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Abstract—Cyber-Physical Systems (CPSs) are increasingly
used in various safety-critical domains; assuring the safety of
these systems is of paramount importance. Fault Injection is
known as an effective testing method for analyzing the safety
of CPSs. However, the total number of faults to be injected in
a CPS to explore the entire fault space is normally large and
the limited budget for testing forces testers to limit the number
of faults injected by e.g., random sampling of the space. In this
paper, we propose DELFASE as an automated solution for fault
space exploration that relies on Generative Adversarial Networks
(GANs) for optimizing the identification of critical faults, and
can run in two modes: active and passive. In the active mode, an
active learning technique called ranked batch-mode sampling is
used to select faults for training the GAN model with, while in the
passive mode those faults are selected randomly. The results of
our experiments on an adaptive cruise control system show that
compared to random sampling, DELFASE is significantly more
effective in revealing system weaknesses. In fact, we observed that
compared to random sampling that resulted in a fault coverage
of around 10%, when using the active and passive modes, the
fault coverage of DELFASE could be as high as 89% and 81%,
respectively.

Index Terms—Fault injection, cyber-physical systems, genera-
tive adversarial networks, safety assessment.

I. INTRODUCTION

Cyber-physical systems (CPSs) are complex systems that in-
tegrate cyber components (i.e., computing hardware, network
hardware, and software) with mechanical components (e.g.,
sensors and actuators). CPSs have proven to be vital in a range
of safety-critical domains, including health-care, smart grids,
aerospace, energy and transportation [1]. Due to the increasing
application of CPSs, their safety has attracted a lot of attention
in the computing community. Over the last years, a variety of
testing methods have been developed for analyzing the safety
of CPSs. The safety assurance of these systems is challenging
due to reasons such as the high connectivity and heterogeneity
of these systems, the dynamicity of their environments and
several real-time constraints that they need to satisfy.

An effective testing technique that facilitates safety assess-
ment of CPSs is fault Injection (FI). With the help of FI, one

can evaluate the safety of a CPS by accelerating the occurrence
of possible faults [2]. Three attributes are typically considered
for every injected fault, namely fault type/model, location of
injection, and fault activation time [3]. Each attribute might be
supplied with one or more parameters that should be evaluated.
Typically, several values could be selected for evaluating each
of these parameters whose combination leads to an exponential
growth of the fault space size.

Traditional FI methods rely on expert knowledge and his-
torical data from system failures to decide on the type of faults
that should be injected as well as their location and timing [4].
We in this paper are, however, interested in identification of
critical faults through automatic exploration of the fault space
using Machine Learning (ML). Note that, with critical faults,
we refer to those that reveal system weaknesses leading to the
violation of safety requirements. The method we propose for
exploration of the fault space is based on supervised learning.
This method establishes a model between the injected faults
and the execution behavior of the System Under Test (SUT).
This model represents the knowledge learned automatically
through interaction with the SUT, and helps us locate more
critical faults with less effort. Note that, effective exploration
of the fault space has also been studied in the past using
other techniques such as those that are deterministic [5],
[6] or model-based [7], as well as those that are based on
evolutionary optimization [8] or reinforcement learning [9].

In this paper, we propose to apply Generative Adversarial
Networks (GANs) [10] to the problem of fault space explo-
ration. GANs have been successfully used in several appli-
cations (e.g., image generation [11], anomaly detection [12]
and performance testing [13]). However, to the best of our
knowledge, this work demonstrates the first application of
GANs in fault space exploration.

Using GANs, we take advantage of a generator model for
intelligent fault generation and a discriminator model to pre-
dict the impact of each generated fault on safety requirements,
based on the knowledge acquired through interactions with the



SUT. Following this approach, we are able to identify several
critical faults without the need to do an exhaustive search in
the fault space and examine the impact of all candidate faults
on an SUT. The proposed solution, which is named DELFASE
(a DEep Learning method for FAult Space Exploration), trains
a GAN model in an online manner with no need for a pre-
existing training dataset. DELFASE can work in two modes:
active and passive. In the active mode, ranked batch mode
sampling [14] as an Active Learning (AL) technique is utilized
to build the training dataset in an intelligent way so that
the GAN model learns more about the fault space with less
training data. In the passive mode, the faults to be included in
the training dataset are selected randomly.

