

Verification and Validation of Automated Systems’ Safety and Security

Identified gaps and limitations of the

V&V methods listed in D3.1

Document Type Report

Document Number D3.3

Primary Author(s) Enrico Ferrari (Rulex), Rupert Schlick (AIT)

Document Date 2021-04-26

Document Version 1.2 Final

Dissemination Level Public (PU)

Reference DoA 2021-02-26

Project Coordinator Behrooz Sangchoolie, behrooz.sangchoolie@ri.se,

RISE Research Institutes of Sweden

Project Homepage www.valu3s.eu

JU Grant Agreement 876852

This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 876852. The JU receives

support from the European Union’s Horizon 2020 research and innovation programme and Austria, Czech Republic,

Germany, Ireland, Italy, Portugal, Spain, Sweden, Turkey.

mailto:behrooz.sangchoolie@ri.se
http://www.valu3s.eu/

Identified gaps and limitations of the V&V methods listed in D3.1

2 ECSEL JU, grant agreement No 876852.

Disclaimer

The views expressed in this document are the sole responsibility of the authors and do not necessarily

reflect the views or position of the European Commission. The authors, the VALU3S Consortium, and

the ECSEL JU are not responsible for the use which might be made of the information contained in here.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 3

Project Overview

Manufacturers of automated systems and the manufacturers of the components used in these systems

have been allocating an enormous amount of time and effort in the past years developing and

conducting research on automated systems. The effort spent has resulted in the availability of

prototypes demonstrating new capabilities as well as the introduction of such systems to the market

within different domains. Manufacturers of these systems need to make sure that the systems function

in the intended way and according to specifications which is not a trivial task as system complexity rises

dramatically the more integrated and interconnected these systems become with the addition of

automated functionality and features to them.

With rising complexity, unknown emerging properties of the system may come to the surface making

it necessary to conduct thorough verification and validation (V&V) of these systems. Through the V&V

of automated systems, the manufacturers of these systems are able to ensure safe, secure and reliable

systems for society to use since failures in highly automated systems can be catastrophic.

The high complexity of automated systems incurs an overhead on the V&V process making it time-

consuming and costly. VALU3S aims to design, implement and evaluate state-of-the-art V&V methods

and tools in order to reduce the time and cost needed to verify and validate automated systems with

respect to safety, cybersecurity and privacy (SCP) requirements. This will ensure that European

manufacturers of automated systems remain competitive and that they remain world leaders. To this

end, a multi-domain framework is designed and evaluated with the aim to create a clear structure

around the components and elements needed to conduct the V&V process through identification and

classification of evaluation methods, tools, environments and concepts that are needed to verify and

validate automated systems with respect to SCP requirements.

In VALU3S, 12 use cases with specific safety, security and privacy requirements will be studied in detail.

Several state-of-the-art V&V methods will be investigated and further enhanced in addition to

implementing new methods aiming for reducing the time and cost needed to conduct V&V of

automated systems. The V&V methods investigated are then used to design improved process

workflows for V&V of automated systems. Several tools will be implemented supporting the improved

processes which are evaluated by qualification and quantification of safety, security and privacy as well

as other evaluation criteria using demonstrators. VALU3S will also influence the development of safety,

security and privacy standards through an active participation in related standardisation groups.

VALU3S will provide guidelines to the testing community including engineers and researchers on how

the V&V of automated systems could be improved considering the cost, time and effort of conducting

the tests.

VALU3S brings together a consortium with partners from 10 different countries, with a mix of industrial

partners (24 partners) from automotive, agriculture, railway, healthcare, aerospace and industrial

automation and robotics domains as well as leading research institutes (6 partners) and universities (10

partners) to reach the project goal.

