
NETWORK FAILURES IN CLOUD MANAGEMENT PLATFORMS: A
STUDY ON OPENSTACK

Hassan Mahmood Khan1 a, Frederico Cerveira1 b, Tiago Cruz1 c and Henrique Madeira1 d

1University of Coimbra, CISUC, DEI
{hassankhan, fmduarte, tjcruz, henrique}@dei.uc.pt

Keywords: Cloud Computing, Network Failure, OpenStack, Cloud Management Platform, Fault Injection, Dependability

Abstract: Cloud Management Platforms (CMPs) have a critical role in supporting private and public cloud computing as
a tool to manage, provision and track resources and their usage. These platforms, like cloud computing, tend
to be complex distributed systems spread across multiple nodes, thus network faults are a threat that can lead to
failures to provide the expected service. This paper studies how network faults occurring in the links between
the nodes of the CMP can propagate and affect the applications that are hosted on the virtual machines (VMs).
We used fault injection to emulate various types of network faults in two links of the OpenStack CMP while a
common cloud computing workload was being executed. The results show that not all network links have the
same importance and that network faults can propagate and cause the performance of applications to degrade
up to 50% and a small percentage of their operations to fail. Furthermore, in many campaigns some of the
responses returned by the applications did not match the expected values.

1 INTRODUCTION

With the development of computer technology, the
range of applications and their complexity has ex-
panded, along with a fast increase in the usage of
computing resources. To sustain this trend, there is
a need for a large and diversified pool of computing
resources that can satisfy the clients’ requirements.
Cloud computing offers shared, scalable, ubiquitous,
reconfigurable, and simple on-demand access to com-
puting resources (such as networks, storage, process-
ing units, applications, and services) via configurable
Internet services that can be quickly deployed and
released with reduced management overhead. Due
to some characteristics of cloud computing, such as
scalability, agility and cost-effectiveness, many busi-
nesses tend to place their application services on the
cloud.

With the ongoing increase of application require-
ments and considerable progress in cloud computing
system research, many researchers are focusing on
cloud management platforms and their dependability
and fault tolerance. Cloud management platforms,

a https://orcid.org/0000-0002-7974-2108
b https://orcid.org/0000-0002-0180-4815
c https://orcid.org/0000-0001-9278-6503
d https://orcid.org/0000-0001-8146-4664

such as OpenStack (OpenStack, 2022), are a collec-
tion of software modules and tools that provides a
framework to create and manage both public cloud
and private cloud.

Dependability is “the ability to deliver service that
can justifiably be trusted” (Avižienis et al., 2004).
Cloud computing system dependability is crucial for
cloud service providers, brokers, carriers, and users
worldwide. Fault injection is an important method
that can accelerate the occurrence of faults in a con-
trolled manner in a system. It aids in understand-
ing how the system behaves when stressed in unusual
ways, hence helping make it more fault tolerant.

To establish cloud computing as a trustable plat-
form for cloud stakeholders, it must achieve levels
of dependability that are comparable to the depend-
ability offered by classical dedicated infrastructures.
In other words, clients will shy away from migrat-
ing their applications to the cloud, particularly the
business-critical ones, if by moving they are signifi-
cantly worsening its dependability.

This research paper addresses the impact that
moving an existing workload from a dedicated in-
frastructure to a CMP-based cloud infrastructure can
have on the dependability of the applications. We fo-
cus on network faults that can occur in the network
links between the nodes of the CMP and how a fault
in these links can propagate up to the hosted applica-



tion and affect the timeliness and correctness of the
service provided. To emulate network faults, fault in-
jection is used with the help of Sidekick, a network
traffic shaper that supports various fault models, such
as packet loss, bandwidth congestion or latency.

The results show that it is possible that hosted ap-
plications, running on the VMs that have been provi-
sioned using the CMP, are affected by network faults
in the links that connect the nodes of the CMP. The ex-
perienced failure modes include performance degra-
dation (i.e., the service takes longer to fulfil the re-
quests), failed operations (e.g., due to a timeout) and
even operations that return invalid results. However
not every network link has the same impact. From the
two considered scenarios (i.e., network links where
faults were injected) only one affected the service pro-
vided by the hosted applications.

