
On the Evaluation of Three Pre-Injection Analysis
Techniques for Model-Implemented Fault- and

Attack Injection
Copyright (c) 2022 IEEE. To appear in the proc. of 27th IEEE Pacific Rim Int. Symposium on Dependable Computing (PRDC2022)

Peter Folkesson, Behrooz Sangchoolie, and Pierre Kleberger
Dependable Transport Systems

RISE Research Institutes of Sweden
Borås, Sweden

{peter.folkesson, behrooz.sangchoolie, pierre.kleberger}@ri.se

Nasser Nowdehi
Volvo AB

Gothenburg, Sweden
nasser.nowdehi@volvo.com

Abstract—Fault- and attack injection are techniques used
to measure dependability attributes of computer systems. An
important property of such injectors is their efficiency that deals
with the time and effort needed to explore the target system’s
fault- or attack space. As this space is generally very large,
techniques such as pre-injection analyses are used to effectively
explore the space. In this paper, we study two such techniques
that have been proposed in the past, namely inject-on-read and
inject-on-write. Moreover, we propose a new technique called
error space pruning of signals and evaluate its efficiency in
reducing the space needed to be explored by fault and attack
injection experiments. We implemented and integrated these
techniques into MODIFI, a model-implemented fault and attack
injector, which has been effectively used in the past to evaluate
Simulink models in the presence of faults and attacks. To the
best of our knowledge, we are the first to integrate these pre-
injection analysis techniques into an injector that injects faults
and attacks into Simulink models.

The results of our evaluation on 11 vehicular Simulink models
show that the error space pruning of signals reduce the attack
space by about 30–43%, hence allowing the attack space to be
exploited by fewer number of attack injection experiments. Using
MODIFI, we then performed attack injection experiments on two
of these vehicular Simulink models, a comfort control model and
a brake-by-wire model, while elaborating on the results obtained.

Index Terms—fault injection, attack injection, cybersecurity
testing, pre-injection analysis.

I. INTRODUCTION

Modern connected vehicles increasingly require communi-
cation with the surrounding infrastructure and cloud-based
resources. This results in an increasing need for resilience
towards cybersecurity attacks to guarantee safety and privacy,
among other attributes. Resilience is typically achieved by
incorporating detection and handling mechanisms for different
types of errors, including intrusions caused by attacks [1].
This is commonly accomplished through the introduction of
layers of mechanisms detecting and handling both errors and
intrusions caused by cyberattacks. In order to test these detec-
tion and handling mechanisms, experimental verification and
validation (V&V) methods such as fault- and attack injection
can be employed.

Fault- and attack injection are techniques used for measur-
ing the dependability attributes of computer systems in the
presence of faults and attacks. These techniques could be per-
formed in real-world or in simulation-based test environments.
Using these techniques, faults and attacks can also be injected
into systems at different stages of the product development
life cycle, e.g., as early as the design stage or as late as when
the final product is in use.

An important property of fault- and attack injectors is
their efficiency, i.e., the time and effort needed to explore
the target system’s fault- or attack space1. The error space
is generally very large, which is why in the past, several
techniques such as inject-on-read and inject-on-write [2, 3,
4, 5], code-slicing [6], fault list collapsing [7, 8], and error
space pruning [9, 10, 11, 12] have been proposed and used
to reduce the error space while preserving the accuracy of
the measured dependability metrics. Some of these techniques
make use of an analysis called pre-injection analysis which
requires detailed knowledge of the target system, prior to
performing any injection experiments, for reducing the error
space; while other techniques rely on post-injection analysis
which also incorporate the knowledge gained from a set of
injection experiments to reduce the error space for future
experimentation.

The first goal of this paper is to implement and evaluate
two of the above mentioned pre-injection analysis techniques
(inject-on-read and inject-on-write) in MODIFI [13], a model-
implemented fault- and attack injector that has been used
in the past [14, 15, 16] for dependability assessment of
software developed as Simulink models. Other tools capable
of injecting faults into Simulink models include Sabotage [17],
SIMULTATE [18] and FIBlock [19]. Since the inject-on-read
and inject-on-write techniques require detailed knowledge of
the target system for efficient implementation (i.e., they are
suitable for white-box testing), they are particularly suitable
for implementation in MODIFI. To the best of our knowledge,

1In this paper, and to improve the readability, we refer to the target system’s
fault- or attack space as the error space.



we are the first to integrate the inject-on-read and inject-on-
write pre-injection analysis techniques into an injector that
injects faults and attacks into Simulink models.

As discussed in prior work [5, 20], each of the inject-on-
read and inject-on-write techniques are capable of modelling
only part of the entire error space. Moreover, to be able to
evaluate the entire space, two sets of experiments would need
to be performed, one for each technique. This in turn incurs
an evaluation time that is similar to when no pre-injection
analysis is used. This is why the second goal of this paper
is to design, implement, and evaluate a new pre-injection
analysis technique that allows us to exploit the entire error
space more efficiently. We call this technique error space
pruning of signals as it may be considered an adaption of
the error space pruning technique targeting signals in models.
Similar to the inject-on-read and inject-on-write techniques,
this technique is particularly suitable for implementation in
MODIFI as it requires the detailed knowledge of the target
system structure provided by MODIFI. The results of the
experiments conducted using this technique show that the
entire error space could be exploited by about 30-43% less
effort, i.e., fewer number of injection experiments.

The remainder of the paper is organised as follows. Sec-
tion II describes injection-based V&V methods for experi-
mental verification and validation. Section III describes the
experimental setup, followed by our results in Section IV.
Section V concludes our paper and presents future work.

II. BACKGROUND AND RELATED WORK

A. Injection-Based Verification and Validation (V&V)

Injection-based V&V methods focus on introducing certain
characteristics in a system or triggering certain events, to con-
firm that the system behaves suitably under the corresponding
conditions. There are two main types of injection, namely fault
injection and attack injection.

Using fault injection, artificial faults are inserted in a com-
puter system in order to assess its behaviour in the presence
of faults. The technique allows the characterisation of spe-
cific dependability measures and/or fault tolerant mechanisms
available in the system. According to Avizienis, Laprie, and
Randell [21], a fault is the adjudged or hypothesised cause
of an error, while an error is the part of the total state of
the system that may lead to its subsequent service failure. In
other words, the faults injected may lead to errors that may
propagate in the system and cause system failures.

Avizienis, Laprie, and Randell [21] define an attack as
a special type of fault that is human-made, deliberate and
malicious, affecting hardware or software from external system
boundaries and occurring during the operational phase. There-
fore, attack injection in a system is analogous to fault injection
where an attack could result in an intrusion; if the intrusion is
not handled properly, it could result in a compromised system.
While fault injection can be used to evaluate system safety,
attack injection can be used to evaluate a system from the
security perspective, as well as to study the interplay between
safety and security requirements [14].

