
ucXception: A framework for evaluating dependability of software systems

Pedro David Almeida1, Frederico Cerveira1,∗, Raul Barbosa1, and Henrique Madeira1
1CISUC, Department of Informatics Engineering

University of Coimbra
{fmduarte, rbarbosa, henrique}@dei.uc.pt

*corresponding author

Abstract—Fault injection is a well-established technique in the
research community that consists of emulating faults in order
to obtain dependability-related data. Despite its potential, fault
injection has been less widely adopted outside of academia, due
to the expertise required to effectively conduct fault injection
campaigns and to the lack of tools that can be easily adapted
to different systems. This paper presents ucXception, an easy-to-
install, extendable, open-source framework for orchestrating the
entire lifecycle of fault injection campaigns without requiring
expert knowledge and using a graphical interface. ucXception
supports injection of software and hardware faults using realistic
fault models and can be applied to a variety of target systems,
including virtualized systems and complex cloud computing
deployments. This brings fault injection to modern environments
of cloud computing. As a case study, a preliminary analysis on
the usage of failure models as a valid alternative to fault models
is performed.

Index Terms—fault injection tool; fault injection; software
faults; hardware faults; fault model; failure model

I. INTRODUCTION

The dependability of a system can be defined as “the
ability to deliver service that can justifiably be trusted” [1].
The concept encompasses several dependability attributes and
includes the notion of threats in the form of faults, errors and
failures. Faults can take various forms, but the community’s
focus revolves mostly around two types, which are hardware
and software faults, due to their significant probability of
affecting current software systems.

Hardware faults, particularly transient ones (i.e., soft errors),
are on the rise due to the increase in the number of hardware
components [2], [3], allied to the miniaturization of micropro-
cessors [4]–[7] and the usage of energy saving techniques [7]
(e.g., dynamic voltage and frequency scaling [8]). At the
same time, evermore complex software systems are prone to
residual software faults (i.e., bugs) that escape the software
testing phase [9]. Software fault rates have been shown to be
related with the total amount of source code lines, number
of changed lines, and complexity of the system [10], [11],
which are software features that have increased dramatically
in recent years, with the consequent rise in the number of
deployed bugs. Therefore, the evaluation of dependability and
its attributes is of utmost importance, not only to critical
systems but also to any software system.

To evaluate dependability, it is often necessary to perform
fault injection (FI), which is a well-established technique that
accelerates the process of fault activation in software systems
by deliberately emulating faults in a system. Through the usage
of fault injection, the generation of failure data is greatly

accelerated, producing in a few weeks the amount of data
that would otherwise have taken years. Despite fault injection
having been widely used for several decades, the reality is
that researchers and practitioners often develop their own fault
injection tools from scratch, since there is a limited number of
these tools in the public domain that are capable of being easily
applied to different types of systems, supporting multiple fault
models or possessing a low learning curve.

This paper presents the ucXception framework, which is
intended to provide quick setup of fault injection experiments,
while bringing support for fault injection in modern, state-of-
the-art computer systems, such as those that use virtualization
or belong to cloud computing deployments. ucXception caters
to both novice and experienced users in the field of fault
injection by including a simple and easy-to-use graphical
user interface where fault injection campaigns can be setup,
while at the same time allowing users to program complex
campaigns. Users have at their disposal a range of pre-made
components and templates that they can use in their campaigns
and are able to develop and integrate their own components
into the framework. Installation of ucXception has been made
simple thanks to the use of containerization technologies,
which enables its installation in just a few minutes using a
single command.

ucXception has been made open-source and can be found at
https://github.com/ucx-code/ucXception. When compared with
existing fault injection tools, ucXception is one of the few
projects that natively supports fault injection in virtualized and
cloud computing systems, features a graphical user interface
and supports injection of both transient hardware faults and
software faults out-of-the-box. These reasons justify the im-
portance of developing and adding ucXception to the already
large set of existing fault injection tools, most of which are
closed-source.

As a case study and in order to exemplify its ability to
integrate new components and tools, ucXception was used to
investigate whether failure models (i.e., actual failure/wrong
outputs of components instead of injection of faults) are
a valid alternative to fault models when performing fault
injection. In other words, we researched whether injecting
failures (e.g., node crash, process crash, process hang) yields
results similar to those obtained using representative fault
models (e.g., single bit-flip in CPU registers) in less time.
Our experiment focused on a popular cloud computing setup
based around Openstack and used a workload composed by
common operations that cloud administrators perform. For

1

this study, a new fault injection tool was developed to inject
failures, more precisely, process crashes, and integrated into
ucXception. The results suggest that failure models can be
used to accelerate campaigns, however the resulting failures
appear to differ from those obtained when performing fault
injection using fault models, recommending some care with
the accuracy and representativeness of experiments that use
failures modes.

The contributions of this paper include:
1) An open-source framework for easily conducting fault

injection campaigns that supports different fault models
including models representative of transient hardware and
software faults;

2) A case study with the goal of demonstrating ucXception
and investigating the viability of using failure models to
accelerate the fault injection process.

The structure of the paper is as follows. In Section II we
provide a detailed description of ucXception, including its
architecture, its components, the fault injectors, its frontend
and its installation process. Section III presents the preliminary
experimental evaluation of failure models as an alternative to
fault models, including a description of the setup, the results,
observations and limitations. Section IV provides a review
of the related work in the fields of fault injection tools and
Section V concludes the paper.

