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Abstract—This paper presents ComFASE, a communication
fault and attack simulation engine. ComFASE is used to identify
and evaluate potentially dangerous behaviours of interconnected
automated vehicles in the presence of faults and attacks in
wireless vehicular networks. ComFASE is built on top of OM-
NET++ (a network simulator) and integrates SUMO (a traffic
simulator) and Veins (a vehicular network simulator). The tool
is flexible in modelling different types of faults and attacks and
can be effectively used to study the interplay between safety
and cybersecurity attributes by injecting cybersecurity attacks
and evaluating their safety implications. To demonstrate the
tool, we present results from a series of simulation experiments,
where we injected delay and denial-of-service attacks on wireless
messages exchanged between vehicles in a platooning application.
The results show how different variants of attacks influence the
platooning system in terms of collision incidents.

Index Terms—attack injection, fault injection, simulation-
based system, V2V communication, platooning, cybersecurity
attack

I. INTRODUCTION

Connectivity of safety-critical cyber physical systems [1]
has increased drastically leading to the delivery of functions
and features with greater efficiency. One such example of these
systems is where vehicles communicate with each other to
alert drivers of upcoming hazards such as slippery road or
obstruction [2]. These systems should be built complying with
a comprehensive set of safety and security requirements. To
this end, they are equipped with fault and intrusion handling
mechanisms to protect the system from hardware and software
faults and cybersecurity attacks.

Testing and verification of a system’s capability of handling
faults and attacks is a complex task. It requires a compre-
hensive set of expertise and appropriate tools to discover the
weaknesses and vulnerabilities in the system. Fault and attack
injection is one of the effective testing techniques that is used
to evaluate the system in the presence of faults and attacks.

Faults and attacks can be injected into a system at different
stages of the product development life cycle, e.g., at early
design stages or close to a production. Injections performed
at initial stages [3]–[6] facilitate early discovery of system
weaknesses. This could result in saving time and cost since
late discovery of a weakness could trigger a costly redesign.

Fault and attack injection testing could be performed
in real-world or in simulation-based test environments.
Simulation-based testing is comparatively low-cost, repro-
ducible and offers high test coverage. Legal bodies such as
UNECE (United Nations Economic Commission for Europe)
[7] and automotive OEMs (Original Equipment Manufactur-
ers) are moving towards increasing the use of simulation-based
testing and verification of automated driving system (ADS)
[8] together with the real-world testing for validation and
certifications.

In this paper, we present ComFASE, an open source fault
and attack injection tool for evaluating the impact of vehicle-
to-vehicle (V2V) communication faults and attacks on au-
tomated vehicles in a simulation environment. ComFASE
incorporates two open source simulators: SUMO (a traffic
simulator) [9] and OMNeT++ (a network simulator) [10].
In addition, it requires a vehicular network simulator based
on OMNeT++, such as Veins [11]. ComFASE is capable of
evaluating the impact of communication faults and attacks on
the target vehicle as well as the surrounding traffic. This is
important as previous studies show that a faulty vehicle could
significantly influence the behaviour of surrounding vehicles
[12], [13].

To demonstrate the capabilities of ComFASE, we present
the results of experiments where we have injected two types
of cybersecurity attacks, namely delay and denial-of-service
(DoS), into the wireless channel between vehicles, modelled
in the Veins simulator. The target system in these experiments
is a platooning system implemented in the Plexe-veins [14].

We classify the results of the injections based on two
parameters: deceleration profiles of all vehicles in the platoon,
and collision incidents. These parameters allow us to measure
implications of the attacks on the system safety through
identification of cases where emergency braking or collision
incidents are reported by the target vehicle or the surrounding
traffic. After classification of the results, we analyse the ex-
periment outcomes with respect to attack injection parameters,
such as the attack initiation time and duration as well as its
value.

1



II. BACKGROUND

A. Simulation-based Fault and Attack Injection

Simulation-based fault and attack injection is a test method
that can be used to evaluate safety and cybersecurity attributes
of automated vehicles and is useful for early system design
evaluation when only a model or application prototype is avail-
able. Using this test method, it is possible to perform extreme
test cases which are otherwise difficult to setup in the real
world, costly to perform and can have severe consequences
in terms of property damages or human injuries. SUFI [12],
[13], SAE++ [15] and NETA [16] are some examples of the
simulation tools that implement this test method.