The remaining parts of the paper are structured in
the following manner: The background of cloud man-
agement platforms, their dependability, and network
failure are covered in Section 2. The experimental
configuration is discussed in Section 3. The findings
collected from the experiment are discussed in Sec-
tion 4. Threats to validity of this study are presented
in Section 5 and conclusions drawn and future work
are described in Section 6.

2 BACKGROUND

Cloud computing can be regarded as an ensemble
of networked, virtualized computers that are con-
stantly provided and presented as unified comput-
ing resources in accordance with service-level agree-
ments between the service provider and the consumer
make up a cloud, which is a distributed system (Ku-
mari and Kaur, 2021). Cloud computing makes it pos-
sible to access, configure, and manipulate a shared
pool of reconfigurable computing resources, includ-
ing as networks, servers, storage, applications, and
services, in a manner that is pervasive, convenient,
and on-demand.

The systematic monitoring, control, administra-
tion, and maintenance of cloud computing infras-
tructure, services, and resources is referred to as
cloud management. A cloud management platform,
or CMP, is a collection of software used to man-
age cloud environments (Cocozza et al., 2015). The
primary objective of the CMP is to make it possi-
ble to improve resource management and monitor-
ing of cloud resources (Lu et al., 2020). Some ex-
amples of CMPs currently available include Abiquo,
CloudStack, Eucalyptus, Nimbus, openQRM, Open-
Stack (OpenStack, 2022), Open Nebula, Apache Vir-

tual Computing Lab (VCL), and HP’s CloudSystem
Matrix. OpenStack (OpenStack, 2022) is one of the
most prominent CMP that uses pooled virtual re-
sources to build and manage clouds.

Several methodologies have been utilized to as-
sess the dependability of cloud computing systems,
including analytic, state space, statistical, PetriNet,
simulation methods (Dantas et al., 2012) and fault
injection. Fault injection emulates faults in a target
system to produce failures similar to real-world fail-
ures but at a faster pace (Natella et al., 2016). Recent
research has focused on dependability of cloud com-
puting systems. Ju et al. (Ju et al., 2013) examined
OpenStack’s resilience by introducing failures (by ter-
minating VMs or service processes), network parti-
tions (by prohibiting connection between two sub-
nets), and network traffic delay and packet losses (by
disrupting REST service requests). (Cerveira et al.,
2015) introduce CPU and memory bit flips to evaluate
hypervisor and VM isolation when affected by tran-
sient hardware faults. (Pham et al., 2016) employed
fault injection against OpenStack to inject and ana-
lyze the caused failures. A study by (Cotroneo et al.,
2019) employed fault injection and failure analysis
to explore the consequences of failures in the widely
used OpenStack CMP. Their results show that soft-
ware bugs can propagate inside the components of
the CMP, thus suggesting the usage of more advanced
testing and fault tolerance techniques (Cotroneo et al.,
2022).

There are various benchmarks for evaluating
a cloud platform from numerous perspectives.
Among these, the Yahoo Cloud Serving Benchmark
(YCSB) (Cooper et al., 2010) is a well-known key-
value data storage benchmark, which supports the ma-
jority of key-value store databases. YCSB purpose is
to provide a framework and a collection of common
workloads for measuring the performance of various
key-value and cloud serving stores

Apache Cassandra (Cassandra, 2022) is an open-
source, distributed NoSQL database that uses wide-
column partitioning. Facebook created Apache Cas-
sandra by combining Google’s Bigtable data and
storage engine concept with Amazon’s Dynamo dis-
tributed storage and replication techniques

3 EXPERIMENTAL SETUP

To evaluate the impact of network failures on the
OpenStack CMP and the applications hosted on it,
fault injection of network faults was performed. This
section describes the experimental setup, including
how Openstack was configured, the used workload,



the type of network faults emulated, the fault injec-
tion process and the flow of the experiments.

3.1 Environment Configuration

We have opted to conduct our experimental evalu-
ation using the most commonly used CMP, Open-
Stack (more specifically, we used OpenStack Xena).
Figure 1 shows the experimental design comprising
OpenStack, workload and benchmark applications on
the hosted VMs and network traffic shaper. Open-
Stack was configured over three nodes, which are:

Controller node: It runs identity service, image
service, web dashboard, networking agents and man-
agement portions associated to compute and network-
ing. It also includes supporting services i.e. SQL
database, message queue, Network Time Protocol.