To evaluate DELFASE, we consider an Adaptive Cruise
Control (ACC) with sensor fusion as the SUT. The purpose
of ACC is to keep a safe distance between two cars. We have
performed FI experiments on the MATLAb/Simulink model
of this system with the goal of measuring fault coverage (FC)
indicating the percentage of critical faults; these faults are
those that lead to an accident between the two cars. We limited
our experiment to a two-car scenario, while earlier studies have
shown that the entire traffic might be affected by a fault in a
single car [15]. The results of our experiments show that after a
few iterations, DELFASE identifies a higher number of critical
faults compared to when the fault space is randomly sampled.
Furthermore, the results confirm that when using the active
mode, DELFASE achieves a desired FC faster than when the
passive mode is used. This, however, comes with a higher
overhead of model training, which is around 0.4 seconds for
each training step (or epoch). In summary, this paper makes
the following contributions:

• Introduces DELFASE as an automated ML solution for
fault space exploration when conducting FI campaigns
(see Section V).

• Implements two modes of operation for DELFASE,
namely the active and passive modes where the former
uses ranked batch mode sampling to train the dataset [14],
while the latter includes faults in the training dataset
randomly.

• Explores the fault space using the active and passive
modes of DELFASE and conducts a comparison of the
results obtained for these modes with when the fault space
is randomly sampled with respect to fault coverage, la-
beling effort, and execution overhead (see Section VI-B).

II. BACKGROUND

A. Fault Injection
Fault Injection (FI) is a testing method suitable for observ-

ing systems’ behavior under small perturbations [2]. In this
method, engineers manipulate a real or a virtual system to
make it fail in order to test the system’s robustness or analyze
the system’s dependability attributes such as safety. In FI, there
are typically three attributes that would need to be specified
for each fault. These attributes are (1) fault type/model, (2)
fault activation time, and (3) fault location [3]. Some typical
fault models are as follows:

• Data fault: In this model, the data transmitted between
the SUT components are manipulated. For example, we
can inject data faults by manipulating sensor data. In real
world, sensor data could change due to faults in sensors or
changes in the external environment (e.g., rainy or foggy
weather).

• Hardware fault: Bit-flip and stuck-at-value are examples
of hardware faults. In the bit-flip model, one or several
bits of the value stored in a location (e.g., a CPU register)
are flipped. In the stuck-at-value model, a signal/pin is
tied to a specific value.

• Timing fault: In this model, the transmission of data
between two components of the SUT is delayed. This
delay might lead to loss or out of order delivery of data.

FI techniques can be categorized into three groups [16]:
model-implemented [17], hardware-implemented [18] and
software-implemented [19]. In this paper, we focus on model-
implemented FI where faults are injected into software/hard-
ware models as opposed to the other FI categories which target
software/hardware implementations. We inject faults into a
MATLAB/Simulink model of an SUT. Model-implemented
FI eases the process for test engineers as the evaluation is
performed in a higher abstraction level without the need to do
costly experiments on the real system. In fact, using model-
implemented FI, we can conduct thousands of FI experiments
in a short period of time. Furthermore, we can apply this
method in the early development stages when the system is
not implemented yet or is incomplete. However, the accuracy
of the experimental results would be closely connected to the
accuracy of the model.

B. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [10] are gener-
ative models that can learn the distribution of input data to
generate realistic data. In a typical GAN architecture (see
Figure 1), there are two models: a generator and a discrim-
inator. The generator model is trained to generate dummy
data, and the discriminator model is trained to discriminate
dummy data from real data. In other words, the generator
model and the discriminator model compete with each other in
a game during model training. In such a game, the generator
constantly learns to generate convincing examples to fool the
discriminator such that it cannot distinguish them from real
data. Simultaneously, the discriminator is trained by real and
dummy data, and constantly learns to identify real examples
from dummy ones. The ultimate goal of the game is to make
the generator so powerful that it can generate dummy data that
the discriminator cannot distinguish from real data.