II. FRAMEWORK DESCRIPTION

The ucXception framework was developed with ease-of-
use and expandability in mind. It allows the novice user to
quickly run new fault injection campaigns using the graphical
interface, as well as the experienced user to design and
tailor a campaign with the minimum amount of effort and
knowledge on the details of the target system and on the fault
injection process. To achieve this, the ucXception framework
incorporates multiple out-of-the-box elements that implement
specific functionalities and that can be mixed and matched
according to the different needs.

ucXception is composed of two modules, Frontend and
Backend, as shown in Figure 1. The Frontend module provides
a graphical web interface where the users have access to
the various functionalities of the framework. Through the
graphical interface the users can register and login, view
their campaigns, create new campaigns and perform a pre-
liminary data analysis. The Frontend module was developed
using React, as it contains libraries that implement various
functionalities.

The Backend module consists of two software components:
the Manager and a REST API. The Manager is the heart
of the framework and is the software component responsible
for executing the fault injection campaign and storing its
results. The Backend module spawns multiple instances of
the Manager process, one for each campaign being executed.
The REST API exposes the functionalities of the Manager to
the Frontend module. The Backend module also encompasses
one database, where the information about the users and their
campaigns is kept, as well as multiple CSV files that contain

API Request

[JSON/HTTPS]

Send data

[Tuple of arguments]

Write data to

[CSV]

Writes to

[sqlite3]

Fault injection

information

[SSH]

System and
application
information

[SSH]

Manager

Reads from and writes to

[sqlite3]

Database

TOOL-X
[Software System]

Read campaign data from

[CSV]

Remote Host
[Machine]

Probes

Fault injection

Hardware
Fault

Injection Tool
Application

Backend
[Docker container]

Frontend
[Docker container]

Rest API

Uses

User

Fig. 1: Architecture of ucXception.

the results of each campaign. The Backend module is self-
sufficient and can be used without the Frontend module. The
language adopted for the development of the Manager was
Python 3.8, due to its simplicity and due to the range of
libraries that are available. The technology used to develop the
REST API was Flask and the database was SQLite, since the
framework is aimed at smaller groups, for example research
groups, hence a simpler and lighter engine was chosen.

A. Frontend & Graphical User Interface

The Frontend module provides the graphical interface of the
framework, which includes web pages with various function-
alities that are organized into four sub-modules:

• Authentication - Sub-module related to user authentica-
tion, e.g., login, registration and password change;

• Menu - Sub-module related to the display of information,
such as campaign status;

• Campaign Menu - Sub-module related to the analysis of
the campaign results, including campaign statistics and
creation of graphs;

• Campaign setup - Sub-module related to the creation and
configuration of new campaigns.

The first sub-module (Authentication) includes the function-
alities of registering a new account, signing in and recover-
ing/changing the password. Figure 2 shows 4 different pages:
login, create account, recover password and change password.
Although authentication is not a common feature in a fault
injection framework, it enables multiple users to share the
framework seamlessly.

After login the user sees the menu page, shown in Figure 3,
where a list of the user’s campaigns and associated information
is presented. The user can search and filter campaigns by

2

Fig. 2: Authentication page.

campaign name, execution name and campaign type name and
change the number of campaigns to display at once.

Fig. 3: Menu page.

After a campaign has been executed, the user can view
a brief analysis of its results. The statistics page, shown in
Figure 4, contains a statistical analysis of the campaign results,
including information regarding run duration, failure percent-
age, incorrect content percentage, among others. Furthermore,
a line graph in the page shows the evolution of the crash and
incorrect data percentages as the number for runs increased,
thus indicating whether the results have converged or not.

Fig. 4: Statistics page.

The campaign creation page has two different types of
fields: configuration and parameters. The setup fields are asso-
ciated to the general configuration of the campaign, like name,
path to the injector, files to upload, while the parameters are
related to the more specific configuration of each campaign.

Depending on the selected campaign, the displayed parameters
change. To aid the novice user to comprehend what is expected
from each field, a help box which triggers a pop-up containing
an informative message is used.

Fig. 5: Create campaign page.

B. Manager

The Manager, which is the core of the Backend module and
which carries out the fault injection campaigns, is composed of
a set of pre-made elements that provide contained functionality
that can be connected together to solve the user’s needs.
According to the nomenclature adopted by ucXception, these
elements can be classified as:

• Campaign - A campaign consists in a set of runs
according to a specific configuration (which is stored in
a database). Different runs can have different parameters,
e.g., some runs may perform injection while others will
not (golden runs).

• Run - A run represents a single execution of the exper-
iment flow defined in the campaign configuration, using
the given run- and campaign-specific parameter values.

• Watchdog - A watchdog is used to monitor the execu-
tion time of a run and to ensure that it does not extend
over the user-defined alloted time. If the run is taking too
long and since it may even never end (e.g., the application
has entered an infinite loop), the watchdog will kill the
workload application and record the occurrence.

• Probe - A probe represents an application that will be
launched for the duration of the run and has the purpose
of monitoring and storing information relative to the
system or application being evaluated. Probes can be sub-
divided into pre- and post- probes, according to whether
they are launched before or after the workload has started.
Pre-probes usually collect system-wide metrics, whereas
post-probes monitor specific processes, hence the need
for post-probes to be launched after the workload.

• Fault injection tool - The fault injection tool
implements a specific fault model (e.g., software faults,
single bit-flip for emulating transient HW faults) and
allows the emulation of faults according to that model.

• Validators - The validators are small pieces of code,
usually Python functions, that inspect the results obtained

3

during a run and verify acceptance conditions. If a
validator fails (e.g., fault injection was not successful)
then the data for that run will not be written to disk.

• Parsers - A parser reads the results of the run (e.g.,
output of the fault injection tool, workload output) and
converts them into a more useful and compact format.
The various parsers write always to the results CSV file.

• Transformers - Transformers are similar to parsers,
since both receive raw input and convert it into a pro-
cessed output, but whereas parsers store their output in the
results CSV file, the output from transformers is stored
as individual files in the run’s own result’s folder. Trans-
formers are mostly used to convert the raw output of the
probes into a more manageable format, e.g., converting a
binary file originating from a resource monitoring probe
into a CSV file where each row represents a time step
and each column represents a monitored resource.