Compute node: It runs the hypervisor that sup-
ports the instances (i.e. virtual machines). In our
setup, the used hypervisor was KVM 4.2.1. It also
runs a networking service agent that connects in-
stances to virtual networks and provides firewalling
services to instances via security groups.

Storage node: This node contains the disks that
are provisioned for the instances.

Figure 1: Experimental setup, CMP, Workload VMs, and
network traffic shaper

Our OpenStack network configuration consists of
two networks. The first is the management network,
which provides external access (to the Internet or to
a private network) to all nodes for administrative pur-
poses (e.g., package installation or security updates).
The other network is the data network, which directly
connects the Controller, Compute and Storage nodes.
Due to the different roles, it is a good practice to keep
these two networks separate of each other. In our ex-
periments, we focus on the data network, because it is
the network that supports the CMP, whereas the man-
agement network has a support role.

For the experimental evaluation, we derived two
scenarios as to evaluate how faults in different net-
work links may affect the system differently:

• C1: fault injection on the data network connection

between compute node and storage node;

• C2: fault injection on the data network connection
between the controller node and storage node.

3.2 Network Traffic Shaper

There was need to use a tool capable of emulating var-
ious kinds of network faults in the least intrusive and
most reproducible manner possible to perform net-
work faults injection. For that purpose, the network
traffic shaper tool named Sidekick was used to inject
communications-related disturbances in a controlled
way. Although in this paper Sidekick is used to eval-
uate the effect of network faults in a system, it can
also be used to evaluate the performance and robust-
ness of communications protocols, APIs or services.

The fundamental operation model for this tool is
presented in Figure 2.

Figure 2: Sidekick operational model

A Network Emulator bridge based on a Linux vir-
tual appliance provides the means to transparently
constrain/disturb the traffic between communicating
peers on different network segments. This appliance
is configured with three network interfaces: two for
the transparent bridge and one for out-of-band exper-
iment control. Network traffic shaping capabilities
are provided by the native Linux TC and Netem sub-
systems to constrain bandwidth or inject disturbances
such as packet losses, jitter, or latency.

To integrate these capabilities within a fault injec-
tion framework, the Sidekick agent provides remote
control of the traffic shaper for integrated experiment
management. This agent provides the capabilities of
remote scheduling for time-triggered activation, con-
figuration through an easy-to-use JSON profile, oper-
ation in foreground or background mode, and trigger
precision around 0.02s, on average (for overall system
load <20%).

Sidekick allows for experiments to be scheduled,
by supplying an ID for a group of affected IP ad-
dresses (obtained from a configuration file), the start-
ing moment, encoded in UNIX timestamp/epoch for-
mat (UTC) and the test duration (in seconds). For
instance, to activate a scheduled test, an MQTT plain-
text message has to be sent to the platform MQTT



server, to the topic “<session name>/scheduler”,
with the format “groupID:start:duration”.

Experiments can be configured in two ways: Dy-
namic Configuration, by employing new configura-
tion modes pushed via MQTT messages. For this
purpose, the PUSH command allows to push new
test profiles for a specific group over-the-wire. Static
Configuration, by utilizing a JSON file that estab-
lishes the nominal and faulty conditions for groups
of IP addresses. The Sidekick command set provides
further resources to activate test modes, force clock
synchronization and control logging and reporting,
among other operations.

3.3 Workload

The YCSB (Cooper et al., 2010) key-value data stor-
age benchmark is widely used and represents a com-
mon use case found in cloud computing (key-value
stores). For our experiments we paired YCSB with
the open source, distributed NoSQL database, Apache
Cassandra (Cassandra, 2022). Cassandra was in-
stalled in one VM and three other VMs were used to
run the YCSB clients that send operation requests to
Cassandra. The four VMs used for the workload aim
to replicate AWS t2.small (VCPUS 1, Memory 2GB,
Storage 10 GB) (AWS, 2022). We used the work-
loada of the benchmark, that consists on 50% propor-
tion of read-operations and 50% proportion of update-
operations. We configured record count as 1000 and
operation count as 5000, based on the performance
and hardware resources of our setup. Finally, we acti-
vated the configuration of YCSB that checks the data
integrity of the read operations, thus verifying the in-
tegrity of the results.