Identified gaps and limitations of the V&V methods listed in D3.1

4 ECSEL JU, grant agreement No 876852.

Consortium

RISE RESEARCH INSTITUTES OF SWEDEN AB RISE Sweden

STAM SRL STAM Italy

FONDAZIONE BRUNO KESSLER FBK Italy

KNOWLEDGE CENTRIC SOLUTIONS SL - THE REUSE COMPANY TRC Spain

UNIVERSITA DEGLI STUDI DELL'AQUILA UNIVAQ Italy

INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO ISEP Portugal

UNIVERSITA DEGLI STUDI DI GENOVA UNIGE Italy

CAMEA, spol. s r.o. CAMEA Czech

IKERLAN S. COOP IKER Spain

R G B MEDICAL DEVICES SA RGB Spain

UNIVERSIDADE DE COIMBRA COIMBRA Portugal

VYSOKE UCENI TECHNICKE V BRNE - BRNO UNIVERSITY OF TECHNOLOGY BUT Czech

ROBOAUTO S.R.O. ROBO Czech

ESKISEHIR OSMANGAZI UNIVERSITESI ESOGU Turkey

KUNGLIGA TEKNISKA HOEGSKOLAN KTH Sweden

STATENS VAG- OCH TRANSPORTFORSKNINGSINSTITUT VTI Sweden

UNIVERSIDAD DE CASTILLA - LA MANCHA UCLM Spain

FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN

FORSCHUNG E.V.
FRAUNHOFER Germany

SIEMENS AKTIENGESELLSCHAFT OESTERREICH SIEMENS Austria

RULEX INNOVATION LABS SRL RULEX Italy

NXP SEMICONDUCTORS GERMANY GMBH NXP-DE Germany

PUMACY TECHNOLOGIES AG PUMACY Germany

UNITED TECHNOLOGIES RESEARCH CENTRE IRELAND, LIMITED UTRCI Ireland

NATIONAL UNIVERSITY OF IRELAND MAYNOOTH NUIM Ireland

INOVASYON MUHENDISLIK TEKNOLOJI GELISTIRME DANISMANLIK SANAYI VE

TICARET LIMITED SIRKETI
IMTGD Turkey

ERGUNLER INSAAT PETROL URUNLERI OTOMOTIV TEKSTIL MADENCILIK SU

URUNLER SANAYI VE TICARET LIMITED STI.
ERARGE Turkey

OTOKAR OTOMOTIV VE SAVUNMA SANAYI AS - OTOKAR AS OTOKAR Turkey

TECHY BILISIM TEKNOLOJILERI DANISMANLIK SANAYI VE TICARET LIMITED

SIRKETI - TECHY INFORMATION TECHNOLOGIESAND CONSULTANCY LIMITED

COMPANY

TECHY Turkey

ELECTROTECNICA ALAVESA SLe

ALDAKIN Spain

INTECS SOLUTIONS SPA INTECS Italy

LIEBERLIEBER SOFTWARE GMBH LLSG Austria

AIT AUSTRIAN INSTITUTE OF TECHNOLOGY GMBH AIT Austria

E.S.T.E. SRL ESTE Italy

NXP SEMICONDUCTORS FRANCE SAS NXP-FR France

BOMBARDIER TRANSPORTATION SWEDEN AB BT Sweden

QRTECH AKTIEBOLAG QRTECH Sweden

CAF SIGNALLING S.L CAF Spain

MONDRAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S

COOP
MGEP Spain

INFOTIV AB INFOTIV Sweden

BERGE CONSULTING AB BERGE Sweden

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 5

Executive Summary

Within the scope of WP3 - Design of SCP (Safety, Cybersecurity, and Privacy) V&V (Verification and

Validation) methods for automated systems, D3.3 analyses the gaps and limitations of the state-of-the-art

methods presented in D3.1. The analysis is done with a double approach: on one side, the 53 methods

are analysed, and their general limitations are reviewed; on the other side, the use cases are reviewed

in order to find the gaps that prevent or limit the application of V&V in those scenarios.

For a better evaluation, gaps and limitations have been divided into different categories:

• Accuracy: limitations in the accuracy of the method.

• Scalability and computational: limitations in applying the method to larger problems.

• Deployment: issues regarding the deployment of the method in real-world contexts.

• Learning curve: limitations related to high-level skills required to apply the method.

• Lack of automation: issues with allowing the method to be executed without human

intervention.

• Reference environment: limitations regarding the reference environment where the method

can be applied.

• Cost: limitations related to the high cost needed to use the method.

The identification of gaps and limitations will guide the work of the next WP3 efforts, in particular

regarding the development of improved, new or married (i.e. obtained by combining two already

existing techniques) methods to bridge the gaps. This work is going to be performed in Task 3.3.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 7