Since fault injection experiments can take place both in
single-machine setups and in distributed systems, ucXception
was designed to be able to transparently support both local and
remote execution. The taken approach consists in defining a
list of remote hosts, which includes the information required
to perform a login via SSH (namely the IP and username).
When required, every function in ucXception is capable of
parsing the information regarding the host in which they
should execute.

To facilitate the design and creation of new campaigns by an
expert user, a base campaign template is provided. The flow of
each experiment run is defined by the campaign configuration
file, but usually obeys the flow that is provided by the base
template and consists in the following steps:

1) Launch pre-probes - The pre-probes are launched and
start to monitor their targets.

2) Launch workload - The workload is started. The user
must programmatically define this step, possibly using
the available utility functions.

3) Launch post-probes - The post-probes are launched.
Normally the post-probes require the PID (or similar
information) of the processes that they will monitor.

4) Launch fault injection tool - The fault injection tool
(faultload) is launched. Per run only one injection is
performed (unless explicitly modified in the code), in
order to avoid a previous injection influencing future
injections and thereby skewing the results. Although the
fault injection tool is launched at this point, the fault
may only be injected at a later moment, as the tool itself
can have its own triggering mechanism. Unless modified,
the values passed to the fault injection tool are randomly
chosen from pre-defined valid ranges that will determine
the actual type of fault injected in each run.

5) Peak loop - During this phase the workload executes, and
the fault injection will take place at some point during its
course. A watchdog process is launched with a configured
pre-determined amount of time, if the workload does not
finish within the alloted time, then the watchdog will

forcefully kill the workload and the fault injection tool
(if required). Otherwise this phase ends as soon as the
workload process terminates.

6) Post finish - Usually consists, at least, in stopping the
probes, but may include other user-defined operations that
should be executed right after the workload has ended.

7) Extract data - Extracts the data from the probes and stores
them in the run’s results folder.

8) Launch transformers - Launches the transformers that
will read the stored data and convert it to another format,
which will once again be stored in the run’s results folder.

9) Launch parsers - Launches the parsers that will produce
the output is stored in the main results CSV.

10) Launch validators - The last step consists in validating
the results as to ensure their correctness.

At the end of each successful run (i.e., when the validators
do not flag a correctness error in the results), the data is added
to a Pandas dataframe, which will be written to disk after
the current campaign has ended. If the framework is stopped
before the campaign has a chance to end, the data collected
up until that moment is nevertheless stored to disk.

C. Components

ucXception provides a range of pre-made components that
the user has at his own disposal. However, the expert user
can create his own component and add it to the framework.
Currently the following pre-probes are available:

• Logs probe - A simple probe that extracts logs from the
target system during the Post finish phase. It is ready to
extract logs specific to Linux, Xen and Openstack. The
user can easily configure it to support other types of logs.

• IntelPCM probe - Intel PCM (Processor Counter Moni-
tor) [12] provides a way of monitoring hardware counters
in recent Intel hardware. This probe can be used to
monitor the CPU, memory and power counters.

• Ping probe - A simple probe that performs pings at an
user-specified interval between a source and a target com-
puter. Can be used as a rudimentary way of monitoring
the state of various systems.

• SAR probe - SAR [13] is an utility that uses the vari-
ous interfaces provided by the Linux kernel to monitor
system-wide activity information, such as CPU, memory,
network, disk or power metrics. It takes a snapshot of all
the available metrics at an 1 second interval (the lowest
possible) and stores the results in a binary file.

• TCPDump probe - Monitors and stores all the network
traffic in a specific interface. Supports passing TCP-
Dump [14] rules to filter the packets that are captured.

• Xentrace probe - Xentrace [15] is an utility that monitors
the events that occur in a Xen virtualized system. The
results are stored in (usually large) binary files.

With regards to post-probes, only the following is currently
available:

• Pidstat probe - Somewhat similar to the SAR probe, since
it also captures similar metrics, but focuses on a specific

4

process (whereas SAR is system-wide). Can be used to
monitor the workload application.

In terms of parsers, the following are available:
• HW FI parser - Reads the output produced by the

ucXception’s HW fault injection tool, which emulates
transient hardware faults, and stores the register, the bit,
the injection time, the PID of the process that was affected
by the injection and the pre- and post- injection values
of every register.

• SW FI parser - Stores information relative to the injection
performed by the ucXception’s SW fault injection tool,
such as the applied operator or in which line the fault
was injected.

• Pcap -> TCP parser - Reads the data from a TCPDump
probe and calculates statistics, such as, total packets, total
packets by type (RST, FIN, ...), retries, and others.

• Info parser - Stores generic information about the run,
such as its start time, end time and duration.

• MD5 output parser - Obtains the output of the workload
application and computes its MD5 hash. Compares the
obtained MD5 hash against a fixed, expected hash and
records whether both hashes match and the size of the
produced application’s output. Useful to detect silent data
corruptions whenever the workload application produces
a deterministic output (i.e., always produces the same
output when it receives the same inputs).

• Return code parser - Stores the return code of the
workload process. Can signal a successful termination or
an abrupt termination (e.g., killed by the operating system
due to a segmentation fault).

• Current folder parser - Minimalistic parser that just stores
the path of the results folder of the current run.

Concerning transformers, the following are available:
• Pcap -> TCP 2 CSV transformer - Converts a PCAP

dump of network traffic into a CSV file with high-level
information about each packet, such as the TCP flags,
packet size, IPs and ports, or timestamps.

• Pidstat 2 CSV transformer - Converts the binary file
generated by the Pidstat probe into a CSV file.

• SAR 2 CSV transformer - Employs the sadf utility [13]
to convert the binary file produced by SAR probe into a
CSV file.

• Ping 2 CSV transformer - Converts the output of the Ping
probe into a more structured CSV file.