B. IEEE Standards for WAVE Communication

There are many wireless vehicular communication standards
available such as IEEE 802.11 [17], IEEE 802.11p [18], IEEE
802.11p/ITS-5G [19], 4G [20] and 5G [21]. These standards
provide different communication ranges and have applications
within different problem domains.

ComFASE injects faults and attacks in the wireless channel
model of the V2V communication, which is based on realistic
models of the IEEE 802.11p and the IEEE 1609.4 WAVE com-
munication protocols implemented in the Veins (see §II-C).
The wireless channel model represents an analog medium
where the message is transmitted after it is encoded and
modulated in the physical layer. The need for these standards
arises from the fact that vehicles move with high velocity and
therefore are subject to short and unstable connections [11]
[22].

IEEE 802.11p is an amendment of the IEEE 802.11 standard
to support WAVE for V2V communications. While IEEE
802.11p WAVE only covers the physical and lower layer of
MAC (media access control), IEEE 1609.4 covers upper MAC
layer of the vehicle communication system (see Fig. 1). IEEE
1609.4 [23] represents various components of the WAVE such
as multi-channel communication for radio operations, quality
of services, channel switching and routing.

Fig. 1: WAVE communication models and wireless channel
models implemented in Veins.

C. Simulation Environment

In this paper, ComFASE is configured to run experiments
with four simulators: OMNet++ v. 5.6.2 (a network simulator)
[10], SUMO v. 1.8.0 (a traffic simulator) [9], Veins v. 5.1

(a vehicular network simulator) [11] and Plexe-veins v. 2.1
(a platooning extension for Veins) [14]. Veins is built upon
OMNeT++ and implements simulation models of the com-
munication standards discussed in §II-B to allow testing and
analysis of vehicular networks and systems. Note, however,
that ComFASE can be configured to run with other vehicular
network simulators that are build upon OMNeT++. The model
of the platooning system (used as the system under test in
this paper), including vehicle dynamics and a cruise control
model, is implemented in Plexe-veins, which is based on Veins
and SUMO. All these simulators are open source and are
combined to provide a complete simulation environment (see
Fig. 2). Moreover, ComFASE logs detailed traffic simulation
data from SUMO and vehicular network simulation data from
Veins. Examples of data logged are vehicle speed, accelera-
tion/deceleration and position, as well as various other data,
which are used to describe collision incidents.

Fig. 2: ComFASE simulation environment.

D. Related Work

Previous studies that investigated the impact of network
attacks on platooning applications include Heijden et al. [24],
Boeira et al. [25], and Iorio et al. [26].

Heijden et al. [24] studied the impact on vehicle behavior
by injecting jamming attacks in the application layer of the
vehicular communication system. They investigated the re-
silience of different vehicle controllers to these attacks. Boeira
et al. [25], however, focused on sybil attacks (falsification of
multiple identities), message falsification and radio jamming
attacks in the application and network layers. The behaviour
of the targeted vehicle was observed in SUMO.

Iorio et al. [26] injected falsification of parameters (such
as position, speed and acceleration) attacks to study a coop-
erative adaptive cruise control (CACC) algorithm in a platoon
scenario. The target for the attacks was the platoon leader and
predecessor vehicle. They analysed the attack injection results
by looking into the distance between the platoon vehicles.
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Similar to the work presented by Heijden et al. [24], Iorio
et al. [26] compared the resiliency of different controllers.

Similar to ComFASE, the authors of [24], [25] and [26]
have developed tools to inject attacks in a platooning system
modelled in Plexe-veins [14]. However, unlike these tools,
ComFASE is capable of injecting attacks in wireless channel
models used for WAVE vehicle communication.

Lastinec et al. [27] uses an attack injection tool that is
similar to Heijden et al. in terms of message exploitation.
The attacker vehicle exploits an emergency vehicle’s (e.g., an
ambulance) information to gain privileges for driving faster.

SAE++ [15] and NETA (NETwork Attacks) [16] are OM-
NeT++/INET based attack simulation tools that have been
developed in the past. Unlike ComFASE, these tools are not
connected to a traffic simulator, and can therefore not assess
the impact of successful attacks on a traffic environment.