Contributors

Enrico Ferrari RULEX Jose Luis de la Vara UCLM

Arturo García UCLM Luis Alonso TRC

Marco Bozzano FBK Stefano Tonetta FBK

Davide Ottonello STAM Massimo Nazaria FBK

Hamid Ebadi INFOTIV Martin Karlsberg INFOTIV

Thanh Bui RISE Joakim Rosell RISE

Tomas Vojnar BUT Ales Smrcka BUT

Giorgio Malaguti ESTE Maurizio Lo Piccolo ESTE

Michele Mingozzi ESTE Nicola Caselli ESTE

Marie Farrell NUIM Fredrik Warg RISE

Matt Luckcuck NUIM Peter Folkesson RISE

Rosemary Monahan NUIM Mateen Malik RISE

Jorge Valero UCLM Fabio Patrone UNIGE

Markus Borg RISE Giovanni Gaggero UNIGE

Giovanni Giachetti UCLM Alessandro Fausto UNIGE

Bernhard Fischer SIEMENS Martin Matschnig SIEMENS

Metin Ozkan ESOGU Christoph Sohrmann FRAUNHOFER

Silvia Mazzini INTECS Juan Santana FRAUNHOFER

Leire Exteberria MGEP Gabriel Pachiana FRAUNHOFER

Joseba Andoni Agirre MGEP Alper Kanak ERARGE

Aitor Agirre MGEP Salih Ergün ERARGE

Georgios Giantamidis UTRCI Sercan Tanrıseven ERARGE

Stylianos Basagiannis UTRCI Rupert Schlick AIT

Christoph Schmittner AIT Sankar Sathyamoorthy QRTECH

Gürol Çokünlü OTOKAR Muhammet Saral OTOKAR

Ömer Şahabaş OTOKAR Johnny Öberg KTH

David Fürcho NXP Michael Philipp NXP

Iñigo Elguea ALDAKIN Thomas Bauer FRAUNHOFER

Santiago Gonzalez ALDAKIN Bernd Bredehorst PUMACY

Ugur Yayan IMTGD Pierre Kirisci PUMACY

Martin Skoglund RISE Mustafa Karaca IMTGD

Reviewers

Giovani Giachetti UCLM 2021-03-24

Jose Luis de la Vara UCLM 2021-03-25, 2021-04-19

Mateen Malik RISE 2021-03-29

Erwin Kristen AIT 2021-03-29

Tomas Vojnar BUT 2021-04-01

Behrooz Sangchoolie RISE 2021-04-20, 2021-04-26

Identified gaps and limitations of the V&V methods listed in D3.1

8 ECSEL JU, grant agreement No 876852.

Revision History

Version Date Author (Affiliation) Comment

0.1 2020-12-29 Enrico Ferrari (RULEX) Initial Draft Template

0.2 2021-02-17 Enrico Ferrari (RULEX) et

al.

Most contributions from methods gaps

0.3 2021-02-25 Enrico Ferrari (RULEX) et

al.

New contributions on methods gaps

0.4 2021-03-02 Enrico Ferrari (RULEX) Written Chapter 1 (Introduction)

0.5 2021-03-12 Enrico Ferrari (RULEX) et

al.

Integrated new contributions and general

description.

0.6 2021-03-18 Enrico Ferrari (RULEX) et

al.

General part and integrated new

contributions from partners.

0.7 2021-03-22 Enrico Ferrari (RULEX) et

al.

Deliverable ready for internal review

0.8 2021-04-15 Enrico Ferrari (RULEX) et

al.

Deliverable ready for intermediary approval

1.0 2021-04-23 Enrico Ferrari (RULEX) et

al.

Deliverable ready for final approval

1.1 2021-04-26 Behrooz Sangchoolie

(RISE)

Review of the final draft while making minor

formatting changes.

1.2 2021-04-26 Behrooz Sangchoolie

(RISE)

Final version to be submitted.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 9