C. Active Learning

Passive learning is the typical learning scenario followed
in most supervised learning applications. In this scenario, a
labeled dataset is provided in advance for an ML model to
learn from. However, in Active Learning (AL), we let the ML
model decide which data to learn from [20]. AL is suitable for
cases that data labeling is expensive. For instance, for training



Fig. 1: A typical GAN model

deep learning models (e.g., the GAN model in this paper)
we usually need a large labeled dataset. Experimental studies
in several domains e.g., intrusion detection [21], and natural
language processing [22] confirm the effectiveness of AL in
reducing the cost of data labeling. In this paper, we introduce
the first application of AL to the FI domain and demonstrate
how its integration with GANs can reduce the cost of fault
labeling. Note that, we assign a binary label to each injected
fault, which indicates whether the fault is critical (i.e., leads
to safety failure) or not.

Now, the question is how data is labeled in AL. Membership
query synthesis and pool-based sampling are examples of data-
labeling scenarios typically followed in AL [20]. In the first
scenario, the ML model generates data instances by sampling
from an underlying distribution. However, in the latter, the
learner uses a query strategy to select data instances from a
pool of observed data. Least Confidence (LC) is an example of
such query strategies [20], where instances for which the ML
model is least confident in label assignment are selected for
labeling. In this paper, we use a combination of membership
query synthesis and pool-based sampling for data labeling. In
particular, we take advantage of GANs to synthesize new faults
(or queries in AL terminology) and use ranked batch-mode
sampling [14] as a novel variant of pool-based sampling to
prioritize them for injection. Ranked batch-mode sampling has
two advantages over traditional pool-based sampling methods:
(1) it allows us to select more than one instance from the pool
in each iteration, and (2) its ranking mechanism helps us avoid
injecting redundant faults. The query strategy that we use in
the above labeling scenario is LC.

III. RELATED WORK

FaultCheck [23] is a FI tool that facilitates generation
of fault models by a property-based testing tool called
QuickCheck. By integrating these two tools, the authors of
the work show how in addition to normal circumstances, we
can validate safety requirements in circumstances that certain
faults are present in the SUT. MODIFI [16] is another FI tool
which is suitable for injecting faults into Simulink models.
This tool receives as input the fault model and can inject
a user-defined set of faults and cybersecurity attacks [24]
into the SUT both sequentially and concurrently. As another

Simulink-based tool, ErrorSim [25] allows injecting different
types of faults (e.g., hardware fault, network fault, sensor fault,
etc.) into Simulink models, specifying their occurrence and
duration, and analyzing the propagation of errors throughout
the models. In [26], the authors combine fault trees with
simulation-based FI to analyze the propagation of failures
throughout the SUT. Hereby, the faults to be injected are
automatically extracted from fault trees. Fault trees contain
expert knowledge about SUT or heuristics on systems failure.
Including this knowledge in FI would help fault injector to
analyze frequent failures faster and assure that all known
failures have been covered in the testing process.

Despite being useful, the above contributions do not address
the challenge of fault space exploration. In other words, the
set of faults to be injected is either predefined or selected
by random sampling. Sangchoolie et al. [6], [27] propose
to use prior knowledge about the outcome of bit-flip faults
to prune the fault space. In particular, they observed that
the impact of injecting faults into certain bit positions could
be identified a priori, hence no need to inject faults into
those locations. SEInjector [28] is a FI tool for analyzing
transient faults. This tool ignores the faults whose outcome
is known without the need for injection. To further accelerate
fault space exploration, SEInjector classifies faults based on
their outcomes, so that the faults with similar outcomes go to
the same equivalence class. Then, from each class only one
instance would be injected into the SUT.

In DriveFI [29] Bayesian Networks (BNs) are used to find
critical faults that may lead to safety hazards. The authors
use domain knowledge and the safety model of the SUT to
build a BN. The BN built is then analyzed to identify critical
faults. The experimental results show that using BNs, more
critical faults can be found within a shorter period of time
compared to random sampling. Both SEInjector and DriveFI
rely on domain knowledge about the SUT to prune the fault
space. Maldini et al. [8] propose an evolutionary algorithm for
optimizing the search in the fault space and use the algorithm
to attack a cryptography algorithm. The proposed algorithm
relies less on prior knowledge and is more suitable for black-
box testing scenarios. However, the algorithm supports only
discrete fault spaces. So, if we have continuous-value fault
parameters, we have to discretize them first. DELFASE can
work with both discrete and continuous fault data.