III. COMFASE: A COMMUNICATION FAULT AND ATTACK
SIMULATION ENGINE

ComFASE1 is capable of injecting faults and attacks in
the vehicular communication system modelled in the Veins
simulator (see Fig. 1). In this paper, we demonstrate the
capabilities of ComFASE to inject two types of cybersecurity
attacks on a wireless channel. We denote these attacks as
delay and denial-of-service attacks. The tool can be extended
with other types of faults and attacks to be injected in other
layers of the vehicular communication system such as the
physical and application layers. In order to evaluate various
cybersecurity attributes of a system, ComFASE allows to
integrate different traffic scenarios such as platooning and
teleopearation. In the simulated traffic scenario, ComFASE
targets the vehicles transmission and reception capabilities
by modifying the models built for vehicle communication in
Veins. Moreover, the tool provides an opportunity to analyse
the impact of faults and attacks on the target vehicle and the
surrounding traffic.

A. ComFASE Execution Flow

The execution of ComFASE is presented in four steps as a
pseudo code in Algo. 1. In this section, we present these steps
and explain how a test campaign is configured (Step-1: lines
1-4) and executed (Step-2 and Step-3: lines 5-15) and how the
campaign results are classified (Step-4: lines 16-18).

Step-1 Test-Configuration: The workflow begins with con-
figuration of the traffic scenario (TrafficScenario), communi-
cation model (CommModel), and attack injection campaign
(AttackCampaignSetup).

The parameters required to set-up the traffic scenario (line
2 in Algo. 1) are:

• roadFeatures, defining the road properties e.g., number
of lanes, length, width and speed limit.

• vehicleFeatures, defining the software and hardware prop-
erties of the vehicle e.g., length of the vehicle, maximum

1https://github.com/RISE-Dependable-Transport-Systems/ComFASE

speed, acceleration/deceleration ability and controller
such as CACC (cooperative adaptive cruise control).

• nrVehicles, setting the number of the vehicles in traffic.
• scenarioManeuver, defining the vehicles driving pattern,

such as acceleration and braking.
• totalSimTime, setting the total simulation time.

The traffic scenario can either be selected from already existing
scenarios or can be created and configured based on the user
needs.

In order to configure the communication model (line 3 in
Algo. 1), the parameters that need to be set are:

• commProtocol, specifying the communication protocol
which are valid for vehicle communication such as IEEE
802.11p, and IEEE 1609.4.

• wirelessModel, specifying the model to use for the envi-
ronmental effects in the wireless communication such as
’free path loss model’ and ’two-ray interference model’.

• packetSize, defining the size of the message that is to be
transferred through the wireless channel.

• beaconingTime, defining the beaconing frequency which
every vehicle uses to broadcast the messages.

The inputs required for setting the attack campaign (line 4
in Algo. 1) are:

• attackModel selection of a predefined attack model, e.g,
delay or denial-of-service (DoS) attack.

• targetVehicles, specifying the vehicles under attack.
• attackValuesVector, containing a set of attack model pa-

rameter values to be injected during a campaign.
• attackStartVector, containing a set of attack initiation

times when the attack starts in an experiment.
• attackEndVector, containing a set of attack end times

when the attack ends in an experiment.
Step-2 Golden Run: In this step, we execute a golden run

(line 6 in Algo. 1) where the system is not exposed to any
faults or attacks. The inputs required to perform the golden
run are TrafficScenario and CommModel, which we configured
in Step-1. The golden run is simulated until the simulation
time ends (i.e., totalSimTime). The output is recorded as
GoldenRunLog.

Step-3 Attack Injection Campaign: This step presents the
attack injection procedure (lines 7-15 in Algo. 1), where inputs
are TrafficScenario, CommModel and attackCampaignSetup.
The set of attacks to be injected are determined by the
attackStartVector, attackValueVector and the attackEndVector.
To this end, ComFASE runs in three nested loops, where the
simulation is run until attackStartTime with SimUntil using the
communication model initialised in Step-1 (i.e., CommModel).
Then, the simulation is run until attackEndTime using the up-
dated communication model (i.e., UpdatedCommModel), and
finally the simulation is run until simulation ends (i.e., equal
to totalSimTime) with the communication model initialised in
Step-1.