Table of Contents

Chapter 1 Introduction .. 19

Chapter 2 Background ... 21

Chapter 3 Gaps and Limitations in V&V Methods .. 23

3.1 Injection-Based V&V .. 23

3.1.1 Attack Injection ... 23

3.1.2 Fault Injection ... 28

3.2 Simulation .. 38

3.2.1 Simulation-Based Robot Verification ... 38

3.2.2 Simulation-Based Testing for Human-Robot Collaboration .. 39

3.2.3 Test Optimization for Simulation-Based Testing of Automated Systems 41

3.2.4 Virtual Architecture Development and Simulated Evaluation of Software Concepts 42

3.2.5 Virtual & Augmented Reality-Based User Interaction V&V and Technology Acceptance 44

3.2.6 V&V of Machine Learning-Based Systems Using Simulators .. 45

3.3 Testing .. 47

3.3.1 Behaviour-Driven Model Development and Test-Driven Model Review............................ 47

3.3.2 Assessment of Cybersecurity-Informed Safety .. 49

3.3.3 Machine Learning Model Validation ... 50

3.3.4 Model-Based Mutation Testing .. 51

3.3.5 Model-Based Robustness Testing... 54

3.3.6 Model-Based Testing.. 55

3.3.7 Risk-Based Testing ... 57

3.3.8 Signal Analysis and Probing ... 58

3.3.9 Software Component Testing ... 59

3.3.10 Test Parallelization and Automation ... 60

3.4 Runtime Verification .. 61

3.4.1 Dynamic Analysis of Concurrent Programs ... 62

3.4.2 Runtime Verification Based on Formal Specification .. 63

3.4.3 Test Oracle Observation at Runtime .. 65

3.5 Formal Verification ... 66

3.5.1 Formal Source Code Verification ... 66

3.5.2 General Formal Verification.. 71

Identified gaps and limitations of the V&V methods listed in D3.1

10 ECSEL JU, grant agreement No 876852.

3.6 Semi-Formal Analysis .. 78

3.6.1 SCP-Focused Semi-Formal Analysis .. 78

3.6.2 General Semi-Formal Analysis ... 89

3.7 System-Type-Focused V&V .. 95

3.7.1 CPU Verification ... 96

3.7.2 Penetration Testing .. 97

3.7.3 Failure Detection and Diagnosis (FDD) in Robotic Systems .. 98

3.7.4 Model-Based Formal Specification and Verification of Robotic Systems 100

Chapter 4 Gaps Overview ... 103

Chapter 5 Tool-related Gaps and Limitations .. 109

Chapter 6 Use Case-related Gaps and Limitations .. 115

6.1 UC1 – Intelligent Traffic Surveillance .. 115

6.1.1 Identified Gaps and Limitations for Use Case Application .. 116

6.2 UC2 – Car Teleoperation ... 116

6.2.1 Identified Gaps and Limitations for Use Case Application .. 117

6.3 UC3 – Radar Systems for ADAS ... 117

6.4 UC4 – Human-Robot-Interaction in Semi-Automatic Assembly Processes 117

6.4.1 Identified Gaps and Limitations for Use Case Application .. 118

6.5 UC5 – Aircraft Engine Controller ... 118

6.6 UC6 – Agricultural Robot .. 119

6.6.1 Identified Gaps and Limitations for Use Case Application .. 119

6.7 UC7 – Human-Robot Collaboration in a Disassembly Process with Workers with Disabilities

 ... 119

6.8 UC8 – Neuromuscular Transmission for Muscle Relaxation Measurements......................... 119

6.8.1 Identified Gaps and Limitations for Use Case Application .. 119

6.9 UC9 – Autonomous Train Operation ... 120

6.9.1 Identified Gaps and Limitations for Use Case Application .. 120

6.10 UC10 – Safe Function Out-Of-Context... 120

6.11 UC11 – Automated Robot Inspection Cell for Quality Control of Automotive Body-In-White

 ... 121

6.11.1 Identified Gaps and Limitations for Use Case Application .. 121

6.12 UC13 – Industrial Drives for Motion Control ... 121

6.12.1 Identified Gaps and Limitations for Use Case Application .. 121

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 11

Chapter 7 Conclusions ... 123

References ... 125

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 13

List of Figures

Figure 1.1: Evolvement of security threats and risks over the past decades .. 19

Figure 2.1: Approach followed for the analysis of gaps in V&V methods ... 21

Figure 4.1: The average number of gaps per category of method and type of gap................................. 107

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 15

List of Tables

Table 4.1: The number of identified gaps for each method .. 103

Table 4.2: Average number of gaps for each category of methods.. 106

Table 4.3: Total number of gaps for each type of gap. .. 106

Table 5.1: List of the tools associated with different methods and the relative gaps and limitations. . 109

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 17

Acronyms

AADL Architecture Analysis and Design Language

ADAS Advanced Driver Assistance Systems

ADS Automated Driving System

ASAM Association for Standardization of Automation and Measuring Systems

CAD Computer Aided Design

CD Continuous development

CI Continuous integration

CPS Cyber-Physical System

CPU Central Processing Unit

DAE Digital Asset Exchange file format

ESMINI Environment Simulator Minimalist

FDD Failure Detection and Diagnosis

FLA Failure Logic Analysis

FMEA Failure Modes and Effects Analysis

FPGA Field-Programmable Gate Array

FRET Formal Requirements Elicitation Tool

FT Fault Tree

FTA Fault Tree Analysis

HISA Human Interaction Safety Analysis

HMI Human Machine Interaction

HRI Human Robot Interaction

IC Integrated Circuit

IDE Integrated Development Environment

IDS Intrusion Detection System

KLOC Thousands of Lines Of Code

LTL Linear Temporal Logic

MBD Model-Based Design

MBSA Model Based Safety Analysis

MIAI Model-Implemented Attack Injection

MIFI Model-Implemented Fault Injection

ML Machine Learning

MoMuT Model-based Mutation Testing

Identified gaps and limitations of the V&V methods listed in D3.1

18 ECSEL JU, grant agreement No 876852.

MQTT Message Queuing Telemetry Transport

NMT Neuromuscular Transmission

PLC Programmable Logic Controller

PTC Post Tetanic Count

QEMU Quick EMUlator

RAM Random Access Memory

RNG Random Number Generator

ROS Robot Operating System

RTL Register Transfer Level

RTR Run-Time Reconfiguration

SCP Safety, Cybersecurity and Privacy

SDR Software-Defined Radio

SEM Soft-Error Mitigation

SMT Satisfiability Modulo Theories

SoC System on Chip

SQL Structured Query Language

STL Standard Triangle Language

SUMO Simulation of Urban Mobility

SUT System Under Test

SW Software

TOF Train Of Four

UVM Universal Verification Methodology

V&V Verification and Validation

VCC A Verifier for Concurrent C

WP Work Package

WPM Weak Process Model

WSN Wireless Sensor Network

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 19

Chapter 1 Introduction

As the use and complexity of automated systems are growing, system manufacturers and component