B. Previous Work on Pre- and Post Injection Analyses

Techniques that rely on fault- and attack injection, in
general, come with significant evaluation time and cost related
issues, such as resource costs needed to explore the error
space. Therefore, techniques such as pre- and post injection
analyses, some of which are listed below, may be used
to reduce the space, contributing to a more cost-effective
verification and validation of systems.

1) Inject-on-read [2, 3, 4]: Using the inject-on-read tech-
nique, faults and attacks are injected in a resource, such
as a CPU register, immediately before the resource is read.
This way, faults and attacks that have identical activation are
grouped into the same equivalence class, thereby reducing the
error space when evaluating systems’ dependability.

2) Inject-on-write [4, 5]: In the inject-on-write technique,
faults and attacks are injected in a resource immediately after
its content is updated. This way, faults and attacks injected into
the resource any time after it has been updated and before it
is first read, have identical activation and may be grouped into
the same equivalence class, thereby reducing the error space.

3) Code-slicing [6]: Code-slicing may be performed at the
source code level to determine the statements that a certain
criterion, e.g., output signal, depends on. The intersection
between these statements and the statements executed at a
certain fault/attack injection time are the statements to target
when the aim is to affect the criterion.

4) Post-injection Analyses [22, 23, 24, 25]: Post-injection
analyses may feed the results obtained from injection exper-
iments into pre-injection analyses that determine what exper-
iments to perform next. For example, post-injection analyses
may be used to determine workload input sequences with the
lowest error coverage that can be used for fault injection to
estimate the real coverage [24].

5) Fault List Collapsing [7, 8]: Faults and attacks that are
determined to be equivalent, may be collapsed into the same
equivalence class. Apart from the inject-on-read and inject-
on-write techniques described above, other techniques may
be used for determining equivalence. For example, Smith,
Johnson, and Profeta [8] constructed fault trees for each
node in a data flow diagram derived from the target system
assembler code; faults injected at leaf nodes ending up at
the same node along a path are considered equal and the
corresponding sub-tree may be collapsed.

6) Error Space Pruning [9, 10, 11, 12]: In error space
pruning, pre-injection analyses are performed to prune faults
that have a known outcome or are equivalent to other faults,
where the equivalence may be determined using either static
(pre-injection) or dynamic (post-injection) analyses [9]. For
example, locations that would not reveal any system weak-
nesses when targeted by faults (e.g., those that do not result
in an erroneous output) may be pruned using these techniques.

III. EXPERIMENTAL SETUP

In this section, we first present MODIFI, the fault- and
attack injector used and extended in this study. We then explain
the three pre-injection analysis techniques that were added



to MODIFI and evaluated in this paper. Finally, we provide
details about the comfort control model and the brake-by-
wire model, which are two of the target systems used for
the evaluations. Note that in addition to these two models,
we have evaluated 9 other models taken from MathWorks
Simulink Automotive Applications (see Section IV-A). These
models are not further elaborated in this section as their
details are available online by MathWorks [26]. Also note that
although all the models under test in this paper are taken from
the automotive domain, the pre-injection analysis techniques
proposed and evaluated in the paper could be used to evaluate
Simulink models from other domains such as the avionics
domain.

A. Model-Implemented Fault/Attack Injection Tool (MODIFI)

MODIFI is a model-implemented fault- and attack injector
that has been used in over a decade [14, 15, 16, 13] for
dependability assessment of software developed as Simulink
models in various domains including the automotive domain.
The tool enables functional and non-functional testing to be
performed in early phases of the software development life
cycle within the same environment typically used for model-
based development.

MODIFI injects faults and attacks by adding separate blocks
modelling the faults and attacks between the connected blocks
of the model. The tool supports single or multiple faults and
attacks as well as a wide range of fault models, such as bit-
flip and stuck-at faults, and attack models, such as replay and
jamming attacks [14]. The tool can also easily be extended
with additional user-defined fault- and attack model libraries.
In this paper, the attack model used for the experiments is the
InvertMessage attack, which is a variant of the corrupt
message attack where all bits in a sent message are inverted.
Multiple attacks or sequences of attacks are not considered.
Thus, in our experiments, an inverted bit representation of the
attacked value is injected for one time sample. Hence, only
one message in one signal is affected during the time sample
when the attack is injected for each experiment. However, the
attacked signal value may propagate through several of the
target system’s signals to the output signals after the injection.
The tool monitors all output signals of the target system until
the end of the simulation to determine the outcome of the
experiment.

The injection experiments are configured and controlled
via a graphical user interface in MODIFI. Each pre-injection
analysis technique evaluated in this study is implemented
as a function in the MODIFI configuration module. Each
function analyses the target system model structure in order to
reduce the locations where faults and attacks may be injected.
Thus, when a pre-injection analysis technique is applied, the
resulting reduced error space is presented to the user as soon
as the analysis finishes (typically in the order of seconds).
Any number of faults and attacks may then be configured to
be injected into the reduced error space.

B. Pre-Injection Analysis Techniques Under Evaluation

In this paper, we investigate three pre-injection analysis
techniques, namely, inject-on-read, inject-on-write and error
space pruning of signals which is an adaption of static error
space pruning that targets signals in models. The code-slicing,
post-injection analyses and fault list collapsing techniques
mentioned in Section II-B were not considered as suitable
or easily adaptable for model-implemented fault- and attack
injection, or they rely on previous fault- or attack injection
results which are not part of this study. In this section, we
present an overview of the three chosen techniques imple-
mented in MODIFI and discuss high-level benefits of using
them. We leave the comprehensive efficiency evaluation of
these techniques to Section IV, which is where they are applied
to the systems under evaluation. Note that, the chosen pre-
injection analysis techniques focus on reducing the number of
signals that are candidates for the placement of fault/attack
injection blocks, thereby reducing the error space. Therefore,
as long as the Simulink target system model contains signals
between blocks, the pre-injection techniques could be applied
for any fault- or attack model targeting signals, such as bit-
flips, stuck-at faults, replay or jamming attacks, at least when
single faults or attacks are concerned.

Figure 1 illustrates the use of the three techniques, with a
complete error space of an example Simulink model (top left)
reduced by inject-on-read (top right), inject-on-write (bottom
left) and error space pruning of signals (bottom right). In this
figure, the locations that are candidates for fault and attack
injections are marked with “✘”. The figure shows that by
integrating the inject-on-read analysis into MODIFI, faults and
attacks are injected only into input signals of the blocks used
in the Simulink model, while the integration of the inject-on-
write analysis into MODIFI results in the injection of faults
and attacks only into output signals of the blocks used in the
Simulink model.