Algo. 1 also shows that the data observed from the simula-
tion for each experiment is stored in AttackCampaignLog and
that the expNr keeps track of the total number of experiments.
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Algorithm 1 Pseudo code of ComFASE Execution Flow

1: //Step-1: Test-Configuration
2: TrafficScenario= setScenario(roadFeatures, vehicleFeatures, nrVehicles, scenarioManeuver, totalSimTime)
3: CommModel= setCommunication(commProtocol, wirelessModel, packetSize, beaconingTime)
4: AttackCampaignSetup = setCampaign(attackModel, targetVehicles, attackStartVector, attackValuesVector, attackEndVector)
5: //Step-2: Golden-Run (attack-free simulation run)
6: GoldenRunLog= SimUntil(TrafficScenario, CommModel, totalSimTime)
7: //Step-3: Attack-Injection-Campaign (campaign is a set of attack experiments)
8: for each attackStartTime in attackStartVector do
9: for each attackValue in attackValuesVector do

10: for each attackEndTime in attackEndVector do
11: UpdatedCommModel= CommModelEditor(CommModel, attackValues, targetVehicles)
12: AttackCampaignLog[expNr] += SimUntil(TrafficScenario, CommModel, attackStartTime)
13: AttackCampaignLog[expNr] += SimUntil(TrafficScenario, UpdatedCommModel, attackEndTime)
14: AttackCampaignLog[expNr] += SimUntil(TrafficScenario, CommModel, totalSimTime)
15: expNr ++
16: //Step-4: Classification (classify each experiment)
17: for each exp in Attack-Injection-Campaign do
18: Classification = Compare(GoldenRunLog, AttackCampaignLog[exp], classificationParameters)

Step-4 Classification: The inputs required for classification
of the results (lines 16-18 in Algo. 1) are GoldenRunLog,
AttackCampaignLog, and classificationParameters (e.g., decel-
eration profiles and collision incidents). The results obtained
for each of the attack injection experiments are compared with
those obtained for the golden run and classified into one of the
result classification categories discussed in §IV-B. For instance
an experiment is classified as severe if a collision incident is
reported.

After the result classification, we conduct separate analyses
to investigate correlations between attack parameters (i.e.,
attackStartTimes and attackValues) and the severity of the
attacks. The severity is then graded based on the magnitude
of vehicle decelerations and collision incidents.

B. Attack Model implementation

ComFASE can target different parameters of the commu-
nication simulation environment to model different faults and
attacks. Examples of such simulation parameters are vehicle
information sent through the wireless channel (such as po-
sition, acceleration, speed) and the channel properties (such
as propagation delay, signal power, interference, and noise).
Propagation delay (PD) is a Veins simulation parameter that
is used to introduce the natural communication delay between
the vehicle communication. The propagation delay in Veins is
calculated based on the distance between vehicle and speed
of light. We use the ’propagation delay’ parameter to model
delay and denial-of-service attacks by modifying the Veins PD
value with the attack value when the attack is active. Table I
describes the parameters for modelling the attacks in Veins
and their connection to real world attack types. Note that, the
values in Table I are acceptable value ranges that can be set
in the simulation. The specific values that we have used for
the demonstration of the tool are detailed in §IV.

C. ComFASE Limitations

ComFASE can only inject faults and attacks on the vehic-
ular communication system and is limited to the simulation
environment that are built upon the OMNeT++ simulator. It
is also worth noting that the usefulness of the results obtained
using any simulation-based testing tool is tied to the accuracy
and representativeness of the simulation environment including
the communication and vehicle models when it comes to the
evaluation of features of automated vehicles. For example,
no security mechanisms are implemented inside the Veins
communication model, which is why no such mechanisms are
evaluated in this paper.

IV. COMFASE EXPERIMENTS

To demonstrate the ComFASE capabilities, we injected
cybersecurity attacks on the wireless communication channel
used in a platooning system using the execution flow presented
in §III-A. Here, we present the experimental setup and results
of the injections.

A. Experimental Setup

1) Traffic Scenario: In this study we have used an existing
platooning scenario (see Fig. 3) implemented in Plexe-veins
[14] to demonstrate the use of ComFASE. In this platooning
scenario, the road consists of 4 lanes with maximum speed
limit of 90m/s, length of 9400m, and width of 3.2m per
lane. There are 4 identical vehicles in the scenario with these
features: 4m length, 9m/s2 deceleration ability, 2.5m/s2

acceleration ability, 50m/s maximum speed, and CACC (co-
operative adaptive cruise control) [30] as a controller. The
vehicles accelerates and decelerates in a sinusoidal fashion
(see Fig. 4) in the platoon.