The usage of a workload at the level of the VM in
opposition to a workload that exercises the manage-
ment operations of OpenStack is justified because we
desire to focus on studying the impact on the applica-
tions that are hosted in the VMs, and because even a
workload running on the VMs will cause OpenStack
to be exercised (e.g., there will be network traffic be-
tween the Compute and Storage node due to the disk
reads and writes triggered by the workload).

3.4 Fault Model

In our experiments, three different types of network
faults are emulated: packet loss, latency and network
congestion. These three types of faults were chosen
because previous work has shown them to be repre-
sentative of network faults that occur in the wild (Qi
et al., 2021) (Cotroneo et al., 2022).

For the fault injection experiment campaign, we

have grouped the network faults according to their
intensity into three levels (Low, Medium and High).
Furthermore, we also vary the duration that the net-
work fault remains active by three levels. In other
words, we assume that a network fault will be fixed
and normal operation will resume after some time.
Table 1 shows the values used for fault intensity and
fault duration in our fault injection campaigns.

Table 1: Network fault types and configuration

Fault
Injection
Intensity

Fault type
Network

Congestion
Packet
Loss Latency FI Exec

Duration
Low 250 Mbps 25% 0.5s 30s

Medium 100 Mbps 50% 1.0s 45s
High 0.5 Mbps 75% 3.0s 60s

The fault injection campaigns were designed to
evaluate the impact of each network fault type across
different durations. In each experiment, a certain fault
type is picked and then its intensity and duration are
varied. In total, we executed 27 experiment configu-
rations (100 runs per each configuration) where fault
type and duration varied. Over the 27 configurations,
we amassed a total of 5400 experiment runs (27 con-
figurations x 2 scenarios x 100 runs).

3.5 Experimentation Flow

Figure 3 presents the flow of an experiment execution
(or experiment run). Before the initialization of the
experiments, the hosted VMs (Cassandra and YCSB
instances) are already provisioned and running. The
flow of an experiment run comprises the initialization
of the workload on the hosted VMs. For each exper-
iment run, we load a fresh copy of the database state
to ensure a clean experiment environment. The work-
load is always executed for at least 10 sec (warm-up
time) before any fault is injected. After this warm-up
period, Sidekick is executed with one specific config-
uration (i.e., fault type, intensity, and duration). Dur-
ing the fault injection experiment, the workload may
become unstable or malfunction. After the fault in-
jection duration, the “Keep Time” interval enables the
workload to return back to a normal state.

Thus, the experiment flow can be summarized into
the following steps:
1. Load Cassandra workload on the YCSB bench-

mark in OpenStack Experiment Environment.

2. Run Cassandra workload on the YCSB bench-
mark in OpenStack Experiment Environment: At
Time T, launch the workload and wait to receive
normal behaviour (warm-up 10 sec).

3. Fault Injection: Fault injection begins (at T= T+10



Figure 3: Flow of an experiment run

(1-20 sec randomization)), inject specific faults
type for 30 sec to 60 sec duration for each iter-
ation.

4. Keep Time (Back to Normal after a failure, if
any). As the fault injection stops, the system
tended to Normal behaviour (at Ti= T+ 80-30 sec).
Figure 3 shows that there could be a constant

warm-up time of 10 seconds and variations in the ran-
domization time and fault injection time that will vary
the keep time. i.e. In a Case, a maximum ”keep
time” of 80 seconds, assuming a 1-second minimum
fault injection initiation randomization time and a 30-
second fault injection duration.

4 RESULTS AND ANALYSIS

This section presents and analyses the results obtained
from the fault injection campaigns in both the C1
(network fault in the link between compute and stor-
age node) and C2 (network fault in the link between
controller and storage node) scenarios. The follow-
ing results depict the impact of fault injection from
three perspectives. Firstly, it was desired to under-
stand how a network fault in the CMP would affect the
performance of the applications running in the hosted
VMs. Secondly, it was studied whether network faults
in the network links of OpenStack can cause the ap-
plications in the hosted VMs to suffer service fail-
ures. Finally, we evaluated whether network faults in
the CMP could cause unsuccessful operations, unan-
swered requests or data corruption, thus affecting the
availability and correctness of the provided service.