As shown in Figure 1, integration of the inject-on-read and
inject-on-write techniques into this simple Simulink model
results in 39% and 61% reduction of the error space, respec-
tively. However, as discussed in prior work [5, 20], these tech-
niques are suitable in targeting different parts of the entire error
space. More specifically, the former techniques model faults
and attacks in resources, such as CPU registers, immediately
before the resource is read, while the latter techniques model
faults and attacks in a resource immediately after its content is
updated. In the case of injections performed using MODIFI,
this translates into the selection of only input or output signals,
respectively, for when the inject-on-read and inject-on-write
techniques are used. This means that in order to be able to
evaluate the target Simulink models according to the faults
and attacks modelled by these techniques, two sets of injection
campaigns should be conducted, one using inject-on-read and
the other one using inject-on-write. This in turn adds to the
size of the error space. In the case of the example shown in
Figure 1, then 14 and 9 locations should be targeted by faults
and attacks for inject-on-read and inject-on-write, respectively,



Complete Fault/attack space (signals)

= fault/attack location
 23 locations

Fault/attack space inject-on-read reduction (signals)

= fault/attack location
 14 locations
 23-14 = 9 locations reduction
 39 % reduction in fault/attack space

Fault/attack space inject-on-write reduction (signals)

= fault/attack location
 9 locations
 23-9 = 14 locations reduction
 61 % reduction in fault/attack space

Error space pruning (equivalent signals)

+ = fault/attack locations
 23 locations
= pruned locations
 5 locations pruned
 22 % reduction in fault/attack space

Figure 1. Complete error space of an example Simulink model (top left) reduced by inject-on-read (top right), inject-on-write (bottom left) and error space
pruning of signals (bottom right).

resulting in a total of 23 locations, which is identical to the the
case where no pre-injection analysis is used (see the top left
figure). Therefore, in the error space pruning of signals (see
the bottom right figure), we propose an analysis that combines
the benefit of inject-on-read and inject-on-write (reduction of
the error space), while assuring that all faults and attacks
modelled by these techniques are investigated.

The error space pruning of signals works by considering
faults and attacks on input signals to be equivalent to those
on an output signal if only one propagation path exists
between the input and output signal. A static analysis of the
target system structure is performed in order to determine the
equivalence. In the case of the simple model shown in the
bottom right corner of Figure 1, five input locations are pruned,
resulting in a reduction of 22%. Note that, either the input
signal or the equivalent output signal can be pruned since they
represent equivalent target locations. Also note that, similar
to when the inject-on-read or inject-on-write are used, and as
discussed in the past work [20, 5, 2], the results obtained from
the injection of faults and attacks into the equivalent classes
should be extrapolated to the pruned locations.

C. Simulink Models under Evaluation and the Attack Injection
Campaign Setup

1) Lock and Comfort Control Model: Figure 2 shows an
overview of the LockComfort Simulink model mainly used
for comfort control, i.e., controlling the door windows and sun

roof, for various vehicle types and models. The model has four
main blocks, the 1_InteriorButton, 2_Remote, and
3_Keyless blocks allowing comfort control from buttons
inside the vehicle, the remote car key, and the door handles,
respectively, and the 4_ComfortRequest block which pro-
duces the required output requests based on the input from the
other blocks.

The following input signals are the most relevant for
the chosen test case: CarCfg denoting the vehicle type,
Lockd_BtnSts indicating lock button pressed (value 1)
or not (value 0), Lock_KeyId indicating lock button key
identifier, Unlock_BtnSts indicating unlock button pressed
(value 1) or not (value 0), Unlock_KeyId indicating unlock
button key identifier, UsgModSts indicating current usage
mode of the vehicle using the five enumerated values Aban-
doned, Inactive, Convenience, Active and Driving, Pinch
protection level to indicate obstructions when closing
the window and Chassis type to disable comfort open-
ing/closing for certain types of chassis.

The model produces two output signals for the comfort
open/close requests: the OpenClsCmftReq signal corre-
sponding to the comfort open/close request using the values
0 (default value), 1 (comfort open request), 2 (comfort close
request) and 3 (stop ongoing comfort open/close movement),
and the OpenClsCmftTrigSrc signal corresponding to
the source of the open/close request using the values 0 (de-
fault value), 1 (1_InteriorButton block), 2 (2_Remote



1_InteriorButton

2_Remote

3_Keyless

4_ComfortRequest

CarCfg

Lock_BtnSts, Lock_KeyId

Unlock_BtnSts, Unlock_KeyId

UsgModSts

Pinch protection level

Chassis type

OpenClsCmftReq

OpenClsCmftTrigSrc

…

…

Figure 2. Overview of the Lock and Comfort Control Model (LockComfort)

block) and 3 (3_Keyless block). Lockd_BtnSts must be
1 for more than 2s for the OpenClsCmftReq to be set to 2
(close) while Unlock_BtnSts must be 1 for more than 4s
for the OpenClsCmftReq to be set to 1 (open).

For the LockComfort model test case, the CarCfg is set
to a typical road vehicle and the Chassis type default
value is used to allow full comfort control functionality. The
UsgModSts is set to Convenience.

The following sequence is generated by using the input
signals indicated below as stimuli for the model for the chosen
test case:

1) Press the unlock button with Unlock_BtnSts=1 and
Unlock_KeyId=1 during time 1s-5.9s.

2) Wait 10s.
3) Press the lock button with Lock_BtnSts=1 and

Lock_KeyId=1 during time 16s-20.9s.
4) Wait 10s.

A security violation occurs if the window does not close during
steps 3 to 4.

Figure 3 shows the two output signals OpenClsCmftReq
(light blue) and OpenClsCmftTrigSrc (dark red) as func-
tions of time for the chosen test case. Due to the input
sequence described above, the OpenClsCmftReq is equal
to 1 (i.e., open) between 5s and 5.9s, since the unlock button
is pressed between 1s and 5.9s; and then OpenClsCmftReq
is equal to 3 (i.e., stop) at 16s and ending at 17s. Finally,
OpenClsCmftReq is equal to 2 (i.e., close) between 18s and
20.9s, since the lock button is pressed between 16s and 20.9s.
OpenClsCmftTrigSrc is equal to 2 (corresponding to
2_Remote block) whenever the OpenClsCmftReq signal
is activated.

Three attack injection campaigns have been chosen for each
of the three evaluated pre-injection analyses to be injected
after 6, 16 and 21 seconds from the beginning of the simu-
lation. For comparison, an initial set of campaigns has also
been conducted without the use of any pre-injection analyses
at each of the chosen time points, resulting in a total of
12 attack injection campaigns. In each of the campaigns,
attack injection is performed exhaustively on all possible
locations of the security-critical parts of the model featuring

Figure 3. The output signals OpenClsCmftReq (light blue) and
OpenClsCmftTrigSrc (dark red) as functions of time for the chosen test
case. Attacks are injected at 6, 16 and 21 seconds, indicated by black vertical
lines.

comparatively large attack surfaces, i.e., the 2_Remote and
4_ComfortRequest blocks (highlighted in gray in Fig-
ure 2).