We limit the total simulation time to 60s. Note that, the
above-mentioned features come with the default scenario setup
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TABLE I: Attack types and simulation parameters for modelling the attacks.

Real world attack types and examples Simulation parameters for modelling the attacks
Attack type Examples Target

parameter
Default
value (unit)

Acceptable
valueRange

Acceptable
attackStartTimes

Acceptable
attackEndTimes

Delay
Catching the messages between vehicles, which
are blocked from reaching the receiver (e.g.,
using reactive jamming technique [28]), and re-
transmit them at a later time.

Propagation
delay (PD)

0.0 (s) 0 to
totalSimTime

0 to
totalSimTime

attackStartTime
to totalSimTime

DoS
Disabling the ability of a vehicle to communi-
cate with other vehicles in a traffic by jamming
the communication [29].

totalSimTime

Fig. 3: An example of attacks in a platooning scenario.

Fig. 4: Speed and acceleration/deceleration profiles of the four
vehicles in platoon shown in Fig. 3.

in Plexe-veins and could be easily changed according to the
user needs. Also, we use sinusoidal maneuvers to increase
the visibility of the behavioral changes of the vehicle under
attack. Furthermore, we use the CACC as it uses inter-vehicle
communication data to calculate the acceleration and speed of
the vehicles in the platoon allowing us to evaluate the effects
of V2V communication attacks on the target vehicles.

2) Communication Model: We used DSRC/WAVE commu-
nication protocols (see Fig. 1) as commProtocol and chose
’free space path loss model’ as wirelessModel for our exper-
imentation. This model represents the data propagation in a
wireless channel between the vehicles. It models a situation
where the distance between the vehicles are minimized and is
free of obstacles such as in a platooning scenario. To set up
the model, we have chosen 200 bits as the packetSize and 0.1s
as the beaconingTime.

TABLE II: Parameters values used in experiments.

Attack type Selected PD
valueRange

Selected
attackStartTimes

Selected
attackEndTimes

Delay
0.0s to 3.0s
with 0.2s
step

17.0s to 21.8s
with 0.2s step

attackStartTime
+(1s to 30s) with
1s step

DoS 60.0s 60.0s

3) Attack Campaign Setup: In this paper, we consider two
types of attacks on the wireless channel. One of them rep-
resents blocking the reception and transmission of messages
of a specific vehicle for a limited time. This type of attack
primarily causes a delay in the exchange of messages among
the interacting vehicles, and hence we denote such attacks
as delay attacks. In the other attack model, the reception and
transmission of messages of a specific vehicle is blocked from
the attack initiation time until the simulation ends. We denote
this type of attacks as denial-of-service attacks.

Our models assume that the attacker has access to advanced
jamming techniques, such as reactive jamming described in
[28], to enable blocking of messages. In the simulations,
the attacks are injected in the sender & receiver modules
of the inter-vehicle communication model in Veins. More
specifically, we use the propagation delay parameter in this
model to implement the attacks.

We injected attacks only on messages sent and received by
Vehicle 2, which is the one directly behind the lead vehicle
in Fig. 3. (In general, to support various levels of attack
complexity, ComFASE can target any number of vehicles in a
scenario for experimentation and analysis.)

Table II presents the parameters used in the simulations.
We select attackStartTimes from time 17s to 21.8s which
is one complete platooning cycle as illustrated in Fig. 4.
Within this cycle, we chose start times that are 0.2s apart
resulting in a total of 25 start time points. Attack duration
time specifies the total time during which an attack is active
i.e, from the attackStartTime to the attackEndTime. The total
simulation time of each experiment for delay and DoS attacks
was selected as 60s. For the delay attacks, we chose the attack
duration from 1.0s to 30s with a step of 1.0s resulting in a
total of 30 attackEndTimes. The maximum attack duration of
30s was selected to make sure that we observe the impact of
all attacks before the end of the simulation run. For the DoS
attacks however, the attack duration is from the attack start
until the end of the simulation.
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For the delay attacks, we chose to delay the data between
0.2s to 3.0s with propagation delay (PD) values that are 0.2s
apart resulting in a total of 15 PD values. Note that, we
have also conducted experiments with values higher than 3.0s
and observed no significant differences in the results obtained
compared to those reported for when 3.0s was chosen.