suppliers require methods that can help them to confirm that the SCP requirements of the systems are

satisfied. This is necessary so that the systems can be deemed dependable and secure. Even if much

effort has been spent in research and development in the field of Verification & Validation (V&V), the

rising complexity of automated systems makes very difficult to prove that systems will behave as they

were planned to do. As illustrated in Figure 1.1, the frequency of cyber-physical disasters has increased

in particular starting from 2005 affecting many sectors like automotive and health. The main point is

that threats have evolved from mainly software-based ones to a complex combination of software and

the hardware levels. So, the approach to respond to attacks on SCADA systems, sensor networks,

automation software and control units should inevitably be holistic: no component can be considered

separately. This increased the level of the challenge to ensure the SCP requirements are met in

automated systems. The result is that many applications in different sectors are still not covered by the

currently available methods. Many factors cause this technological gap, ranging from computational

issues to the lack of a sufficient degree of accuracy. One of the goals of the VALU3S project is to develop

new V&V methods that can overcome current limitations.

Figure 1.1: Evolvement of security threats and risks over the past decades

In particular, the aim of WP3 (Design of SCP V&V methods for automated systems) is to create a set of

reference methods for V&V of automated systems. The WP3 objective is reached with three subsequent

steps:

1. Studying the currently available state of the art V&V methods.

2. Identifying gaps and limitations in methods found in 1.

3. Improve, combine existing or develop completely new methods according to the limitations

highlighted in 2.

Identified gaps and limitations of the V&V methods listed in D3.1

20 ECSEL JU, grant agreement No 876852.

All the activities of WP3 are carried out with a strong connection with the VALU3S use cases to ensure

that all the developments respond to actual needs deriving from real world scenarios. Task 3.2 deals

with step 2 of this process, i.e. the identification of gaps and limitations in the currently available

methods. This deliverable reports the results of this analysis. It is worth noting that on one hand the

analysis is general since it takes into account the methods independently from their specific application

in the project. For this reason, the gap analysis has included also gaps and limitations that are out of the

scope of the project because they were considered valuable information. On the other hand, the focus

and the way the topics are presented are influenced by the specific applications considered in the

project. So, the list of gaps should not be regarded as an exhaustive one and within the list more focus

is given to gaps and limitations of interest for the project’s goals.

Since the methods are extensively explained in Deliverable 3.1 (D3.1) [1], the focus here is not on the

methods’ functionality but more on what is lacking for their wider and better employment. Therefore,

the reader should refer to D3.1 for further details on the methods.

This deliverable relates to other VALU3S’ deliverables that either provide input or will use its results as

a basis for their development:

• D1.1 (Description of use cases as well as scenarios) [2] and D1.2 (SCP requirements as well as

identified test cases) [3] provide the use case scenarios to consider for identifying gaps of the

V&V methods in D3.2.

• D3.1 (V&V methods for SCP evaluation of automated systems) [1] reviews the state of the art

that is used to identify the gaps of currently available methods.

• D3.4 (Initial description of methods designed to improve the V&V process), D3.5 (Interim

description of methods designed to improve the V&V process), and D3.6 (Final description of

methods designed to improve the V&V process) will largely base their work on the insights

provided in this deliverable.

• D5.1 (Initial demonstration plan and a list of evaluation criteria) [4] is providing details on use

cases and their evaluation criteria, as well as the currently used approaches to V&V.

The following chapters introduce the background of the deliverable (Chapter 2) and present the

identified gaps in V&V methods (Chapter 3) as well as some overview and statistics about them

(Chapter 4). Then, the identified gaps in tools (Chapter 5) and the insights deriving from the use cases

(Chapter 6) will be reported. Chapter 7 closes the deliverable with some conclusions.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 21

Chapter 2 Background

The identification of gaps and limitations in V&V has proceeded in two different but complementary

directions (see Figure 2.1). On one side, gaps and limitations have been searched in the methods from a

more theoretical point of view. This approach will be referred to as bottom up. Regarding this approach,

the focus is both on the methods themself and on the tools supporting the methods, pointing out the

issues related to the implementation. On the other side, the use cases are analysed to highlight

applications that cannot be carried out with current methods and therefore require improvements or

completely new methods. This top-down approach will allow us to ensure that developments are done

with a proper level of generality and theoretical soundness and, at the same time, that they are oriented

to solve real world problems.