4.1 Performance Impact

In scenario C1, the performance impact is presented
and evaluated for the experiments that target the net-
work between compute node and storage node within
the CMP while the hosted VMs are executing the
workload. We can observe in Figure 4 that as the
duration of the network fault increases, and, most im-
portantly, as the intensity of the fault increases (in this

case, network congestion), the throughput is reduced.
In the low intensity and duration configuration (Low
NC, Low ET), the throughput is virtually similar to
that when no network fault is injected. Whereas in the
highest intensity and duration (High NC, High ET),
the throughput is reduced to about half.

Figure 4: Throughput C1: Network Congestion (NC)

In Figure 5, which refers to the packet loss fault
type, we see a similar trend of decreasing throughput
as the intensity and the duration increase, whereas for
network congestion faults the predominant factor was
the fault intensity, here the estimated time appears to
have a stronger influence (e.g., there is a noticeable
break in throughput when moving from a medium du-
ration to a high duration, while keeping the same in-
tensity). The results for low packet loss show an un-
expected pattern where throughput increases as fault
duration increases. However this behaviour is repro-
ducible and was experienced again in a second round
of confirmatory experiments.

Figure 5: Throughput C1: Packet Loss (PL)

Figure 6 depicts the results for the network fault
type that injects latency into the network. It shows
that as the fault intensity increases, the deviation of
the throughput greatly increases. At the same time,
the mean throughput also decreases, but at a slower
rate. The fault duration appears to have a smaller ef-
fect on the throughput than the intensity. This sug-
gests that the network link studied in the scenario C2
has very little to no importance regarding the impact
on the performance of the hosted VMs. Thus we can
conclude that this network link does not require spe-
cial redundancy or fault tolerance mechanisms. On
the other hand, the network link studied in the sce-
nario C1 has a noticeable impact and may need to re-
ceive specific fault tolerance mechanisms.



Figure 6: Throughput C1: Latency (Lat)

For our second scenario, C2, we have injected
faults between the controller node and storage node.
Figure 7 shows no impact of fault injection on this
network link.

Figure 7: Throughput C2: Network Congestion (NC),
Packet Loss (PL), and Latency (Lat)

4.2 Workload Operations Failures

After studying the impact on the performance of the
applications, we focused on whether the provided ser-
vice is being correctly performed. It is possible for
the workload to show no performance effect, while
producing invalid responses or failing to perform op-
erations. In this subsection the focus is on whether
the read and update operations of the YCSB workload
were successfully completed or not.

For scenario C1, as shown in Figure 8, which
refers to the failed read-operations, network conges-
tion was the fault type with the least impact. Of
the nine combinations where network congestion was
used, the mean number of failed operations was 1.
Although in absolute terms a single failed read op-
eration may seem inconsequential, the important ob-
servation to retain is that there were failed operations.
Ideally we would expect to see that a network fault in
the CMP does not lead to any failed operation of the
applications hosted over it. Since this is not what the
results show, it means that migrating an application
(e.g., a key-value store) from dedicated infrastructure
to cloud computing will bring a decrease in its de-
pendability.

The figure also depicts that packet loss was the
the fault type with the highest impact, followed by
latency.

Figure 9 shows the number of update-operations

Figure 8: Read-Operation Failed C1: All

that failed to successfully execute, for scenario C1.

Figure 9: Update-Operation Failed C1: All

The results show that as the intensity and dura-
tion of the fault increases, the number of failed opera-
tions also increases noticeably. Some combinations
showed no impact in the number of failed update-
operations. For example, a low network conges-
tion and low duration never caused any failed oper-
ation. However, the other two types of network faults
(Latency and Packet Loss) caused failed operations
even when the fault intensity was low. The abso-
lute amount of failed operations varied. For example,
when we have Low PL and Low ET, there is a mean of
10 failed operations. The mean number of failed oper-
ations reached as high as 25 (e.g., High PL and High
ET). When talking about percentage of failed opera-
tions, the resulting percentages are very small. How-
ever, once again the important observation to take is
that these failures occur at all.