As an example of ML solutions, reinforcement learning
is used for fault space exploration [30]. The solution has a
better performance compared to random sampling. However,
as emphasized by the authors, defining an appropriate reward
function is a significant challenge when using reinforcement
learning for fault space exploration. In this paper, we propose a
supervised learning solution for fault space exploration which
takes advantage of AL to reduce the labeling cost, without the
need to manually define a suitable reward function.

IV. SYSTEM UNDER TEST

In this paper, we use an Adaptive Cruise Controller (ACC)
as the SUT. ACC is a driving assistance system that can be
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Fig. 3: The operation modes of ACC

used to regulate the speed of a car and maintain a safe distance
from cars ahead. This system prevents the controlled car, i.e.,
ego car, from getting too close to the car in front, i.e., lead
car. ACC is equipped with both vision and radar sensors to
detect the lead car, and to measure the position and velocity
of the cars accurately.

The Simulink model of ACC is shown in Figure 2. This
model is an extension of the original model [31]. The model
includes three main modules. The first module (named Adap-
tive Cruise Control System) models the ACC functionality
which is to control and generate the acceleration of the ego
car. The other two modules (named Ego Car and Lead Car)
model the car dynamics, steering wheel controller, roads and
environment actors for the ego and lead cars. The sensor data
synthesized by these modules are sent to the first module
to determine the appropriate acceleration for the ego car. As
shown in Figure 3, ACC works in two modes depending on
the relative distance between the cars. In the speed control
mode, ACC makes the ego car travel at the driver-set speed,
but it will switch to the spacing control mode whenever the
cars get too close. In this mode, ACC reduces the speed of
the ego car until there is a safe distance between the cars.

ACC is a safety-critical system, since any malfunction of
ACC can endanger environment or human life. Therefore, the

safety of this system should be analysed carefully. To this
end, a block for checking safety requirements ((Safety Check
in Figure 2)) is added to the original ACC model. In this paper,
we consider one safety requirement for the ACC as defined
by Equation 1. This requirement specifies distanceunsafe as a
lower bound for the distance between the two cars. This lower
bound is 4m (length of a car in the simulation) [32], and if
the relative distance between the two cars gets less than this
bound, the block sets a requirement violation flag and stops
the simulation immediately.

distancerelative ≥ distanceunsafe (1)

In addition to Safety Check, we have added FIBlock to
the original ACC model to inject faults into the acceleration
signal transferred between ACC and the ego car. This block is
an instance of the Fault Injection Block introduced in [7] as
a MATLAB extension. This extension supports six common
types of faults (i.e., stuck-at-value, packet-loss, bias/offset, bit-
flip, delay and noise), and has the following configuration
parameters [7]:

1) fault type: the type/model of the fault being injected
(e.g., stuck-at-value), which may be supplied with a seed
value. For example, an offset fault requires a seed value
which specifies the magnitude of the offset.

2) fault event: how the fault occurs (e.g., probabilistic) and
the corresponding seed value. For example, if the fault
event is deterministic, this value specifies the point of
time for fault injection.

3) fault effect: how long the fault will affect the SUT (e.g.,
infinite) and a seed value for specifying the duration.
For example, if the fault affects the SUT for a constant
period of time, then this value specifies the length of the
time interval the fault will persist in the SUT.

In the Simulink model shown in Figure 2, FIBlock is
configured to inject bias/offset faults at deterministic points
of time and with a constant duration. However, the magnitude
of offset and the exact time/duration of injection are the fault
parameters to be explored by DELFASE (see Section VI).
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V. PROPOSED METHOD

This section presents an overview of DELFASE as an ML
method for fault space exploration. As shown in Figure 4, fault
space exploration in DELFASE is an online learning process
which includes the following steps:

1) Fault Synthesis: Generator synthesizes a pool of un-
labeled faults. For example, considering the example
in Section IV, each synthesized fault includes three
features corresponding to the three value parameters of
FIBlock1. The seed values provided for these parameters
are numeric and can be initialized automatically e.g., by
an ML model.