Figure 2.1: Approach followed for the analysis of gaps in V&V methods

To better identify and group gaps, different categories have been defined:

• Accuracy: the method has some limitations regarding its accuracy. For example, the method is

not reliable enough for some critical application where it is employed.

• Scalability and Computational: the method requires too many computational resources (time

and/or memory) and therefore can be applied only to limited/simplified scenarios.

• Deployment: the method presents some problems when deployed in real-world contexts. For

example, there is lack of proper tools or there are issues in integrating the methods with other

platforms.

• Learning curve: to be properly used, the method requires high-level technical skills that are not

easy to find.

• Lack of automation: the method is not fully automatic, i.e., it requires heavy intervention, such

as tuning, by human users. As a consequence, the V&V process could become long and error

prone.

Identified gaps and limitations of the V&V methods listed in D3.1

22 ECSEL JU, grant agreement No 876852.

• Reference environment: the method works only for some reference environment, e.g.,

simulation. There are no warranties that findings are still valid for other environments.

• Cost: using the method requires huge investments in terms of e.g., hardware, software, and

human resources.

All the methods presented in D3.1 have been analysed in Chapter 3 of this deliverable according to the

criteria defined above. For ease of reading, the same groups of methods defined in D3.1 have been

considered:

• Injection-based V&V

o Fault injection

o Attack injection

• Simulation

• Testing

• Runtime verification

• Formal verification

o Formal source code verification

o General formal verification

• Semi-formal analysis

o SCP-focused semi-formal analysis

o General semi-formal analysis

• System-type-focused V&V

Moreover, all the gaps have been identified by a unique label in order to allow related deliverables (in

particular D3.4, D3.5, and D3.6) to reference the gaps that have been addressed during the project’s

activities. Regarding this, it is worth noting that the list presented here includes more gaps than those

that will be addressed during the project. All the identified gaps have been mentioned in this deliverable

for reporting purposes, but it is likely that not all of them are going to be addressed either because they

have more structural limitations or because they are out of the scope of the applications considered in

VALU3S. Moreover, it is worth noting that the work of identifying gaps and limitations in methods will

continue after Task 3.2 within other tasks both at a technological level (in particular in Task 3.3) and

from a use case perspective (in particular, in WP5).

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 23

Chapter 3 Gaps and Limitations in V&V Methods

This chapter reports gaps and limitations of V&V methods presented in D3.1 [1]. The presentation of

gaps and limitations follows the same structure as the state-of-the-art review in D3.1: methods are

divided in categories and sub-categories and for each method the different types of gaps and limitations

are pointed out. It may happen that no gaps or limitations are present for a method and a category (for

example Vulnerability and Attack Injection does not have any reported gaps or limitations as regards

scalability and computational issues). In this case, usually a short explanation is reported to clarify why

no significant gap or limitation is mentioned. All the gaps and limitations are labelled by a proper id

and decomposed in “atomic gaps” as much as possible, so that it is easier to understand which gaps

have been addressed in VALU3S Task 3.3. For this reason, it often happens that several gaps or

limitations are reported in each category for a single method. Each gap or limitation is labelled with the

prefix “GAPM-” (gap of the method) followed by a three digits-code identifying the method (e.g. “MIA”

is the code for Model-Implemented Attack Injection) and by a sequential number.

3.1 Injection-Based V&V

This group of methods focuses on introducing certain characteristics in a system, providing a certain

type of input, or triggering certain events, to confirm that the system behaves suitably under the

corresponding conditions. Two types of injection are considered: attack injection and fault injection.

3.1.1 Attack Injection

3.1.1.1 Model-Implemented Attack Injection

Name of the method: Model-Implemented Attack Injection

Short description

In this method, the attacks (which are special types of faults) are injected in the model of the System

Under Test (SUT) [MIA01]. MATLAB and LabVIEW are examples of tools used to build such system

models. This method is used to verify and validate the system’s capability to handle attacks. The

attack handling includes mechanisms to detect and prevent intrusions [MIA02]. This type of attack

injection method is used for the system’s evaluation at early design stages.

Limitations

Functionality

[GAPM-MIA01] The method can be improved by adding techniques such as pre-injection analysis

and post-injection analysis [MIA03] [MIA04] [MIA05] [MIA06] to reduce the number of the tests and

still get the same or improved results in terms of time, cost and effort.

[GAPM-MIA02] Although there are many generic attack models, attack models often have to be

adapted for the target system.