For scenario C2, we have not found any operation
failure for the read-operations and update-operations.

4.3 Operations Correctness Check

Other than verifying if the operations were completed
successfully, we also verified if the operations re-
turned the correct value. The verification of the cor-
rectness of operations is evaluated through the in-
tegrity check embedded in YCSB. This check verifies
whether a read operation returns the expected result.

For scenario C1, the results in Figure 10 show that



fault injection impacted the correct completion of the
operations. In a correct execution, on average about
2500 read operations would be performed. Thus a
value of Integrity Verify Operations lower than 2500
means that there were incorrect responses being re-
turned.

In some cases, 80% to 90% of read operations
failed to pass the correctness test. As an example,
for low NC, Low ET, the mean incorrect operations
are slightly less than 400 (84%), while in some runs it
exceeded over 600 (∼76%).

Figure 10: Integrity Verify Operations C1: Network Con-
gestion

Figure 11 depicts the number of successfully
passed integrity verification operations when packet
loss was injected. Here we can observe of the high-
est amount of failed checks, which occurred with high
packet loss and high duration (High PL, High ET) and
lead to only about 350 correct operations (86%).

Figure 11: Integrity Verify Operations C1: Packet Loss

Figure 12 depicts the same results but wrt. la-
tency network faults. The most surprising result refers
to low latency with both low and medium duration,
which saw unusually high numbers of failed checks,
whereas the remaining combinations caused none to
only a few failed checks. This pattern was verified
by repeating the same experiments twice and a root
cause analysis will be performed as future work.

Once more, network faults injected in scenario C2
showed no impact. It demonstrates that the network
link studied in C2 has no effect in the behaviour of the
hosted applications, and showing that different net-

Figure 12: Integrity Verify Operations C1: Latency

work links of the CMP have different importance.
In summary. network faults in the CMP, specially

those that cause congestion or packet loss in the net-
work, can cause incorrect results to be returned, usu-
ally at a very high percentage. The explanation for
this high percentage is likely found behind the fact
that once one operation in the workload fails, then the
next operations may be affected.

5 THREATS TO VALIDITY

The main threat to the validity of our results de-
rives from the choices taken when building the ex-
perimental setup and the representativeness of the
used fault models and its parameters. To mitigate
the threats with respect to the experimental setup,
we followed the OpenStack implementation guide-
lines (OpenStack, 2022) and fulfilled the minimum
hardware and software requirements. The experiment
setup is relatively simple. Real-world deployments
are likely to be more complex and require more com-
puting power.

We opted to use the YCSB benchmark paired with
Cassandra as our workload. This workload represents
a common cloud use case (key-value stores), however
workloads of different types and areas need also to be
evaluated, as the results may differ.

There is a need to balance experiment duration
and accuracy. For that reason the durations chosen
for the faults can be considered relatively short net-
work failures in the real-world can often exceed many
hours, however it would have been impractical to em-
ulate such long failures. Nevertheless, we consider
this not to be a significant problem because the im-
pact of longer failures is going to be more pronounced
than that of shorter failures.

6 CONCLUSIONS

Network faults are an unavoidable reality in any large-
scale complex distributed systems, as is often the case



for the infrastructure that supports cloud computing.
In this paper, an experimental evaluation of the im-
pact that network faults can have in a cloud comput-
ing system was performed. We focused on the CMP,
more specifically in OpenStack, due to its popularity
and due to being a complex distributed system where
the network plays an important role. Fault injection
of 3 different types of common network fault was per-
formed with the help of Sidekick.

The results show that different network links have
different importance in the impact experienced by the
applications hosted on the infrastructure. The results
show that network faults affecting the link between
the compute node and the storage node can cause
applications running on the infrastructure to fail to
provide correct service, even if the network faults
only lead to increased latency or reduced bandwidth.
These results serve as the basis for future work on the
development of fault tolerance mechanisms for CMPs
that increase its tolerance of network faults while car-
rying minimal cost and overhead. Furthermore, as fu-
ture work, we will carry out more experiments featur-
ing more complex setups and setups where autoscal-
ing is present, as to evaluate how network faults affect
these setups.

