th and 4th significative
figure led to find 4 and 25 invalid entries respectively. The
only method that could synthesize valid Lyapunov functions
even when rounding at the 4th significant figure is LMIα.

In Figure 3 we evaluate the times spent in validating the
candidate Lyapunov functions on different symbolic solvers:
SymPy’s is_positive_definite procedure, an ad-hoc
implementation of the Sylvester’s method [7, Theorem 7.2.5],
Mathematica [8], z3 [6] and cvc5 [2] as SMT solvers. For the
latter cases, we consider a "+ det" option, where the check
∀w ̸= 0 : Vi(w) > 0 (resp. ∀w ̸= 0 : V̇i(w) < 0) is encoded
with ∀w : Vi(w) ≥ 0 ∧ det(Pi) ̸= 0 (resp. ∀w : V̇i(w) ≤
0 ∧ det(AT

i Pi + PiAi) ̸= 0). From the plot, we observe that
Mathematica highly benefits from this version of the check,
but, due to the initialization time required by such SMT solver,
Sylvester’s method is the validation method performing best.

2) Switched System: We applied the approach described in
Section III-F to synthesize a piecewise quadratic Lyapunov
function [14, Theorem 3.10]. We applied two different LMI
formulations to take care of the non-increasing conditions
necessary for the Lyapunov functions on the switching surface
(i.e., the value of the switched Lyapunov function should not
increase when switching mode). The first LMI formulation
requires the value of the Lyapunov functions for each mode to
be equal on the switching surface. The second LMI encoding
provides a more relaxed problem formulation, requiring the
Lyapunov function for each mode to not increase close to
the surface (while it can decrease exactly on the switch). We
experimented with both LMI encoding on the set of reduced
models. While the LMI solver always finds a candidate Lya-
punov function, the subsequent validation using an SMT solver



size 3 size 5 size 10 size 15 size 18
method solver synth.time valid synth.time valid synth.time valid synth.time valid synth.time valid
eq-smt 1.1 4 / 4 2.25 4 / 4 314.26 4 / 4 TO 0 / 2 TO 0 / 2
eq-num 0.02 4 / 4 0.03 4 / 4 0.1 4 / 4 0.2 2 / 2 0.26 2 / 2
modal 0.02 4 / 4 0.03 4 / 4 0.09 4 / 4 0.2 2 / 2 0.25 2 / 2
LMI cvxopt 0.05 4 / 4 0.06 4 / 4 0.16 4 / 4 0.34 2 / 2 0.6 2 / 2
LMI mosek 0.06 4 / 4 0.08 4 / 4 0.25 4 / 4 0.35 2 / 2 0.5 2 / 2
LMI smcp 0.52 4 / 4 3.53 4 / 4 12.68 4 / 4 28.03 2 / 2 67.14 2 / 2
LMIα cvxopt 0.33 4 / 4 0.32 4 / 4 0.83 4 / 4 1.76 2 / 2 3.93 2 / 2
LMIα mosek 0.19 4 / 4 0.35 4 / 4 0.7 4 / 4 1.56 2 / 2 2.46 2 / 2
LMIα smcp 4.24 4 / 4 38.88 4 / 4 152.3 4 / 4 519.98 2 / 2 901.57 2 / 2
LMIα+ cvxopt 0.36 4 / 4 0.53 4 / 4 1.36 4 / 4 3.38 2 / 2 5.71 2 / 2
LMIα+ mosek 0.33 4 / 4 0.37 4 / 4 0.6 4 / 4 1.15 2 / 2 1.38 0 / 2
LMIα+ smcp 5.0 4 / 4 78.69 4 / 4 289.28 4 / 4 1099.74 2 / 2 2340.19 2 / 2

TABLE I
SYNTHESIS AND VALIDATION OF LYAPUNOV FUNCTIONS.

Fig. 3. Validation time with different solvers.

always fails. In particular, in our experiments the validation of
the constraint requiring the Lyapunov function to not increase
on the switching surface always failed.

C. Robustness to Perturbation

1) Synthesis of Robust Regions: Leveraging the computed
Lyapunov functions for the single operating modalities of the
system, we now try to synthesize robust regions around the
stable states. Given an assignment to the reference values r,
let weqi and Vi(w) 1 be the equilibrium point and a Lyapunov
function of modality i ∈ M. For the purposes of this analysis,
we consider reference assignments where, for all i ∈ M,
weqi ∈ Ri. For all mode i ∈ M, we want to find a region
around weqi whose points are guaranteed to converge to weqi
without switching operating mode. Namely, we look for ki
such that

∀w : (Vi(w) ≤ ki ∧ sw = 0 =⇒ βi) (22)

where sw = 0 is the switching surface between R0 and R1,
i.e., gTw − h = 0, and βi is its subset where ˙sw(w) points
towards Ri, according to the dynamics of operating mode i.
We do so by computing candidate ki values with numerical

1It can be computed by translating the one found for the homogeneous
system (i.e., with r = 0) by weqi.

methods, and by using the SMT solver Mathematica to validate
requirement 22 (and to prove that it is optimal up to a 10−3

factor). The robust region will then be given by the truncated
ellipsoid Wi = {Vi(w) ≤ ki} ∧ Ri.