• Save output transformer - Saves the raw output (stdout
and stderr) from the workload application into files. Can
be used when a more detailed analysis to this output is
required, or for debugging.

There is one available validator, called Ensure Injection,
which checks whether one and only one injection (of the
ucXception HW fault injection tool) has occurred in a run by
comparing the pre- and post-injection values of all registers
and ensuring only one bit of one register has changed.

D. Fault Injectors
ucXception comes equipped with three fault injection tools

that implement different fault models. There are two different
fault injection tools for emulating hardware faults, which focus
on different types of systems, and a tool for emulating software
faults. Moreover, other fault injection tools can be integrated
into the framework.

1) Hardware faults in Linux-based systems: This tool
emulates soft errors that affect the CPU’s register file or
other components of the CPU (buses, ALU, FPU, etc.), by
implementing the single bit-flip fault model [16], [17]. Bit-
flips are restricted solely to general purpose CPU registers
and there is no support for directly performing bit-flips in the
memory. The decision of not including injections in memory
words was supported by the existence and popularity of very
effective ECC for memory and by the fact that part of the soft
errors affecting the memory can also accurately be represented
by injections in register files.

The tool can run in any modern Linux kernel and supports
the x86 64 and ARM architecture. It employs the ptrace
functionality available in practically every Linux installation
and which is also the engine behind the famous gdb debugging
tool, to attach itself to a running process, briefly suspend
its execution, obtain the data structures of the Linux kernel
that hold the process’ register values, perform the bit-flip
according to the passed parameters, and resume execution.
After the target process resumes execution, its register values
will include the bit-flip. Since the tool is software-only and
does not depend on any hardware extension or feature, we
are referring to SWIFI (Software-Implement Fault Injection).
Furthermore, since the injection can be performed without
requiring any modification to the target program’s source or
binary code, it can be classified as a run-time approach [18].

The tool also includes logging functionality that stores the
exact timestamp of the injection moment and the values of
every register prior and post the bit-flip. This information is
extremely useful not only to validate that injection is working
correctly, but also to enable detailed and complex analyses of
the results.

The moment of injection is always temporarily triggered,
but there is support for two ways of setting this trigger: timeout
and deadline. In timeout mode the user specifies how many
milliseconds the tool should after it is launched and before
it performs the bit-flip. Whereas in deadline mode, the user
specifies a UNIX timestamp (including milliseconds) which
defines the desired moment of injection and which the tool
will attempt to obey as closely as possible. Localization-
based triggering, i.e. triggering the fault whenever a certain
instruction is executed, is not currently supported, as this tool’s
approach is not the best candidate to support such a triggering
mechanism. The flow of the this fault injection tool is hence
as shown in Figure 6.

sleep attach to
process

get register
data struct.

print old
values do bitflip print new values &

tstamp
detach &
resume

Fig. 6: Flow of ucXception’s HW fault injection tool for
Linux-based systems.

5

2) Hardware faults in virtualized systems: A separate fault
injection tool capable of emulating hardware faults was created
specifically for use in virtualized systems. It is capable of
injecting faults in any application running inside a VM,
including a hypervisor as long as nested virtualization is used
(i.e., the hypervisor being targeted is executed inside a VM).

The fault model remains the traditional single bit-flip in
CPU registers and any of the rip, rsp, rbp, rax, rbx, rcx, rdx
and r8 to r15 x86-64 registers can be targeted.

The tool was implemented as a set of modifications to
the Xen hypervisor, which introduce a new hypercall and
respective toolstack functions to control the fault injection
process, as well as modifications to the scheduling subsystem
to enable injections of faults inside VMs.

The injection process consists in modifying the register
value stored in the data structure that holds a VM’s CPU state
and which is updated immediately prior to a context switch.
This structure is needed because every hypervisor must know
the latest state of the CPU between context switches of VMs.
We take advantage of this fact to inject faults, but this means
that the approach is dependent on the rate at which context
switches occur, which is a configurable parameter in Xen.
While higher context switching rates (i.e., smaller timeslices)
allow the fault injection tool to have a more precise moment
of injection, they can also bring considerable performance
overhead and intrusiveness to the system.

Furthermore, this tool is capable of filtering the application
that is targeted for injection by looking at the value in the rip
register (which points to the next instruction to be executed)
and only performing injection whenever the rip is inside a
user-defined range. This functionality can be specially useful
if one wishes to perform fault injection that affects solely the
hypervisor (or solely the non-hypervisor code) running in a
VM, as there is a well established division between the virtual
memory addresses assigned to the hypervisor, to the operating
system and to the userspace applications.

Figure 7 presents the expected usage scenario for this tool.
The flow starts from the privileged virtual machine (PVM),

also known as dom0 in Xen’s nomenclature, where the ucX-
ception framework provides the triggering functionality, which
is not embedded in the fault injection tool, and calls the
toolstack at the correct moment. The toolstack will perform
a hypercall to a function in the hypervisor, while passing
the desired parameters for fault injection. These parameters
include the target VM (when a system has multiple VMs, the
tool can focus on just one of them), the target register and bit
where injection will take place, and the start and end of the
memory range that the rip should be pointing at if injection
is to take place, although this last parameter is optional. The
hypercall function will write this information to an internal
structure, which will be read during context switching, and if
all conditions are met (the VM that is receiving CPU time is
the same as the target VM and its rip is inside the expected
range) the bit-flip is performed here, right before the target
VM starts executing.

Hypervisor

Privileged Virtual Machine hypercall

Toolstack

perform bit-flip

Instrumented context
switching function

User space
application

VM-specific data
structure

temporal
trigger

Target VM
Target Bit and Register
Memory range (RIP)

Hypercall Function

Fault Injection
Parameters

Fig. 7: Flow of ucXception’s fault injection tool for virtualized
systems.