ACKNOWLEDGEMENTS

This work is funded by the FCT - Foundation
for Science and Technology, I.P./MCTES through
national funds (PIDDAC), within the scope of
CISUC RD Unit - UIDB/00326/2020 or project code
UIDP/00326/2020. This work is also supported by the
FCT within project ECSEL/0018/2019 and the EC-
SEL Joint Undertaking (JU) under grant agreement
No 876852. The JU receives support from the Euro-
pean Union’s Horizon 2020 research and innovation
programme and Austria, Czech Republic, Germany,
Ireland, Italy, Portugal, Spain, Sweden, Turkey. Dis-
claimer: The views expressed in this document are the
sole responsibility of the authors and do not necessar-
ily reflect the views or position of the European Com-
mission. The authors, the VALU3S Consortium, and
the ECSEL JU are not responsible for the use which
might be made of the information contained in here.

REFERENCES

Avižienis, A., Laprie, J.-C., and Randell, B. (2004). De-
pendability and its threats: a taxonomy. In Building
the Information Society, pages 91–120. Springer.

AWS (2022). Amazon ec2 instance types,

https://aws.amazon.com/ec2/instance-types/, ac-
cess date: 2022-09-30.

Cassandra (2022). Apache cassandra,
https://cassandra.apache.org, access date: 2022-
09-30.

Cerveira, F., Barbosa, R., Madeira, H., and Araujo, F.
(2015). Recovery for virtualized environments. In
2015 11th European Dependable Computing Confer-
ence (EDCC), pages 25–36. IEEE.

Cocozza, F., López, G., Marın, G., Villalón, R., and Arroyo,
F. (2015). Cloud management platform selection: A
case study in a university setting. Cloud Computing,
2015:92.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R.,
and Sears, R. (2010). Benchmarking cloud serving
systems with ycsb. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 143–154.

Cotroneo, D., De Simone, L., Liguori, P., Natella, R., and
Bidokhti, N. (2019). Enhancing failure propagation
analysis in cloud computing systems. In 2019 IEEE
30th International Symposium on Software Reliability
Engineering (ISSRE), pages 139–150. IEEE.

Cotroneo, D., De Simone, L., and Natella, R. (2022).
Thorfi: a novel approach for network fault injection
as a service. Journal of Network and Computer Appli-
cations, 201:103334.

Dantas, J., Matos, R., Araujo, J., and Maciel, P. (2012).
Models for dependability analysis of cloud comput-
ing architectures for eucalyptus platform. Interna-
tional Transactions on Systems Science and Applica-
tions, 8(5):13–25.

Ju, X., Soares, L., Shin, K. G., Ryu, K. D., and Da Silva, D.
(2013). On fault resilience of openstack. In Proceed-
ings of the 4th annual Symposium on Cloud Comput-
ing, pages 1–16.

Kumari, P. and Kaur, P. (2021). A survey of fault tolerance
in cloud computing. Journal of King Saud University-
Computer and Information Sciences, 33(10):1159–
1176.

Lu, Y., Cheng, H., Ma, Y., and Wu, S. (2020). Research
on the technology of power unified cloud management
platform. In 2020 IEEE 9th Joint International Infor-
mation Technology and Artificial Intelligence Confer-
ence (ITAIC), volume 9, pages 770–773.

Natella, R., Cotroneo, D., and Madeira, H. S. (2016). As-
sessing dependability with software fault injection: A
survey. ACM Computing Surveys (CSUR), 48(3):1–
55.

OpenStack (2022). Openstack- open source cloud comput-
ing platform software.

Pham, C., Wang, L., Tak, B. C., Baset, S., Tang, C., Kalbar-
czyk, Z., and Iyer, R. K. (2016). Failure diagnosis
for distributed systems using targeted fault injection.
IEEE Transactions on Parallel and Distributed Sys-
tems, 28(2):503–516.

Qi, Y., Fang, C., Liu, H., Kang, D., Lyu, B., Cheng, P.,
and Chen, J. (2021). A survey of cloud network fault
diagnostic systems and tools. Frontiers of Information
Technology and Electronic Engineering, 22(8):1031–
1045.