The pre-injection techniques evaluated can be applied for
any fault- or attack model as long as they target single
signal locations. However, as different fault- or attack mod-
els may target different types of signals, the error space
may vary depending on fault- or attack model used. The
InvertMessage attack model, see Section III-A, was used
in these experiments since it may have significant impact
on the targeted signals and there are no random parameters
controlling the behaviour of this model which could skew
the results when comparing the techniques. The error space
reduction achieved using this model is representative since the
types of signals targeted by this model is identical to the types
targeted by most other fault- or attack models (bit-flips, stuck-
at faults, replay attacks, jamming attacks etc.). However, the
user may also select a subset of the the complete error space
depending on the fault- or attack model employed. This was
not considered in our experiments where all possible signals
were targeted.

2) Brake-By-Wire Model (BBW): Figure 4 shows a struc-
tural overview of the BBW target system Simulink model
which has been used extensively in previous research [15,
5, 27, 28, 14]. The model implements a four-wheel BBW
application developed using five ECUs (Electronic Control
Units) connected to a bus. Each wheel has one corresponding
ECU, while the central brake controller is located on the
brake pedal ECU. The BBW application is distributed across
the brake pedal ECU and the four wheel ECUs. The input
sensors to the system are the brake pedal (for driver input of
requested brake torque), vehicle speed sensor (for measuring
the longitudinal speed of the vehicle), and four wheel speed
sensors (for measuring angular speed of each wheel). There
are also four brake actuators used for controlling the brake
torque of each wheel.

The output with the chosen test case for the BBW model
is VehSpdEst signal that reports the estimated vehicle
speed. Figure 5 shows the nominal (attack-free) value of
VehSpdEst during the simulated time. The test case simu-



Figure 4. Structural overview of the BBW target system.

Figure 5. The nominal (attack-free) speed (VehSpdEst output signal) as a
function of time for BBW. Attacks are injected at 23 seconds as indicated by
the vertical line.

lates acceleration of the vehicle between 0s and 10s followed
by a constant speed between 10s and 20s. Braking of the
vehicle is performed from 20s until it stops after 28s. Previous
experiments (e.g., see [15, 14]) have focused on injecting
faults and attacks targeting one of the wheel nodes at multiple
control loop iterations around the simulation time point of
23s. However, in our experiments, attack injection has been
performed exhaustively on all possible locations of the target
system. To reduce the number of experiments, a single control
loop corresponding to the simulation time point at exactly 23s
(see vertical line in Figure 5) was injected.

One attack injection campaign was conducted for each of
the three evaluated pre-injection analysis techniques. For com-
parison, one campaign has also been conducted without the use
of any pre-injection analysis. The InvertMessage attack
model is used for the same reason as for the LockComfort
model, see Section III-C1.

IV. EXPERIMENTAL RESULTS

This section presents the results of our evaluations when
it comes to the measurement of the efficiency of the three
pre-injection analyses presented in Section III-B. To this end,
the pre-injection analyses were conducted on 11 vehicular
Simulink models and the results are presented in Section
IV-A. Moreover, to provide additional insights and details

about the pre-injection analysis techniques, we performed at-
tack injection experiments on the two target systems presented
in Section III-C. The results of the experiments are presented
in Table I and Table III classified by the following columns:

• Campaign: The name of the campaign indicating target
system model, point in time for attack injection and type
of pre-injection analysis performed.

• Signals: The total number of injectable locations (signals)
in the target system blocks.

• Input signals: The total number of injectable input
signals in the target system blocks.

• Output signals: The total number of injectable output
signals in the target system blocks.

• Attacks performed: The total number of attacks injected
(for exhaustive campaigns, this should correspond to the
number of injectable locations).

• Attacks logged: The total number of attacks logged. Note
that, when using the error space pruning techniques, the
total number of attacks logged could be larger than the
total number of attacks performed. This is due to the fact
that the result obtained for each injected attack is also
considered for the corresponding equivalent attacks.

• SDC: The total number of attacks leading to Silent Data
Corruption, i.e., erroneous values on any of the output
signals of the model.

• Detected: The total number of attacks leading to errors
being detected. Since there are no error detection mech-
anisms implemented in the target system models, only
errors detected by the MATLAB/Simulink environment
are included.

Note that, an injected attack could also have no impact on a
Simulink model’s output nor trigger any detection mechanism.
For these attacks, a classification category that is known as No
Impact [11] could be calculated as Attackslogged− (SDC+
Detected). The result classification categories used in this
paper is similar to those used in the past work such as [5,
29, 11]. Moreover, the SDC, Detected, and No Impact results
obtained could be used to measure target system dependability
metrics such as error coverage [30, 31], error resiliency [32,
33], and error sensitivity [34, 29]. However, we do not measure
these metrics in this paper as we focus on the evaluation of
the pre-injection analysis techniques.

A. Comparison of Error Space Reduction

The pre-injection techniques implemented in MODIFI can
be applied regardless of target system and fault/attack model
as long as the system contains signals which can be targeted
by fault- or attack injection. Figure 6 shows a comparison of
the reduction of the error space using each of the implemented
pre-injection analysis techniques for nine of the MathWorks
Simulink Examples Automotive Applications models avail-
able at [26] as well as the two vehicular Simulink models
presented in Section III-C. The MathWorks models tar-
geted include Anti-Lock Braking System (absbrake), Auto-
matic Climate Control System (auto_climatecontrol),
Automatic Transmission Controller (autotrans), Clutch



0%

10%

20%

30%

40%

50%

60%

ab
sb
ra
ke
_I
O
R

ab
sb
ra
ke
_I
O
W

ab
sb
ra
ke
_E
SP

au
to
_c
lim

at
ec
on

tr
ol
_I
O
R

au
to
_c
lim

at
ec
on

tr
ol
_I
O
W

au
to
_c
lim

at
ec
on

tr
ol
_E
SP

au
to
tr
an

s_
IO
R

au
to
tr
an

s_
IO
W

au
to
tr
an

s_
ES
P

cl
ut
ch
_I
O
R

cl
ut
ch
_I
O
W

cl
ut
ch
_E
SP

cl
ut
ch
_i
f_
IO
R

cl
ut
ch
_i
f_
IO
W

cl
ut
ch
_i
f_
ES
P

en
gi
ne

_I
O
R

en
gi
ne

_I
O
W

en
gi
ne

_E
SP

en
gi
ne

w
c_
IO
R

en
gi
ne

w
c_
IO
W

en
gi
ne

w
c_
ES
P

fu
el
sy
s_
IO
R

fu
el
sy
s_
IO
W

fu
el
sy
s_
ES
P

su
sp
n_

IO
R

su
sp
n_

IO
W

su
sp
n_

ES
P

LC
_I
O
R

LC
_I
O
W

LC
_E
SP

BB
W
_I
O
R

BB
_I
O
W

BB
W
_E
SP

Simulink Target Model and Pre-injection Analysis

Er
ro

r s
pa

ce
 re

du
ct

io
n

Figure 6. Comparison of error space reduction using inject-on-read (IOR), inject-on-write (IOW) and error space pruning of signals (ESP) pre-injection
techniques for nine MathWorks Simulink automotive example models together with the LockComfort (LC) and Brake-By-Wire (BBW) models.