3) Software fault injection in C source-code: Software
faults are an important threat to the dependability of computer
systems, including large scale and networked applications.
Moreover, it is widely accepted that all computer programs
contain software defects and, consequently, it is relevant to
intentionally introduce defects as a means to evaluate how
well a system is able to detect, isolate and recover from the
ensuing errors.

ucXception supports software fault injection at the source-
code level by applying program modifications that are rep-
resentative of mistakes made by software developers [19].
Table I lists the software fault types that the tool is able to in-
ject. The tool accepts programs written in the C programming
language, widely used to develop system software.

TABLE I: Software fault types.

Operators Description
MIFS Missing if construct plus statements
MIA Missing if construct around statements

MIEB Missing if construct plus statements
plus else before statements

MFC Missing function call
MLAC Missing and sub-expression in branch condition
MLOC Missing or sub-expression in branch condition
MVAE Missing variable assignment with an expression
MVAV Missing variable assignment with a value
MVIV Missing variable initialization with a value
WVAV Wrong value assigned to variable
MLPA Missing localized part of algorithm
WAEP Wrong arithmetic expression passed in function call
WPFV Wrong variable passed as parameter of function call

The faults listed in Table I are injected in programs written
in the C programming language and the injector itself is
written in Java, using the Eclipse CDT plugin, which is the
plugin that supports C/C++ programming in Eclipse. The fault
injector takes as input the source code and CDT performs
lexical and syntactic analysis to produce the corresponding
abstract syntax tree. The fault injector then searches the tree

6

to identify the nodes in which faults can be injected. For
each possible location/fault type pair, the tree is modified
accordingly and the resulting program is then converted back
into source code representation. Then, a call to the diff tool
generates a patch file for each fault that can be injected.

E. Containerization

One of the unique advantages of ucXception is its easy and
quick installation process, which is accomplished through the
use of Docker containerisation technology. Docker is an open
platform for building, running, and managing containers on
servers and the cloud.

Docker revolves around two basic concepts: images and
containers. An image is a read-only template with instructions
for creating a container, and a container is a runnable instance
of an image. To publicly share images, Docker provides a
repository, called Docker Hub. As such, ucXception consists of
two images (one for the Frontend module and another for the
Backend module) and we have made them publicly available
in Docker Hub.

Regarding the environment configuration, the framework
administrator can extract the image from the Docker HUB
repository. Then the administrator must execute a command
to generate a container of the respective image. The command
will be practically identical for the creation of the containers
for the two modules. Mainly, the administrator must define
an IP address, a port and must also specify two crucial
environment variables for the modules to work properly:

After pulling the images from Docker Hub, some parameters
unique to each host system must be configured. These are the
IP address and ports where ucXception will listen as well as
two crucial environment variables:

• REACT APP API URL - Holds the URL of the REST
API. Required so that the Frontend module can send
requests to the API.

• FRONT END URL - Contains the URL of the frontend
web page. The API needs to know the web page address,
because when an email is sent due to a password change
request, a link is also sent which redirects the user to a
specific page of the Frontend module.

As stated, the framework can execute operations, inject
faults and collect data from remote systems. However, in
order for this feature to be operational, a private/public keypair
should be shared across the containers and every remote host
that will be used for the campaigns. For the images published
in Docker Hub, a pre-defined keypair has been used.

If the expert users wish to define their own keypairs, they
can do so, but such implies manually creating the Docker
images. Fortunately, creating new images in Docker is simple
and depend on editing a Dockerfile, which is a file is used to
define the steps required to create an image. This Dockerfile
can be edited so that ucXception uses a different keypair, as
well as to add new components or campaigns.

III. EVALUATING FAILURE MODELS FOR CAMPAIGN
ACCELERATION

Fault injection using fault models has been widely used for
evaluating the dependability of systems and to validate fault
tolerance mechanisms. However, despite being effective, it is a
slow process because many faults do not have any effect (i.e.,
do not cause any visible failure in the target system). Fault
injection using failure models can, hypothetically, be able of
reproducing the same results, with similar levels of accuracy
and representativeness, but at a fraction of the time and cost.

Although failure models have been used before, to the
best of our knowledge, no study has verified whether the
produced results are representative nor that failure models
bring a speed and cost improvement. In this case study, we
will perform fault injection using both fault and failure models
and compare the obtained results in order verify and validate
the aforementioned points.

For the experiments we will use the ucXception framework
and take advantage of its extensibility to integrate a new fault
injection tool that uses a failure model and a new parser. We
chose an experimental setup representing a cloud deployment
and opted to use Openstack, a cloud operating system, as
the target system for the experiments. Openstack is divided
into several services to allow users to use the components
according to their need, such as, compute, storage, networking,
orchestration, shared services, among others.

A. Setup

In order to run the experiments a physical setup was config-
ured. Its specifications in terms of hardware and software are
given in Table II. The ucXception was installed on the machine
manually, thus without using any containerization technology.

TABLE II: Experimental setup specification

Component Description
Operating system Linux 4.14.89

Hypervisor Xen 4.11.1
CPU Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

CPU(s) 4
Thread(s) per core 2

RAM 16 GB
Disk1 1T*7200 RPM
Disk2 10T*7200 RPM

Openstack contains a plethora of services that are optional.
In our setup, the 3 most common Openstack services were
configured. One service (Nova) supports the creation of virtual
machines and provides an API and tools for managing the
resources of the cloud. Another service (Neutron) provides
”network as a service” between interface devices managed by
other Openstack services, such as Nova. The hypervisor used
in Neutron to host the virtual machines was KVM/Qemu 4.2.1.
Finally, the third installed service (Cinder) is a block storage
service and is designed to present storage resources to end
users that can be consumed by Nova.