Accuracy

Identified gaps and limitations of the V&V methods listed in D3.1

24 ECSEL JU, grant agreement No 876852.

[GAPM-MIA03] The accuracy of the method depends on the accuracy of the modelled attacks and

systems.

Scalability and computational

[GAPM-MIA04] Exhaustive attack injection or full system monitoring may require intense

computational resources depending on the complexity of the target system and its environment.

Deployment

[GAPM-MIA05] The model-implemented attack injection method is not feasible for final

implementations of systems.

[GAPM-MIA06] The method must be adapted for the simulation tool environment used, e.g.,

MATLAB toolboxes and MATLAB versions used.

Learning curve

[GAPM-MIA07] The method requires knowledge and skills regarding the simulation tool

environment, e.g., MATLAB/SIMULINK skills.

Lack of automation

[GAPM-MIA08] The configuration and result analysis are done manually.

Reference environment

[GAPM-MIA09] This method is only applicable for the simulation environment.

Costs

The cost of implementing this method is minimal because there is no hardware needed to execute the

tests by using this method.

[GAPM-MIA10] Software such as MATLAB/SIMULINK is not opensource and needs investments.

[GAPM-MIA11] Test cost increases when new attack models are implemented.

[GAPM-MIA12] There is also some cost involved in terms of time when conducting the test. For

example, exhaustive attack injection or full system monitoring increases the cost of verification and

validation.

Standards

The requirements of the standards which this method fulfils are ISO-TC22-SC32-

WG11_N0613_ISO_SAE_DIS_21434_(E), NIST 800, IEC 62443, SAE J3061, IEC TR 63069, IEC TR

63074, ISO TR 22100-4, ISO 24089

References

• [MIA01] B. Sangchoolie, P. Folkesson, and J. Vinter, “A study of the interplay between safety and

security using model-implemented fault injection,” in 2018 14th Eur. Dep. Comp. Conf. (EDCC).

IEEE, 2018, pp. 41–48.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 25

• [MIA02] B. Sangchoolie, P. Folkesson, Pierre Kleberger and J. Vinter, “Analysis of Cybersecurity

Mechanisms with respect to Dependability and Security Attributes,” in 2020 50th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks Workshops.

• [MIA03] J. Grinschgl, A. Krieg, C. Steger, R. Weiss, H. Bock and J. Haid, "Efficient fault emulation

using automatic pre-injection memory access analysis," 2012 IEEE International SOC Conference,

Niagara Falls, NY, 2012, pp. 277-282.

• [MIA04] B. Sangchoolie, F. Ayatolahi, R. Johansson and J. Karlsson, "A Comparison of Inject-on-

Read and Inject-on-Write in ISA-Level Fault Injection," 2015 11th European Dependable

Computing Conference (EDCC), Paris, 2015, pp. 178-189.

• [MIA05] Czeck, Edward W. and Daniel P. Siewiorek. “Observations on the Effects of Fault

Manifestation as a Function of Workload.” IEEE Trans. Computers 41 (1992): 559-566.

• [MIA06] Folkesson P., Karlsson J. (1999) Considering Workload Input Variations in Error

Coverage Estimation. In: Hlavička J., Maehle E., Pataricza A. (eds) Dependable Computing —

EDCC-3. EDCC 1999. Lecture Notes in Computer Science, vol 1667. Springer, Berlin, Heidelberg.

3.1.1.2 Simulation-Based Attack Injection at System-level

Name of the method: Simulation-Based Attack Injection at System-level

Short description

Simulation-based Attack Injection at System-level provides an opportunity of injecting attacks on the

system level. Different parts of the system and their interconnections can be verified and validated

by using this technique. The complete system behaviour can be analysed when a certain sub-system

is under the influence of attacks. While conducting field tests could be costly and sometimes life-

threatening, simulation-based tests provide a wide range of advantages, such as lower testing costs,

adaptation of tests to a variety of traffic scenarios, and avoiding the life-threatening situations.

This method could span over various tools such as SUMO (Simulation of Urban Mobility) [SAI02],

CARLA (autonomous driving simulator) [SAI03] and VEINS (VEhicles In Network Simulation)

[SAI04] allowing different aspects of the system to be evaluated.

Limitations

Functionality

[GAPM-SAI01] More features can be added in the method functionality such as improving the

representativeness of both attack models and simulated systems.

Accuracy

[GAPM-SAI02] Modelling of a system in a simulation environment might not accurately represent

the real system in a real environment. So, the final V&V activities are recommended to be performed

on a real system.

Scalability and computational

[GAPM-SAI03] Exhaustive attack injection and full system monitoring may require intense

computational resources.

Identified gaps and limitations of the V&V methods listed in D3.1

26 ECSEL JU, grant agreement No 876852.

[GAPM-SAI04] Selecting complex scenarios for attack injection may require high computational

resources.