Lock-Up Model (clutch), Clutch Lock-Up Model Using If
Blocks (clutch_if), Engine Timing Using Triggered Sub-
systems (engine), Engine Timing Model with Closed Loop
Control (engine_wc), Fault-Tolerant Fuel Control System
(fuelsys), and Automotive Suspension (suspn). The other
models in the MathWorks Automotive Applications repository
rely on software components which were not included in the
experimental set up used for the comparison.

The results presented in Figure 6 show a reduction of
the error space of between 46–53% for the inject-on-read
technique, 47–54% for the inject-on-write technique and 30–
43% for the error space pruning of signals technique. In the
remainder of this section, we use MODIFI to inject attacks
into the comfort control and brake-by-wire models and provide
additional details about the results obtained while comparing
the pre-injection analysis techniques.

B. Results Obtained for the Lock and Comfort Control Model

Table I shows the results of attack injection experiments
conducted for the LockComfort test case. Rows 1 to 3 of the
table show the results of exhaustive attack injection campaigns
at the simulation time points 6s, 16s and 21s, respectively,
without any pre-injection analyses performed. For each set
of experiments (i.e., campaigns), 457 signals were targeted by
the InvertMessage attacks where 126 to 186 of them were
classified as SDCs in these campaigns.

Rows 4 to 6 of Table I show the results of exhaustive attack
injection campaigns using the inject-on-read technique. The
number of signals targeted is 234, corresponding to 51% of
the error attack space (consisting of 457 signals). Due to the
exploitation of the partial error space using the inject-on-read
technique, signals which result in errors being detected by
the simulation are never attacked in any of the campaigns
performed with this technique, and thus, never tested. This
anomaly is highlighted in the Detected column of the table.

Rows 7 to 9 of Table I show the results of exhaustive attack
injection campaigns using the inject-on-write technique. The
number of injected signals is 223, corresponding to 49% of
the entire error space. Based on the results presented in rows
4–9, we can also observe that the error space exploited using
inject-on-write results in a higher number of SDCs compared
to that exploited by the inject-on-read technique.

The results obtained for the inject-on-read and inject-on-
write pre-injection analyses suggest that in order to have more
complete data about the sensitivity of the target system to
attacks on all locations, the results obtained for inject-on-read
should be accompanied with those obtained for the inject-on-
write technique.

Rows 10 to 12 of Table I show the results of exhaustive
attack injection campaigns using the error space pruning of
signals technique. The number of signals targeted by attacks
is reduced from 457 to 297, corresponding to a 35% reduction
of the error space. For each injected attack, the corresponding
equivalent attacks are logged and the result of each injected
attack is also considered for the corresponding equivalent
attacks.

The time measured for doing the pre-injection analysis is
negligible (in the order of just a few seconds) compared to the
execution time of the attack injection campaigns, which went
down from about 40 minutes in the case of no pre-injection
analysis to 26 minutes for the error space pruning of signals
technique. This results in being able to evaluate target systems
when using the error space pruning of signals technique with
about 35% less effort.

We also conducted an additional classification of the SDC
errors in order to investigate the differences in the behaviour
of the LockComfort test case when attacks are injected
with and without pre-injection analyses. Two classes were
used, corresponding to errors in each of the output sig-
nals listed in Section III-C1. The classification of errors on



Table I
RESULTS OF ATTACK INJECTION FOR LOCKCOMFORT TEST CASE.

Campaign Signals Input
signals

Output
signals

Attacks
performed

Attacks
logged SDC Detected

LC_6s 457 234 223 457 457 180 2
LC_16s 457 234 223 457 457 126 2
LC_21s 457 234 223 457 457 186 2

LC_6s_IOR 234 234 0 234 234 84 0
LC_16s_IOR 234 234 0 234 234 59 0
LC_21s_IOR 234 234 0 234 234 86 0
LC_6s_IOW 223 0 223 223 223 96 2
LC_16s_IOW 223 0 223 223 223 67 2
LC_21s_IOW 223 0 223 223 223 100 2
LC_6s_ESP 297 74 223 297 457 180 2
LC_16s_ESP 297 74 223 297 457 126 2
LC_21s_ESP 297 74 223 297 457 186 2

Table II
RESULTS ACCORDING TO ERROR CLASSIFICATION FOR LOCKCOMFORT TEST CASE. NOTE THAT, n IN An AND Bn INDICATE THE ERRONEOUS VALUE OF

THE OPENCLSCMFTREQ AND OPENCLSCMFTTRIGSRC OUTPUT SIGNALS, RESPECTIVELY.

Campaign Class A0 Class A1 Class A2 Class A3 Class B0 Class B1 Class B2 Class B3
LC_6s 0 57 41 54 0 20 4 4
LC_16s 87 3 0 1 31 4 0 0
LC_21s 0 57 44 57 0 20 4 4

LC_6s_IOR 0 25 20 27 0 8 2 2
LC_16s_IOR 40 1 0 1 15 2 0 0
LC_21s_IOR 0 25 21 28 0 8 2 2
LC_6s_IOW 0 32 21 27 0 12 2 2
LC_16s_IOW 47 2 0 0 16 2 0 0
LC_21s_IOW 0 32 23 29 0 12 2 2
LC_6s_ESP 0 57 41 54 0 20 4 4
LC_16s_ESP 87 3 0 1 31 4 0 0
LC_21s_ESP 0 57 44 57 0 20 4 4

the OpenClsCmftReq output signal are denoted as A0
to A3 (or An where n indicates the erroneous value of
the OpenClsCmftReq output signal). The classification of
errors on the OpenClsCmftTrigSrc output signal are
denoted as B0 to B3 (or Bn where n indicates the erroneous
value of the OpenClsCmftTrigSrc output signal). Table II
shows the number of SDC errors for each of the error classes
defined.

Table II shows that the errors belonging to each class
vary significantly depending on the point in time for attack
injection. For example, when no pre-injection analysis is used,
0 errors belong to Class A0 for the campaigns performed at 6s
and 21s, compared to 87 errors for the campaign performed at
16s. This shows the significance of the test scenario selection
as well as the fault injection campaign setup when evaluating
target systems, as the sensitivity of the target system to attacks
could vary significantly throughout time. The table also shows
that the number of SDC errors belonging to the classes could
vary significantly. For example, the errors belonging to Class
A1 and B3 for when no pre-injection is used are 117 and 8,
respectively. This could be a valuable piece of information for
system testers that are after identification of parts of the system
or system configurations that are more sensitive to attacks.