Two pre-probes were configured to collect metrics regarding
the three configured services. For Nova, the Logs probe was

7

used to extract logs from the target system, in this case
Openstack, and the Ping probe was configured to perform
pings on the three services to monitor the various systems.

Fault injectionWorkloadProbe

Nova CinderNeutron

TOOL-X

Probe
Probe

Fig. 8: Experimental Setup.

Figure 8 illustrates how the setup is configured and how
fault collection and injection is performed. ucXception exe-
cutes the workload and launch the probes for each service in-
stalled. While the workload is being executed, the ucXception
manages the fault injection process.

B. Workload

The workload consists of several types of requests made
to Openstack, which represent some of the most common
operations that a system administrator might perform, such
as listing, creating and deleting flavors or instances. The
workload follows a sequential flow which performs, in total,
11 operations, although some are repeated more than once.
The operations are:

1) List all flavors (i.e., the resource configurations that can
be used by the virtual machines)

2) List all instances (i.e., virtual machines)
3) Create a new flavor with a certain configuration
4) Create a new instance using the previously defined flavor
5) Delete a flavor
6) Delete an instance
The workload is simplistic and can be extended in the future

to perform other operations. In total, the workload takes on
average 130 seconds to finish.

C. Injection process

Regarding the injection process, we defined what, where and
when to inject based on our setup and the goals of our study.
The objective was to use fault and failure models to emulate
transient hardware faults affecting a process of Openstack.
Software and other kinds of faults were not considered.

Regarding the fault model, the single bit-flip fault model
was used. This model emulates soft errors affecting the CPU
register file directly or other CPU components (buses, ALU,
FPU, etc.) indirectly. Both the bit and register are chose
randomly following an uniform distribution, once per run.

For the failure model, we injected crashes of a process,
which is a common failure mode obtained in fault injection
experiments where a single bit-flip is injected in a random

CPU register. Other failure models can be evaluated, however
we chose to begin with this one because it is simple to
implement and emulates a large portion of failures.

A new tool was developed which randomly chooses and
kills (by sending a SIGKILL) a random process of nova-api,
which is the service that receives the operation requests and
passes them on to the correct service to be handled. Due to
the extensibility of ucXception it was possible to add the new
failure model injection tool that was developed later to the
framework.

One of the various Openstack-related services of the Nova
VM was chosen to be the target, as Nova is the central
element of the setup. In the future we plan to conduct similar
experiments in the other services of Nova and of the other
Openstack components. As the workload takes about 130
seconds to execute, the injection time was set to the range
between]10,100[seconds, chosen randomly. The first 10
seconds correspond to the warmup and the last 30 seconds
are the cooldown, which allow the injected faults to manifest
and cause failures.

D. Failure detection and classification

The expected output from running the workload includes
information about the return code of each operation (which
indicates whether the operation executed successfully or not),
the duration of its execution and, for some operations, the
output produced by the operation. These parameters allow a
detailed analysis to be made of the output during the experi-
ments, with the aim of assessing whether the result after fault
injection remains as expected. For automatically performing
the data processing, a parser was developed and integrated
into ucXception. For each operation of the workload, the
parser processes the workload output and writes the following
data to the CSV file: Correct or incorrect output and the
respective output size, status code, total time taken to perform
the operation.

Another measure that must be considered, but that is not
treated by the parser, is the watchdog parameter that is set at
the beginning of the campaign configuration. As the execution
of the workload takes about 130 seconds, a watchdog of 200
seconds was defined. This time is longer than the execution of
the workload so that the workload has time to finish by itself.
If the workload takes longer, then the watchdog terminates the
process as to avoid waiting for a possibly hanged process.

These metrics allow the results to be classified in two
ways: 1) No Effect (the workload executes seemingly without
problem), and 2) Failed (at least one operation returned a status
code different from expected, thus signaling an unsuccessful
operation). Silent data corruption, despite important, was not
included because no occurrence was detected.

E. Results

A total of 2000 runs were executed, equally distributed
between injection using fault and failure models. Applying
the classification scale resulted in 94% of No Effect for the
failure model and 98% for the fault model. Therefore there

8

were 6% of failed runs when using the failure model and 2%
with respect to the fault model.

Figure 9 shows a comparison between the amount of oper-
ations that failed in a single run for fault and failure models.
It should be noted that the Y-axis is zoomed in between 0
and 4.5%. An analysis of the results concludes that not only
failure models cause more failures, the generated failures also
affected more operations, on average.

1 2 3 5
Total failed operations

0

1

2

3

4

Pr
ob

ab
ilit

y
(%

)

Failure model
Fault model

Fig. 9: Failed operations per run for both models.

Figure 10 shows the probability of an error occurring in
each of the various operations of the workload. Once again
the Y-axis is zoomed in. The graph shows that operation T7
has a higher failure probability, when using failure models, and
operations between T5 and T8 had mostly elevated probabili-
ties when using fault models. The first and last two operations
did not experience any failure likely due to the warmup and
cooldown periods.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
Task

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
ob

ab
ilit

y
(%

)

Failure model
Fault model

Fig. 10: Failures per operation for both models.

To measure how the failure probability evolves when using
failure models, Figure 11 plots the distance between the
average failure probability obtained in each run when using
failure models against the final failure probability obtained

using fault models (i.e., 2%). It can be seen that the distance
continues increasing as the number of runs increase, with no
visually obvious sign that it will stabilize.

0 200 400 600 800 1000
Run

2

1

0

1

2

3

4

Pr
ob

ab
ilit

y
(%

)

Fig. 11: Distance between failure model and oracle.