We set the propagation delay to 60s for the DoS attacks,
which implies that all the messages are blocked until the end
of the simulation.

B. Result Classification

We use deceleration profiles and collision events of the
vehicles to classify the results in five categories detailed in
this section. The deceleration profiles are chosen based on
previous studies of rear-end accidents [31].

• Non-effective: The injected attack has no effects on the
behaviour of the vehicles (i.e., identical speed profiles
as in the golden run) and the simulation ends with no
indication of failures.

• Negligible: The injected attack has modified the be-
haviour of at least one of the vehicles. The change
of behaviour is negligible as the recorded maximum
deceleration is less than or equal to 1.53m/s2, which
is the maximum deceleration recorded in the golden run.

• Benign: The injected attack has modified the behaviour
of at least one of the vehicles, leading to a deceleration
value greater than 1.53m/s2 and less than or equal to
5m/s2. The safety implications of the change is con-
sidered to be benign as it does not lead to a deceleration
value greater than the maximum comfortable braking rate,
which is 5m/s2.

• Severe: We classify an experiment as severe if (i) a col-
lision occurs between the vehicles or (ii) when a vehicle
performs an emergency braking. The latter case refers to
when the injected attack has modified the behaviour of at
least one of the vehicles, leading to a deceleration value
greater than 5m/s2 and less than or equal to 8m/s2.

C. Experimental Results

1) Analyses of the Delay Attack Results: We performed
11250 experiments, modelling the delay attacks (25 attack-
StartTimes*15 attackValues*30 attackEndTimes=11250). This
resulted in 5923, 4941, and 386 experiments classified as
severe, benign, and negligible, respectively. The total time it
took to simulate the 11250 experiments and parse the logged
data was about 7 hours on a computer setup with AMD Ryzen
7 5800X 8-Core processor and 96GiB system memory.

Fig. 5 shows the classification of results based on the
duration to which the system under test was exposed to attacks.
The figure shows that attacks with duration times greater than
5s are always classified as either benign or severe. Moreover,
the figure shows that exposing the target system to attacks
for a period longer than 4.0s affects the total number of
severe cases insignificantly. Note that, none of the experiments
are classified as non-effective. Moreover, all the severe cases
caused are as a result of vehicle collisions.

Fig. 5: Classification of results w.r.t. the duration in which the
propagation delay attack is active.

Fig. 6: Classification of results w.r.t. the propagation delay
values i.e., the length to which data is delayed.

We also analysed the injection results with respect to the dif-
ferent propagation delay (PD) values used in the experiments
(see Fig. 6).

For each PD value, a total of 750 experiments were con-
ducted (25 attackStartTimes*30 attackEndTimes=750). The
figure shows that, experiments with higher PD values result
in a higher number of severe cases. However, no significant
differences are observed between the number of severe cases
caused for PD values larger than 2.2s. In fact, we also
conducted a set of experiments with PD values up to 5.0s and
observed the same behaviour. The results of the experiments
are also analysed with respect to the attackStartTimes. For each
attackStartTimes, a total of 450 experiments were conducted
(15 attackValues*30 attackEndTimes=450). The results are
presented in Fig. 7. The figure shows that the majority of
experiments are classified as severe when the initiation time
is lower than 17.2s or higher than 20.6s. The figure also shows
that, the number of severe cases changes drastically in between
attack start times of 19.4s and 20.2s.

In order to understand the results presented in Fig. 7, we
investigate the behaviour of vehicles driving in a sinusoidal
pattern illustrated in Fig. 4. By comparing these figures, we
observe that initiating attacks in periods where the lead vehicle
has a high acceleration rate could result in higher number of
severe cases. This is due to the fact that when the lead vehicle
decelerates, the deceleration data is delivered with a delay to
the other vehicles in the platoon causing vehicle collisions. The
other vehicles in the platoon still believe that the lead vehicle
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Fig. 7: Classification of results w.r.t. the attack start time i.e.,
the point in time where the first attack is injected.

has a high acceleration rate, while the lead vehicle has already
started to decelerate. The same line of justification could be
used to explain the low number of severe cases caused for
experiments whose start times are between 19.4s and 20.2s.
The acceleration rate of the vehicles in this period is as low
as 0m/s2 causing a high number of benign cases.