Looking at the inject-on-write results in Table II, we observe
that no errors belong to Class A3 for the injections performed
at 16s although there is 1 error classified in this class when
no pre-injection was used. This anomaly is highlighted in the
table and the reason for it, as discussed before, is that for

inject-on-read and inject-on-write only a subset of possible
attacks is targeted. The table also shows that the error space
pruning technique is successful in classifying all the errors in
their respective classes, as the results obtained are identical to
when no pre-injection analysis is used.

C. Results Obtained for the Brake-By-Wire Model (BBW)

Table III presents the attack injection results obtained for the
BBW test case. The first row in the table shows the results of
an exhaustive attack injection campaign when no pre-injection
analysis was used. The injections are conducted using the
InvertMessage attack model at simulation time point 23s.
In this test case, 691 signals were targeted by attacks resulting
in a total of 525 SDC errors.

The second and third rows of the table show the results of
exhaustive attack injection campaigns when using the inject-
on-read and inject-on-write techniques, respectively. The num-
ber of signals targeted are 344 and 347, respectively, each
corresponding to about 50% of the entire error space that
contains 691 signals. This reduction in the error space for
each of the techniques is comparable to that caused by these
techniques in the LockComfort test case. Similar to the
results presented for the LockComfort test case, attacks
injected using the inject-on-write technique result in a higher
number of SDC errors.

The last row of the table shows the results of exhaustive
attack injection when using the error space pruning of sig-
nals technique. The number of signals targeted by attacks is



Table III
RESULTS OF ATTACK INJECTION FOR BBW TEST CASE.

Campaign Signals Input
signals

Output
signals

Attacks
performed

Attacks
logged SDC Detected

BBW_23s 691 344 347 691 691 525 0
BBW_23s_IOR 344 344 0 344 344 248 0
BBW_23s_IOW 347 0 347 347 347 277 0
BBW_23s_ESP 486 139 347 486 691 525 0

Table IV
RESULTS ACCORDING TO ERROR CLASSIFICATION FOR BBW TEST CASE.

Campaign Class A Class B Class C
BBW_23s 65 451 9

BBW_23s_IOR 30 215 3
BBW_23s_IOW 35 236 6
BBW_23s_ESP 65 451 9

reduced from 691 to 486 corresponding to a 30% reduction
of the error space. For each injected attack, the corresponding
equivalent attacks are logged and the result of the injected
attack is also considered for the corresponding equivalent
attacks.

Similar to what is observed for the LockComfort test
case, the time measured for pre-injection analysis of the BBW
system is negligible compared to the execution time of the
attack injection campaigns. In this case, this results in being
able to evaluate target systems with respect to both inject-
on-read and inject-on-write techniques with about 30% less
effort.

Further classification of the SDC errors, corresponding to
the VehSpdEst output signal, has been made in order to
investigate any behavioral differences of the BBW target sys-
tem model between the attack injection campaigns. To conduct
this classification, we define the following three error classes,
where the first two are inspired from the result classifications
used in the past [15, 14] in which SDC errors are further
classified into severe and benign classes, respectively:

• Class A: VehSpdEst < (nominal value − 10 km/h) or
VehSpdEst > (nominal value + 10 km/h).

• Class B: (nominal value − 10 km/h) ≤ VehSpdEst ≤
(nominal value + 10 km/h).

• Class C: VehSpdEst = nominal value, but one or more
of the other output signals are affected.

Table IV shows the number of SDC errors for each of
the error classes defined. Similar to the results presented in
Table II, here we see that the error space pruning technique
is successful in classifying all the errors in their respective
classes, as the results obtained are identical to when no pre-
injection analysis is used. The table also shows that between
12–13% of the errors are those that are severe, belonging to
Class A. Note that, as discussed in prior research [14], the
choice of 10 km/h in the above classes is only to investigate an
example of a violation of a safety requirement, and in reality,
this number should be selected from the safety requirements
of the system under test.

V. CONCLUSIONS AND FUTURE WORK

This paper evaluates three pre-injection analysis techniques
facilitating effective testing of systems modelled in Simulink
in the presence of faults and attacks. Two of these analysis
techniques (inject-on-read and inject-on-write) are inspired by
the previous work (although we are the first to integrate them
into a model-implemented attack injector) and one is a new
analysis technique (error space pruning of signals) proposed
and evaluated for the first time in this paper. The main idea
behind the pre-injection analyses is to reduce the error space
in order to focus on injections that are known to be poten-
tially effective, e.g., in penetrating the systems’ resilience.
An experimental evaluation of the pre-injection analyses is
presented by analysing results from model-implemented attack
injection campaigns performed for the three pre-injection
analysis techniques with two vehicular Simulink target system
models, a comfort control model and a brake-by-wire (BBW)
model.

The results for the comfort control model show that the
error space is reduced to 51% of the entire error space for
inject-on-read analysis and to 49% for the inject-on-write
analysis. However, due to the exploitation of the partial error
space using these pre-injection techniques, several anomalies
were observed. For inject-on-read, signals which result in
errors being detected by the simulation are never attacked
and thus, never tested. For inject-on-write, errors belonging
to certain classes are sometimes never triggered although they
are triggered when no pre-injection analysis is performed. The
results obtained for the inject-on-read and inject-on write pre-
injection analyses suggest that in order to have more complete
data about the sensitivity of the target system to attacks on
all locations, the results obtained for inject-on-read should
be accompanied with those obtained for the inject-on-write
technique. However, as this would result in an error space
identical to the case when no pre-injection analysis is done,
for the target systems and attack injection technique used
in this study, a pre-injection analysis techniques called error
space pruning of signals has been designed, implemented and
evaluated.

When using the error space pruning of signals with the
comfort control model, a reduction of the error space of 35%
could be observed. This technique also logs the results of
the injected attacks for the corresponding equivalent attacks
pruned. Results identical to the results without any pre-
injection analysis were obtained for this technique. Thus,
error space pruning of signals allows the target systems to be



evaluated with respect to using both inject-on-read and inject-
on-write techniques with about 35% less effort.

The results for the comfort control model are corroborated
by the experiments performed on the BBW model. The results
for the BBW model show a 50% reduction of the error space
for both inject-on-read and inject-on-write analyses and a 30%
reduction for error space pruning of signals. The results also
indicate that a lower percentage of attacks may have the
potential of testing the resilience mechanisms using inject-
on-read than without any pre-injection analyses, while the
opposite is true for the inject-on-write analysis. No anomalies
were observed for the BBW model when comparing the results
using pre-injection analysis with the results obtained without
pre-injection analysis. However, deeper analysis may reveal
the existence of such anomalies for the BBW model as well.