F. Observations & Limitations

Despite the exploratory nature of this experimental evalu-
ation, some observations can already be made. Nevertheless
more experiments are needed to reach acceptable confidence.
One observation is that the usage of failure models produces
more failures than the usage of fault models, thus accelerating
this type of experimental campaigns. This is to be expected
after all, but carries implications to practice. Namely, if the
objective of a campaign is to quantify the failure modes and
their probabilities of a system, the usage of failure models
should be complemented with a correction factor, otherwise
the obtained probabilities will be higher than what they really
are. On the other hand, if the objective of a campaign is
solely to collect failure data or to validate a fault tolerance
mechanism, then failure models appear to be a valid and more
efficient choice.

Another observation is that the failures obtained when using
failure models appear to differ from the failures generated
by injecting faults. This can be seen in Figure 10, where
the distribution of failures across different operations appears
to not follow the same pattern. For example, failure models
caused failures that strongly affected operation T7 whereas
fault models did not. Another example is in operation T4,
which experienced failures when using failure models but
never when using fault models.

Although some progress has been made in the comparison
between fault and failure models, the present study suffers
from various limitations that will be addressed in future work.
First of all this experiment focuses only on a specific experi-
mental setup, thus the observations cannot be extrapolated to
other setups. Another limitation is related to the workload,
which exercises only a small, yet often used set of operations
and which does not produce an elevated load on the system’s
resources. Other workloads should be considered as part of

9

future experiments. Different faultloads, such as different fault
models, can also be considered. Finally, the obtained number
of experiment runs is still relatively low.

Even though limited, the results support carrying out further
experiments in this topic and show how the extensibility of
ucXception can be an advantage when researching topics that
fall out from the more traditional use cases associated with
fault injection.

IV. RELATED WORK

Given that fault injection is a mature technique with decades
of academic and commercial use, several fault injection tools
and frameworks have been described in the literature. When
compared to these, ucXception constitutes a more recent
framework that has support for multiple fault models and that
can inject in virtualized and cloud computing systems.

In this section, a brief description of other important fault
injection tools is provided following a chronological order.
MESSALINE [20] is a ‘general physical-fault injection tool’
composed by four modules: fault injection, target activation,
readout collection, and management. It supports a range of
fault models, which include stuck-at-0 and stuck-at-1.

FIAT (Fault Injection-based Automated Testing) [21] has a
structure composed by fault injection manager, which controls
the experiments, and a fault injection receptor, which receives
the results for posterior analysis, and includes the ability
to support distributed systems, monitoring the systems and
injecting faults through a software-implemented compile-time
approach, according to a fault model of single or multiple
memory bit-flips.

FERRARI [22] is a fault injection tool that injects faults
by modifying the process’ injection state through the ptrace
functionality, very similarly to the approach taken by one of
the fault injection tools of ucXception that has been described
in this paper. FERRARI is capable of injecting memory
corruption faults, or transient and permanent faults, supports
time and location triggers, and has five different fault models,
which are bit-flips, bit setting, bit resetting and byte setting.

FINE [23] (Fault Injection and moNitoring Environment)
supports injection of software faults and hardware-induced
software errors into UNIX kernels. It is composed by four
parts: the fault injector, the workload generator – which
generates a workload of systems calls, the controller, and the
software monitor – which tracks variables of the kernel and
its control flow and stores this information to disk.

Xception [24] employs a hybrid approach which com-
bines software-implemented fault injection with debugging
and performance-monitoring hardware extensions as to reduce
the overhead of the fault injection process and to monitor fault
activation and the target system. It supports fault models such
as bit-flips, stuck-at-0 or stuck-at-1, on main memory and the
processor, and is capable of performing triggering by time or
upon specific instructions.

NFTAPE [25] is a framework for fault injection that can
be used in various types of systems and supports multiple

fault models, including bit-flips in registers and memory, com-
munication errors and I/O faults, and multiple fault triggers,
including spatial, time-based and event-based.

Goofi-2 [26] is capable of using both hardware-implemented
and software-implemented techniques to emulate transient
hardware faults in CPU registers and memory using
single and multiple bit-flips. It supports three different
fault injection techniques: Nexus-based, exception-based and
instrumentation-based. All these techniques are in one way or
another dependent on features of the underlying hardware.

Gigan [27] is a software-implemented fault injection tool
capable of introducing faults in memory and CPU registers of
a virtualized system as single bit-flips that are triggered using
breakpoints.

LLFI [28] is a fault injection tool that operates at the
intermediate code level of LLVM in order to inject hardware
faults in a compile-time manner which supports specifying the
location of the fault. The propagation of the fault can be traced
through the application using instrumentation in the program.

Marcello Cinque and Antonio Pecchia introduced a fault
injection framework aimed at virtualized multi-core sys-
tems [29]. Their framework emulates hardware errors by
modifying the values of special registers that belong to the
Machine Check Architecture (MCA), in doing so they are able
to evaluate the error handling mechanisms of the system.

CloudVal [30] is a framework based on NFTAPE that was
developed to validate the reliability of virtualized environ-
ments. It supports emulation of soft errors and injection of
faults mimicking delayed I/O operations and maintenance
events. Its fault injector was implemented as a loadable kernel
module and features a spatial-triggering mechanism based on
breakpoints.

V. CONCLUSION

In this paper, we presented ucXception, an open-source
framework for orchestrating and conducting fault injection
campaigns. ucXception is easy to install and to use and can be
extended with new components and tools. It comes equipped
with a range of components for monitoring the system-under-
test and can emulate both software and transient hardware
faults. ucXception was designed to be used in both local
and distributed systems, particularly virtualized and cloud
computing systems. As such, ucXception is one of the few
projects supporting fault injection of different fault models
and focusing in cloud computing and virtualized systems that
has been made publicly available.

A case study consisting in an evaluation on the viability
of using failure models as alternatives to fault models when
performing fault injection was carried out using ucXception.
The results confirm that failure models can produce failures
more frequently than fault injection, however the resulting
failures may differ from those that occur when fault models
are used. Further research is needed before a strong conclusion
can be taken regarding this matter, which is planned as future
work.