Finally, we analysed the impact of the attacks on the
surrounding traffic. To this end, we focused on the severe
cases, where the injected attacks cause collisions, and studied
the vehicle that is responsible for the collision, also known as
collider [32]. The result analysis shows that out of 5923 severe
cases, the target vehicle (Vehicle 2) is responsible for 65.4% of
the incidents, while Vehicle 3 and Vehicle 4 are responsible for
another 18.1% and 16.5% of the incidents, respectively. This
confirms the previous studies that it is important to analyse
impact of the attack injections on surrounding vehicle when
only one vehicle is targeted.

2) Analyses of the DoS Attack Results: We perform 25 DoS
attack experiments, starting the attacks from 17.0s to 21.8s
where the start time of each experiment is 0.2s apart. The
results of the experiments show that all the experiments are
classified as severe leading to vehicle collisions. The results
are also analysed with respect to the vehicle that caused the
collision (collider vehicle). The vehicle under attack (Vehicle
2) caused 48% of the collision incidents, however, Vehicle
3 and 4 caused 40% and 12% of the incidents, respectively.
After investigating the attack start times for the collision
experiments, we learned that if the attack gets activated in
times between 17.6s - 19.4s or 19.6s - 20s, it is Vehicle 3 and
Vehicle 4 that are responsible for the collision, respectively.
Moreover, for the remaining attackStartTimes, it is Vehicle 2
that is responsible for the collision.

3) Discussion: From a tester’s point of view, the results
presented in this section could be used when designing future
experiments. For example, the results obtained for experiments
with either shorter duration or propagation delay (PD) values
could be used to estimate the number of severe cases for
experiments with larger duration and PD values, respectively.
As with higher PD values all experiment results saturates to
only collision incidents.

When it comes to the start time of an injection, the results

of the delay experiments show that the likelihood of an attack
to cause a collision is higher when the acceleration rate of the
vehicles in the platoon is high. Note that, we only initiated
the attacks on one driving cycle of a platoon (17.0s-22.0s)
since the driving patterns (e.g., acceleration and speed) of the
vehicles in all successor cycles were the same (see Fig. 4). This
way, the results obtained could be used to estimate the severity
of attacks within the succeeding cycles. This also shows the
importance of scenario-based testing as the evaluation results
are tied to the scenario under investigation.

When it comes to the impact of an attack on the entire
traffic, the results revealed that injections of attacks into the
Vehicle 2 could cause collisions of the Vehicle 3 and 4, thus,
an attacker could significantly influence the behavior of the
surrounding traffic by targeting only one vehicle.

The high sensitivity of the target platooning system to the
two attack types modeled using ComFASE is due to the
fact that our target communication model is not equipped
with any safety/security mechanisms. However, ComFASE is
capable of evaluating these systems regardless of whether
or not they are equipped with any mechanisms. The high
sensitivity of the target system also shows the importance
of having redundant component in these systems. This could
e.g., be provided through introduction of sensor models in
our simulation environment that monitors the distance between
vehicles, which in fact is one of our future research directions.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented ComFASE, a tool that facilitates
injection of faults and attacks in the wireless channel of
vehicular communication systems. ComFASE is built upon
OMNeT++, SUMO and Veins simulators, which allows us
to study the safety implications of the injected faults and
attacks on the target vehicles as well as the surrounding traffic.
In ComFASE, fault and attack models are implemented in
separate scripts, facilitating addition of new models. Moreover,
the tool runs batches of experiments automatically.

To evaluate ComFASE, we have injected delay and denial-
of-service attacks in a platooning scenario and showed the
usefulness of the tool. To this end, we conducted 11275 ex-
periments where 5948 of them resulted in collision incidents.
The results obtained also revealed the importance of attack’s
initiation time and duration as well as the vehicles’ driving
pattern in causing collision incidents.

As part of our future work, we plan to extend ComFASE
by modelling faults and attacks in the physical and application
layers as well as conducting jamming attacks in the wireless
channel of vehicular communication systems. Moreover, we
plan to integrate ComFASE with the INET simulator [33] [34]
which offers other communication protocols such as 4G and
5G to be able to evaluate scenarios other than platooning such
as, a teleoperation scenario. Artery and Vanetza are also other
potential simulators to be integrated into ComFASE. Artery
enables V2X simulations based on ETSI ITS-G5 protocols
and Vanetza has implemented the ETSI C-ITS protocol suite.
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