Comparison with nine of the automotive example models
available on the Mathworks web site shows a similar reduction
in the error space as for the comfort control and BBW models.
In fact, the results of our analyses show that the entire error
space could be efficiently explored using the error space prun-
ing of signals with about 30% to 43% reduction in the number
of experiments needed to be conducted. This optimisation
comes with a minimal analysis overhead of just a few seconds,
which is negligible compared to the time it takes to conduct
the injection experiments. Note that although all the models
under test in this paper are taken from the automotive domain,
the pre-injection analysis techniques proposed and evaluated
in the paper could be used to evaluate Simulink models from
other relevant domains. In fact, as part of our future work,
we plan on evaluating the proposed pre-injection analysis
techniques using Simulink models of an engine controller from
the avionics domain.

As part of the future work, we plan on investigating
pre-injection analysis techniques exploring the use of other
equivalent fault- and attack classes. Moreover, post-injection
analyses performed after fault- and attack injection campaigns
to predict or determine relevant injection experiments were
not considered but should also be investigated, e.g., based on
sensitivity profiling or error propagation analyses identifying
the parts of the error space with the highest probability
of penetrating the resilience layers. Also, only single faults
and attacks have been considered so far, the usefulness of
the proposed techniques for multiple faults and attacks or
sequences of attacks have not yet been investigated.

ACKNOWLEDGEMENT

This work was partly funded by the CyReV project, which
is a Swedish VINNOVA FFI project (Diary number: 2018-
05013, 2019-03071); and the VALU3S project, which has re-
ceived funding from the ECSEL Joint Undertaking (JU) under
grant agreement No 876852. The JU receives support from
the European Union’s Horizon 2020 research and innovation
programme and Austria, Czech Republic, Germany, Ireland,
Italy, Portugal, Spain, Sweden, Turkey.

REFERENCES
[1] P. Kleberger, P. Folkesson, and B. Sangchoolie. “An Integrated Safety

and Cybersecurity Resilience Framework for the Automotive Domain”.
In: CARS - 7th International Workshop on Critical Automotive Appli-
cations: Robustness & Safety. 2022.

[2] R. Barbosa, J. Vinter, P. Folkesson, and J. Karlsson. “Assembly-Level
Pre-injection Analysis for Improving Fault Injection Efficiency”. In:
Dependable Computing - EDCC 5. Ed. by M. Dal Cin, M. Kaâniche,
and A. Pataricza. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 246–262. ISBN: 978-3-540-32019-7.

[3] G. Munkby and S. Schupp. “Improving Fault Injection of Soft Errors
Using Program Dependencies”. In: Testing: Academic Industrial Con-
ference - Practice and Research Techniques (taic part 2008). 2008,
pp. 77–81.

[4] J. Grinschgl, A. Krieg, C. Steger, R. Weiss, H. Bock, and J. Haid.
“Efficient fault emulation using automatic pre-injection memory ac-
cess analysis”. In: 2012 IEEE International SOC Conference. 2012,
pp. 277–282. DOI: 10.1109/SOCC.2012.6398361.

[5] B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson. “A
Comparison of Inject-on-Read and Inject-on-Write in ISA-Level Fault
Injection”. In: 11th European Dependable Computing Conf. 2015,
pp. 178–189. DOI: 10.1109/EDCC.2015.24.

[6] A. C. Bagbaba, M. Jenihhin, J. Raik, and C. Sauer. “Efficient Fault
Injection based on Dynamic HDL Slicing Technique”. In: CoRR
abs/2002.00787 (2020). arXiv: 2002.00787.

[7] L. Berrojo, I. Gonzalez, F. Corno, M. Reorda, G. Squillero, L. Entrena,
and C. Lopez. “New techniques for speeding-up fault-injection cam-
paigns”. In: Proceedings 2002 Design, Automation and Test in Europe
Conference and Exhibition. 2002, pp. 847–852. DOI: 10.1109/DATE.
2002.998398.

[8] D. Smith, B. Johnson, and J. Profeta. “System dependability evaluation
via a fault list generation algorithm”. In: IEEE Transactions on
Computers 45.8 (1996), pp. 974–979. DOI: 10.1109/12.536240.

[9] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran. “Relyzer:
Exploiting Application-Level Fault Equivalence to Analyze Applica-
tion Resiliency to Transient Faults”. In: Proceedings of the Seventeenth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS XVII. London, England,
UK: Association for Computing Machinery, 2012, pp. 123–134. ISBN:
9781450307598. DOI: 10.1145/2150976.2150990.

[10] F. Ayatolahi, B. Sangchoolie, R. Johansson, and J. Karlsson. “A Study
of the Impact of Single Bit-Flip and Double Bit-Flip Errors on Program
Execution”. In: Computer Safety, Reliability, and Security. Ed. by F.
Bitsch, J. Guiochet, and M. Kaâniche. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 265–276. ISBN: 978-3-642-40793-2.

[11] B. Sangchoolie, K. Pattabiraman, and J. Karlsson. “An Empirical Study
of the Impact of Single and Multiple Bit-Flip Errors in Programs”. In:
IEEE Transactions on Dependable and Secure Computing 19.3 (2022),
pp. 1988–2006.

[12] I. Tuzov, D. de Andres, and J.-C. Ruiz. “Reversing FPGA architectures
for speeding up fault injection: does it pay?” In: 18th European
Dependable Computing Conf. 2022.

[13] R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren. “MODIFI:
A MODel-Implemented Fault Injection Tool”. In: Computer Safety,
Reliability, and Security. Ed. by E. Schoitsch. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 210–222. ISBN: 978-3-642-
15651-9.

[14] B. Sangchoolie, P. Folkesson, and J. Vinter. “A study of the interplay
between safety and security using model-implemented fault injection”.
In: 2018 14th European Dependable Computing Conference (EDCC).
IEEE. 2018, pp. 41–48.

[15] P. Folkesson, F. Ayatolahi, B. Sangchoolie, J. Vinter, M. Islam, and
J. Karlsson. “Back-to-Back Fault Injection Testing in Model-Based
Development”. In: Computer Safety, Reliability, and Security. 2015.
ISBN: 978-3-319-24255-2.

[16] D. Skarin, J. Vinter, and R. Svenningsson. “Visualization of Model-
Implemented Fault Injection Experiments”. In: Computer Safety, Re-
liability, and Security. Ed. by A. Bondavalli, A. Ceccarelli, and F.
Ortmeier. Cham: Springer International Publishing, 2014, pp. 219–230.
ISBN: 978-3-319-10557-4.

[17] G. Juez, E. Amparan, R. Lattarulo, A. Ruíz, J. Pérez, and H. Espinoza.
“Early Safety Assessment of Automotive Systems Using Sabotage
Simulation-Based Fault Injection Framework”. In: Computer Safety,
Reliability, and Security. Ed. by S. Tonetta, E. Schoitsch, and F. Bitsch.

https://doi.org/10.1109/SOCC.2012.6398361
https://doi.org/10.1109/EDCC.2015.24
https://arxiv.org/abs/2002.00787
https://doi.org/10.1109/DATE.2002.998398
https://doi.org/10.1109/DATE.2002.998398
https://doi.org/10.1109/12.536240
https://doi.org/10.1145/2150976.2150990


Cham: Springer International Publishing, 2017, pp. 255–269. ISBN:
978-3-319-66266-4.