10

REFERENCES

[1] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan
2004.

[2] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey,
E. Masanet, N. Horner, I. Azevedo, and W. Lintner, “United states data
center energy usage report,” 2016.

[3] J. Koomey, “Growth in data center electricity use 2005 to 2010,” A
report by Analytical Press, completed at the request of The New York
Times, vol. 9, 2011.

[4] P. Hazucha and C. Svensson, “Impact of cmos technology scaling on
the atmospheric neutron soft error rate,” IEEE Transactions on Nuclear
Science, vol. 47, no. 6, pp. 2586–2594, Dec 2000.

[5] S. Borkar, “Design challenges of technology scaling,” IEEE Micro,
vol. 19, no. 4, pp. 23–29, July 1999.

[6] R. Baumann, “The impact of technology scaling on soft error rate
performance and limits to the efficacy of error correction,” in Digest.
International Electron Devices Meeting,, Dec 2002, pp. 329–332.

[7] V. Chandra and R. Aitken, “Impact of technology and voltage scaling
on the soft error susceptibility in nanoscale cmos,” in 2008 IEEE In-
ternational Symposium on Defect and Fault Tolerance of VLSI Systems,
Oct 2008, pp. 114–122.

[8] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi,
S. Dwarkadas, and M. L. Scott, “Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency scaling,”
in Proceedings Eighth International Symposium on High Performance
Computer Architecture, Feb 2002, pp. 29–40.

[9] R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira, “On fault
representativeness of software fault injection,” IEEE Transactions on
Software Engineering, vol. 39, no. 1, pp. 80–96, Jan 2013.

[10] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proceedings of the 31st International Conference on Software Engi-
neering, ser. ICSE ’09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 78–88.

[11] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system,” IEEE Transactions on Software
Engineering, vol. 26, no. 8, pp. 797–814, Aug 2000.

[12] I. Corporation, “Intel PCM,” https://github.com/opcm/pcm, 2019, ac-
cessed: 2019-02-01.

[13] S. Godard, “SYSSTAT,” http://sebastien.godard.pagesperso-orange.fr/,
2019, accessed: 2019-02-01.

[14] Tcpdump, “TCPDump,” https://www.tcpdump.org/, 2019, accessed:
2019-02-01.

[15] D. Faggioli, “Tracing with xentrace and xenalyze,” https://blog. xenpro-
ject. org/2012/09/27/tracing-with-xentrace-and-xenalyze, 2012.

[16] R. Johansson, On Single Event Phenomena in Microprocessors, 1993.
[17] G. L. Ries, G. S. Choi, and R. K. Iyer, “Device-level transient fault

modeling,” in Proceedings of IEEE 24th International Symposium on
Fault-Tolerant Computing, June 1994, pp. 86–94.

[18] R. Barbosa, J. Karlsson, H. Madeira, and M. Vieira, Fault Injection.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 263–281.

[19] J. A. Duraes and H. S. Madeira, “Emulation of software faults: A field
data study and a practical approach,” IEEE Transactions on Software
Engineering, vol. 32, no. 11, pp. 849–867, Nov 2006.

[20] J. Arlat, Y. Crouzet, and J. . Laprie, “Fault injection for dependability
validation of fault-tolerant computing systems,” in [1989] The Nine-
teenth International Symposium on Fault-Tolerant Computing. Digest of
Papers, June 1989, pp. 348–355.

[21] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Ysskin, J. Kownacki, J. Barton,
R. Dancey, A. Robinson, and T. Lin, “Fiat - fault injection based auto-
mated testing environment,” in Twenty-Fifth International Symposium on
Fault-Tolerant Computing, 1995, ’ Highlights from Twenty-Five Years’.,
June 1995, pp. 394–.

[22] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari: a flexible
software-based fault and error injection system,” IEEE Transactions on
Computers, vol. 44, no. 2, pp. 248–260, Feb 1995.

[23] W. . Kao, R. K. Iyer, and D. Tang, “Fine: A fault injection and
monitoring environment for tracing the unix system behavior under
faults,” IEEE Transactions on Software Engineering, vol. 19, no. 11,
pp. 1105–1118, Nov 1993.

[24] D. Costa, H. Madeira, J. Carreira, and J. G. Silva, Xception™: A
Software Implemented Fault Injection Tool. Boston, MA: Springer US,
2003, pp. 125–139.

[25] D. T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R. K. Iyer,
“Nftape: a framework for assessing dependability in distributed systems
with lightweight fault injectors,” in Proceedings IEEE International
Computer Performance and Dependability Symposium. IPDS 2000,
2000, pp. 91–100.

[26] D. Skarin, R. Barbosa, and J. Karlsson, “Goofi-2: A tool for experimental
dependability assessment,” in 2010 IEEE/IFIP International Conference
on Dependable Systems Networks (DSN), June 2010, pp. 557–562.

[27] M. Le, A. Gallagher, and Y. Tamir, “Challenges and opportunities with
fault injection in virtualized systems,” in 1st Int. Workshop on Virtual-
ization Performance: Analysis, Characterization, and Tools. Citeseer,
2008.

[28] A. Thomas and K. Pattabiraman, “Llfi: An intermediate code level fault
injector for soft computing applications,” in Workshop on Silicon Errors
in Logic System Effects (SELSE), 2013.

[29] M. Cinque and A. Pecchia, “On the injection of hardware faults in
virtualized multicore systems,” Journal of Parallel and Distributed
Computing, vol. 106, pp. 50 – 61, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731517300849

[30] C. Pham, D. Chen, Z. Kalbarczyk, and R. K. Iyer, “Cloudval: A frame-
work for validation of virtualization environment in cloud infrastruc-
ture,” in 2011 IEEE/IFIP 41st International Conference on Dependable
Systems Networks (DSN), 2011, pp. 189–196.

11