2) Fault Injection: Fault Injector iteratively takes a fault
out of the pool received from Generator and injects
it into the SUT. After each injection, it waits until a
feedback is received from the SUT, and then injects the
next fault. The feedback indicates whether the fault was
critical (i.e., led to the violation of a safety requirement)
or not.

3) Fault Recording: After injection of faults and receiving
the SUT outputs for the whole fault pool, Fault Recorder
divides the injected faults into two groups according to
the injection outcomes: (1) critical faults (or real data in
GANs terminology) which led to the violation of safety
requirements (e.g., the one expressed by Equation 1
for the ACC example), and (2) non-critical faults (or
fake data in GANs terminology). Fault Recorder assigns
the labels 1 and 0 to critical and non-critical faults,
respectively, and records the critical faults in the fault
suite. This component stops the execution of DELFASE
if the size of the fault suite has reached the limit
specified by the user. Otherwise, it records the labeled
faults in the labelled dataset that will be used for training
the GAN model in step 5.

4) Fault Selection: In this step, a batch of faults are
selected by Fault Selector for training the GAN model.
In the passive mode, Fault Selector selects a random
batch of faults from the pool of faults labeled by Fault
Recorder. However, in the active mode, this component
uses ranked batch-mode sampling together with the
LC query strategy (see Section II-C for details about
active learning) to rank the labeled faults synthesized by

TABLE I: Configuration of FIBlock

Parameter Type Value
fault type offset [0,7]
fault event deterministic [0,7]
fault effect constant [0,7]

Generator, and then selects the superior ones for model
training. Following the ranked batch mode sampling
algorithm [14], Fault Selector takes the following steps
to rank the synthesized faults: (a) asks Discriminator to
predict the label of each fault, (b) uses the LC strategy
to estimate an uncertainty score for each fault based on
the label predicted by Discriminator, (c) uses Euclidean
distance to estimate the dissimilarity of each fault to
the other faults stored in the labeled dataset, and (d)
ranks the faults by evaluating a weighted sum of the
uncertainty and the lowest dissimilarity estimated for
each one. According to the ranked batch mode sampling
algorithm [14], for the initial iterations that we have
fewer labeled faults, a higher weight would be assigned
to the dissimilarity score (to increase diversity among
the labeling candidates). However, in latter iterations,
uncertainty gets a higher weight.

5) Model Training: The GAN model is trained in two
steps. First, Discriminator is trained using the faults
selected by Fault Selector. Then, the weights of Gen-
erator are updated based on the knowledge learned by
Discriminator. In particular, the parameters of Discrim-
inator will be frozen in the second step, and the whole
GAN model will be trained to update the weights of
Generator. After training the GAN model, execution of
DELFASE moves to Step 1.

VI. EVALUATION

In this Section, we provide details about the implementation
of DELFASE, and present the results of the fault injection
experiments performed. The ACC elaborated in Section IV is
used as the SUT, and the Python engine of MATLAB is used
to facilitate interactions between DELFASE and the MATLAB
script running the Simulink model of ACC.

A. Experimental Setup

We have implemented DELFASE using Python 3.8 and
TensorFlow platform [33] (the source code is available on-
line 1). We utilized Keras [34] as a practical ML library
to implement the GAN model and took advantage of the
implementation provided in modAL [35] for the AL technique
used in DELFASE (i.e., ranked batch-mode sampling).