[18] I. Pill, I. Rubil, F. Wotawa, and M. Nica. “SIMULTATE: A Toolset for
Fault Injection and Mutation Testing of Simulink Models”. In: 2016
IEEE Ninth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). 2016, pp. 168–173. DOI: 10.1109/
ICSTW.2016.21.

[19] Fault Injection Block (FIBlock). https : / / se . mathworks . com /
matlabcentral / fileexchange / 75539 - fault - injection - block - fiblock.
Accessed: 2022-06-15.

[20] H. Schirmeier, C. Borchert, and O. Spinczyk. “Avoiding Pitfalls in
Fault-Injection Based Comparison of Program Susceptibility to Soft
Errors”. In: 2015 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. 2015, pp. 319–330. DOI: 10.1109/
DSN.2015.44.

[21] A. Avizienis, J.-C. Laprie, and B. Randell. Fundamental Concepts of
Dependability. 739. Newcastle upon Tyne: Department of Computing
Science, University of Newcastle upon Tyne, 2001, p. 21.

[22] E. W. Czeck and D. P. Siewiorek. “Observations on the Effects of Fault
Manifestation as a Function of Workload”. In: IEEE Trans. Comput.
41.5 (May 1992), pp. 559–566. DOI: 10.1109/12.142682.

[23] J. Aidemark, P. Folkesson, and J. Karlsson. “Path-based error coverage
prediction”. In: Proceedings Seventh International On-Line Testing
Workshop. 2001, pp. 14–20. DOI: 10.1109/OLT.2001.937811.

[24] P. Folkesson and J. Karlsson. “Considering Workload Input Variations
in Error Coverage Estimation”. In: Proceedings of the Third Euro-
pean Dependable Computing Conference on Dependable Computing.
EDCC-3. Berlin, Heidelberg: Springer-Verlag, 1999, pp. 171–190.
ISBN: 3540664831.

[25] B. Sangchoolie, K. Pattabiraman, and J. Karlsson. “One Bit is (Not)
Enough: An Empirical Study of the Impact of Single and Multiple Bit-
Flip Errors”. In: 2017 47th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN). 2017, pp. 97–108.
DOI: 10.1109/DSN.2017.30.

[26] Simulink - Examples Automotive Applications. https://se.mathworks.
com/help/simulink/examples.html. Accessed: 2022-06-14.

[27] TIMMO - Timing Model project. http : / / adt . cs . upb . de / timmo - 2 -
use/timmo/index.htm. Accessed: 2018-03-21.

[28] VeTeSS - Verification and Testing to Support Functional Safety Stan-
dards project. https://artemis- ia.eu/project/43-vetess.html. Accessed:
2018-03-21.

[29] B. Sangchoolie, R. Johansson, and J. Karlsson. “Light-Weight Tech-
niques for Improving the Controllability and Efficiency of ISA-Level
Fault Injection Tools”. In: 2017 IEEE 22nd Pacific Rim International
Symposium on Dependable Computing (PRDC). 2017, pp. 68–77. DOI:
10.1109/PRDC.2017.18.

[30] W. G. Bouricius, W. C. Carter, and P. R. Schneider. “Reliability Model-
ing Techniques for Self-Repairing Computer Systems”. In: Proceedings
of the 1969 24th National Conference. ACM ’69. New York, NY,
USA: Association for Computing Machinery, 1969, pp. 295–309. ISBN:
9781450374934.

[31] T. Arnold. “The Concept of Coverage and Its Effect on the Reliability
Model of a Repairable System”. In: IEEE Transactions on Computers
C-22.3 (1973), pp. 251–254. DOI: 10.1109/T-C.1973.223703.

[32] B. Fang, Q. Lu, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi.
“ePVF: An Enhanced Program Vulnerability Factor Methodology for
Cross-Layer Resilience Analysis”. In: 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
2016, pp. 168–179.

[33] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman. “LLFI:
An Intermediate Code-Level Fault Injection Tool for Hardware Faults”.
In: 2015 IEEE International Conference on Software Quality, Relia-
bility and Security. 2015, pp. 11–16. DOI: 10.1109/QRS.2015.13.

[34] B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson. “A
Study of the Impact of Bit-Flip Errors on Programs Compiled with
Different Optimization Levels”. In: 2014 Tenth European Dependable
Computing Conference. 2014, pp. 146–157. DOI: 10.1109/EDCC.2014.
30.

https://doi.org/10.1109/ICSTW.2016.21
https://doi.org/10.1109/ICSTW.2016.21
https://se.mathworks.com/matlabcentral/fileexchange/75539-fault-injection-block-fiblock
https://se.mathworks.com/matlabcentral/fileexchange/75539-fault-injection-block-fiblock
https://doi.org/10.1109/DSN.2015.44
https://doi.org/10.1109/DSN.2015.44
https://doi.org/10.1109/12.142682
https://doi.org/10.1109/OLT.2001.937811
https://doi.org/10.1109/DSN.2017.30
https://se.mathworks.com/help/simulink/examples.html
https://se.mathworks.com/help/simulink/examples.html
http://adt.cs.upb.de/timmo-2-use/timmo/index.htm
http://adt.cs.upb.de/timmo-2-use/timmo/index.htm
https://artemis-ia.eu/project/43-vetess.html
https://doi.org/10.1109/PRDC.2017.18
https://doi.org/10.1109/T-C.1973.223703
https://doi.org/10.1109/QRS.2015.13
https://doi.org/10.1109/EDCC.2014.30
https://doi.org/10.1109/EDCC.2014.30

	Introduction
	Background and Related Work
	Injection-Based Verification and Validation (V&V)
	Previous Work on Pre- and Post Injection Analyses
	Inject-on-read Barbosa05,Munkby08,Grinschgl12
	Inject-on-write Grinschgl12,Sangchoolie2015
	Code-slicing Bagbaba20
	Post-injection Analyses Czeck92,Aidemark01,Folkesson99,Sangchoolie17
	Fault List Collapsing Berrojo02,Smith96
	Error Space Pruning Hari12,Ayatolahi13,Sangchoolie2020,Tuzov2022


	Experimental Setup
	Model-Implemented Fault/Attack Injection Tool (MODIFI)
	Pre-Injection Analysis Techniques Under Evaluation
	Simulink Models under Evaluation and the Attack Injection Campaign Setup
	Lock and Comfort Control Model
	Brake-By-Wire Model (BBW)


	Experimental Results
	Comparison of Error Space Reduction
	Results Obtained for the Lock and Comfort Control Model
	Results Obtained for the Brake-By-Wire Model (BBW)

	Conclusions and Future Work
	References