2) Robustness to reference value changes: We want to
address the problem of robustness with respect to changes of
reference values r. To stress the dependecy on r of the objects
that we use, we write W r

i instead of Wi and weq
r
i instead of

weqi. We find an ϵi > 0 (that depends on r) such that if
r′ is in the ball B(r, ϵi) centered in r and of radius ϵi, then
weq

r
i ∈ W r′

i . In order to obtain such ϵi, we need to estimate
how much the robust region W r

i changes when we change the
parameters. We denote the spectral norm of a matrix by ∥·∥2.

If the vector field ẇ = Aiw + Bir is constant on the
switching surface sw = 0, the stable region W r

i is the whole
Ri. This happens for every reference value r′ for which the
stable point weq

r′

i is in Ri, hence we just have to check this
condition. We can make sure that weq

r′

i ∈ Ri by taking

ϵi =
dist(weq

r
i , sw = 0)∥∥A−1

i Bi

∥∥
2

.

If the vector field ẇ = Aiw + Bir is not constant on the
switching surface sw = 0, we call p the orthogonal projection
of AT

i g on g⊥. Notice that p ̸= 0. We also call µ1 ≥ µ2 ≥
. . . ≥ µn > 0 the eigenvalues of Pi. We fix the following
quantities:

• α > 0 such that B(weq
r
i , α) ⊆ W r

i ;
• β =

∥∥A−1
i Bi

∥∥
2
> 0;

• γ = ∥gBi∥
∥p∥ > 0;

• δ = dist(weq
r
i , sw = 0) > 0;

• µ =
√

µn

µ1
> 0.

We can make sure that weq
r
i ∈ W r′

i by taking

ϵi = min

{
αµ

µ(β + γ) + β
,
δ

β

}
> 0.

3) Results: In Table II we show the results of the synthesis
of robust stable regions and of the computation of the radius of
the ball in the space of parameters centered in r. Due to space
constraints, we report only the results regarding the two largest
systems (size 15 and size 18). Column "time" reports the time



size 15 size 18
mode 0 mode 1 mode 0 mode 1

method solver time vol ϵ time vol ϵ time vol ϵ time vol ϵ

eq-num 286 7e-10 7e-7 235 1e-4 2e-6 808 5e+38 4e-9 916 9e+44 1e-8
modal 161 7e-18 3e-6 148 7e-10 1e-5 680 2e+31 2e-10 679 3e+37 5e-10
LMI cvxopt 302 8e+0 3e-5 307 1e+6 7e-5 642 2e+26 3e-8 569 3e+32 8e-8
LMI mosek 321 9e+0 3e-5 324 1e+6 6e-5 707 3e+26 3e-8 713 7e+32 8e-8
LMI smcp 295 9e+0 3e-5 310 1e+6 7e-5 558 9e+25 2e-8 547 2e+32 7e-8
LMIα cvxopt 309 1e+1 2e-5 199 1e+6 5e-5 769 1e+25 2e-8 594 4e+32 6e-8
LMIα mosek 189 8e+0 2e-5 167 1e+6 5e-5 692 1e+25 2e-8 692 3e+32 6e-8
LMIα smcp 226 1e+1 2e-5 198 1e+6 5e-5 747 7e+24 1e-8 799 2e+32 6e-8
LMIα+ cvxopt 276 1e+0 2e-5 281 1e+5 5e-5 803 2e+25 2e-8 731 5e+32 7e-8
LMIα+ mosek 255 6e+0 3e-5 280 8e+5 7e-5 - - - - - -
LMIα+ smcp 257 5e+0 2e-5 198 7e+5 6e-5 555 1e+25 2e-8 760 3e+32 7e-8

TABLE II
SYNTHESIS OF ROBUST REGION

in seconds needed to compute ki; column "vol" reports the
volume of the truncated ellipsoid Wi; column "ϵ" reports the
radius of the ball B(r, ϵ) such that if r′ ∈ B(r, ϵ), then weq

r
i ∈

W r′

i . For each problem, we highlight the maximum value for
the volume of the robust region and the robustness ϵ.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we considered the problem of proving with
symbolic SMT-based techniques the stability of a switched
control system, and its robustness to perturbation. We targeted
an industrial control system for an aircraft engine represented
by a linear state space model with 18 state variables, 4 outputs
and 3 inputs, while the control switches between two PI
controllers. We successfully proved stability in each mode and
provided formal guarantees on the robustness to small changes
to the state or to the references.

The directions of potential future works are manifold. In
fact, this case study provides an industrial-size benchmark
of general interest for formal verification. We will therefore
archive it for the Competition on Applied Verification for Con-
tinuous and Hybrid Systems (see, e.g., [1]). We will investigate
the problem of the stability and robustness across the switching
modes. We will consider generalizing the approach to a wider
set of temporal properties. We will find connections among
the method used to synthesize the Lyapunov function and the
quantities shown in Table II.
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