Figure 5 shows the architectures of the GAN model in
DELFASE. In this model, Discriminator takes as input a fault
and outputs a binary value indicating whether the fault is
critical (label = 1) or non-critical (label = 0). For fea-
ture extraction, Discriminator includes two one-dimensional
convolution layers with 64 neurons, a kernel size of 4, and

1https://github.com/alisedaghatbaf/DELFASE
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LeakyReLU [36] as the activation function. The extracted
features are then used by the next three layers for classification.
The classification task is performed by the last layer which is
a fully connected (or Dense in Keras terminology) layer with
one neuron and a Sigmoid [37] activation function. However,
since that layer takes only 1-dimensional inputs, we need to
reduce the dimensionality of the feature vectors using a Flatten
layer. In particular, each feature vector is 2-dimensional where
time is one of the dimensions, and the Flatten layer removes
this dimension. Finally, the purpose of adding a Dropout
layer between the last two layers is to randomly drop out a
ratio of neurons (i.e., 0.4) during training, and thereby avoid
overfitting [38]. For training, Discriminator relies on binary
cross-entropy [39] as the loss function and RMSprop [40] as
the optimizer.

Generator on the other hand, takes as input a point in the
latent space and generates a point in the fault space. Latent
space is a 100-sphere where each of the 100 variables is
drawn from a Gaussian distribution G(0, 1). We consider latent
points as abstract representations of faults. Therefore, in the
first layer of Generator shown in Figure 5, we use a fully
connected layer to interpret the input latent points. This layer
has 3×128 neurons, where 3 is the number of fault parameters
(see Table I). In the second layer, we reshape the outputs
of the first layer to fit the dimensionality of the fault space.
Then we upsample them via two deconvolution (or transposed
convolution) layers to make each point four times the size of
a point in the fault space. For each deconvolution layer, the
kernel size is 4 and the number of neurons is 128. Finally,
we generate faults by downsampling those points using a
convolution layer, which has only one neuron and a kernel size
of 4, and uses hyperbolic tangent as the activation function.
The GAN model is formed by putting Generator on top of
Discriminator. For training Generator, the GAN model relies
on RMSprop and binary cross-entropy as the optimizer and
loss function, respectively.
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B. Experimental Results

We ran our experiments on a computer with an AMD Ryzen
7 (3.8 GHz) processor. In these experiments we configured
FIBlock1 such that it would inject offset faults, in a determin-
istic time during the simulation, and for a constant period of
time, and assumed that the seeds of those parameters would
take any floating point value between zero and seven (see
Table I). Note that, the motivation for choosing seven as the
upper bound for the fault parameters was the observation that
for the majority of the values higher than seven, the safety
requirement expressed by Equation 1 would be violated. In
particular, we injected 100 faults with at least two values
higher than seven and 87 of them were found to be critical.

We ran DELFASE for 100 iterations assuming an infinite
size for the fault suite. In each iteration, Generator was asked
to synthesize a fault pool of size 128 such that 32 of them
were selected by Fault Selector for training the GAN model
in each iteration. Figure 6 shows how many of the faults
synthesized in each iteration were found to be critical after
injection. The figure shows that DELFASE can explore the
fault space and generate many critical faults after a few
iterations. Furthermore, the figure shows that the active mode
would require fewer iterations, when compared to the passive
mode, to learn the fault space and generate a high ratio of
critical faults.

To investigate the effectiveness of DELFASE, we per-
formed a comparison with uniform random sampling. We used
random.uniform() function of Python to generate random
values between zero and seven for each fault parameter and in-
jected the generated faults to the SUT and used Fault Recorder
for labeling them. We repeated random fault generation for 100
iterations such that similar to the experiment on DELFASE,
128 faults were generated in each iteration, and we recorded
the number of critical faults generated in each iteration. The
results are summarized in Table II. The table shows that, the
FC of random sampling is around 10% irrespective of the fault
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suite size. However, after 100 training iterations, the FC of
DELFASE rises up to 81% and 89% for the passive and active
modes, respectively. These results also indicate that for very
small fault suites, random sampling has a better FC compared
to passive DELFASE.

Figure 7 compares DELFASE with random sampling from
the labeling effort (i.e., the number of faults labeled) per-
spective. In this regard, for small fault suites with less than
300 critical faults, the labeling effort of passive DELFASE
is comparable with random sampling. However, the effort of
random sampling can be much higher for bigger fault suits. For
example, since the FC of random sampling is around 10% (see
Table II), for a fault suite of size 1000, we need to label around
10000 faults. which is a considerable effort. These results also
highlight the low labeling effort of active DELFASE compared
to both passive DELFASE and random sampling.

From the execution time (overhead) perspective, the results
presented in Table II indicate that active DELFASE results
in the least overhead. This is an interesting conclusion as
before conducting the experiments, one could expect that
DELFASE would require a higher execution time in the active
mode compared to the passive mode and random sampling,

considering the overhead of model training, and the fault
selection algorithm. To investigate this further, we measured
the average execution time of the system under test (SUT).
While for non-critical faults, each run of the SUT takes around
2.4 seconds, our investigations revealed lower execution times
for critical faults due to the fact that the Safety Check ends
the simulation as soon as the safety requirement expressed by
Equation 1 gets violated (see Section IV for more details).
Therefore, higher FC implies an overall lower execution time
of the Simulink model. Furthermore, to analyze the impact of
the time it takes to train the models on the overall overhead, we
measured the average execution time of each model training
step of DELFASE (i.e., step 5 in Section V) and found it
to be approximately 1 and 1.4 seconds for the passive and
active modes, respectively. As mentioned above, 128 faults
were labeled in each iteration of DELFASE, which means that
an approximate overhead of 2.4 × 128 = 307.2 seconds for
simulation run in each iteration could be expected (in the worst
case where none of the injected faults are found to be critical).
Therefore, it is easy to notice the low impact of model training
on the overall execution time, compared to fault injection and
simulation run.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced DELFASE as a supervised
learning solution for fault space exploration. This solution
takes advantage of Generative Adversarial Networks and an
active learning technique called ranked batch-mode sampling.
Effective identification of critical faults (faults that lead to
safety issues) with low test budget is the main challenge
addressed by this solution. Here, by test budget we mean the
number of faults that should be injected into the SUT in order
to identify critical ones.

Our experiment on the Simulink model of an adaptive cruise
control system (as a safety-critical cyber-physical system)
confirms that the proposed solution can identify more critical
faults with less test effort compared to random sampling.
Furthermore, we found that using active learning would lead
to faster learning and less execution overhead compared to
passive learning where the machine learning model does to
take part in the selection of training data. However, our
experiments were focused only on one fault model and as

TABLE II: Results of the experiments

Iterations Generated Faults
DELFASE (passive learning) DELFASE (active learning) Random Sampling

Critical Faults FC(%) Time(s) Critical Faults FC(%) Time(s) Critical Faults FC(%) Time(s)
10 1280 0 0.0 3146.3 386 30.1 3017.2 135 10.5 3088.7
20 2560 590 23 6085.5 1440 56.2 5786.3 254 9.9 6183.1
30 3840 1677 43.7 8851 2546 66.3 8558.9 389 10.1 9271.8
40 5120 2742 53.5 11624.3 3755 73.3 11285.7 524 10.2 12360.6
50 6400 3938 61.5 14351.7 5026 78.5 13990.9 671 10.5 15445.1
60 7680 5208 67.8 17053.2 6305 82.1 16693.2 772 10 18545.8
70 8960 6488 72.4 19751.2 7585 84.6 19492.2 901 10 21636.6
80 10240 7768 75.8 22449.2 8865 86.6 22097.2 1035 10.1 24725.7
90 11520 9048 78.5 25147.2 10145 88.1 24799.2 1170 10.1 27814.5

100 12800 10328 80.7 27845.2 11425 89.2 27501.2 1305 10.2 30903.2



part of our future work, we plan on conducting experiments
using other fault models. Furthermore, we plan on conducting
experiments on more complex traffic scenarios as well as
investigating the impact of a fault on other cars in the traffic.

ACKNOWLEDGMENT

This work was partially funded by Flanders Make vzw
research centre, and the European IVVES (grant agreement No
18022) and VALU3S (grant agreement No 876852) projects.

REFERENCES

[1] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC). IEEE, 2008, pp. 363–369.

[2] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell, “Fault injection for dependability validation:
a methodology and some applications,” IEEE Transactions on Software
Engineering, vol. 16, no. 2, pp. 166–182, 1990.

[3] A. Benso and P. Prinetto, Fault injection techniques and tools for
embedded systems reliability evaluation. Springer Science & Business
Media, 2003, vol. 23.

[4] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.
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