Deployment

[GAPM-SAI05] The method must be adapted for the simulation tools, such as SUMO, CARLA, and

VEINS, and the tools versions used.

Learning curve

[GAPM-SAI06] The method requires knowledge of simulators and skills to use.

Lack of automation

[GAPM-SAI07] The test configuration and result analysis are done manually.

Reference environment

[GAPM-SAI08] This method is only applicable for the simulation environment.

Costs

[GAPM-SAI09] The cost could depend on the type of simulator required for the V&V of the specific

system requirements, e.g., proper system test for CARLA could cost a bit in terms of hardware and

processing.

[GAPM-SAI10] Attack injection is time consuming which could increase the cost depending on how

we want to do it, e.g., running exhaustive attack injection experiments.

[GAPM-SAI11] The time could be reduced if experiments could be run in parallel on the expense of

the hardware increase, which increases the cost factor.

Standards

No relevant gap or limitation has been identified. The requirements of the standards which this

method fulfils are ISO 26262, IEC 62061, IEC TR 63074, ISO PAS 21448, ISO 13849, IEC 61508, ISO/IEC

TR 24028:2020, ISO/IEC WD 23053

References

• [SAI01] Eduardo dos Santos et al., “Towards a Simulation-based Framework for the Security

Testing of Autonomous Vehicles”

• [SAI02] Michael Behrisch, Laura Bieker et al., “SUMO – Simulation of Urban Mobility, An

Overview”, Institute of Transportation Systems, German Aerospace Center, Rutherfordstr. 2,

12489 Berlin, Germany.

• [SAI03] Alexey Dosovitskiy, German Ros et al., “CARLA: An Open Urban Driving Simulator”.

• [SAI04] Veins - Vehicles in Network Simulation, http://veins.car2x.org

3.1.1.3 Vulnerability and Attack Injection

Name of the method: Vulnerability and Attack Injection

Short description

http://veins.car2x.org/

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 27

The method consists of injecting realistic vulnerabilities in the target component and mounting

attacks through the exploitation of the injected vulnerabilities. The goal is to evaluate how the system

where the target component is inserted, including existing security components (i.e. intrusion

detection systems, security personnel), can cope with the attacks (i.e., the target component is not

under evaluation; the rest of the system is) [VAI1], [VAI2].

Limitations

Functionality

[GAPM-VAI01] The injection of the different types of vulnerabilities is complex, which makes it

difficult to implement tools with a rich variety of vulnerability types.

[GAPM-VAI02] The number and variety of possible attacks could be limited.

[GAPM-VAI03] Heavily dependent on the programming language of the target application.

[GAPM-VAI04] Needs to access the source code of the application or system.

Accuracy

[GAPM-VAI05] Limitations in accuracy are inherent to the coverage limitations of vulnerability

injection.

Scalability and computational

[GAPM-VAI06] The number of vulnerabilities and the time needed to perform an injection campaign

depends on the target component. In any case, even when the target component is large and complex

the method generally scales well [VAI3].

Deployment

[GAPM-VAI07] Lack of mature tools outside academia.

Learning curve

[GAPM-VAI08] The learning curve is relatively steep if the practitioner is not knowledgeable in

cybersecurity.

Lack of automation

[GAPM-VAI09] Concerning the injection of vulnerabilities, the degree of automation is similar to

software fault injection approaches. The attack step is fully automatic.

Reference environment

[GAPM-VAI10] Requires a prototype or a real system.

[GAPM-VAI11] Target components must be exposed to possible attacks, typically target components

should be accessible through the Internet.

Costs

Identified gaps and limitations of the V&V methods listed in D3.1

28 ECSEL JU, grant agreement No 876852.

No relevant gap or limitations has been identified. The number of vulnerabilities and the time needed

to perform an injection campaign depends on the target component. In any case, this is generally not

a problem and does not represent a significant cost in time needed to perform a campaign.

Standards

No relevant gap or limitations has been identified. The method can be used in the context of the

following standards: IEC TR 63074, ISO/IEC TR 24028:2020, ISO/IEC 27001

References

• [VAI1] J. Fonseca, N. Seixas, M. Vieira, and H. Madeira, "Analysis of Field Data on Web

Security Vulnerabilities", IEEE Transactions on Dependable and Secure Computing, accepted

for publication in 2014.

• [VAI2] J. Fonseca, M. Vieira, and H. Madeira, "Evaluation of Web Security Mechanisms using

Vulnerability & Attack Injection", IEEE Transactions on Dependable and Secure Computing,

accepted for publication in 2014.

• [VAI3] Elia, I., Fonseca, J., Vieira, M., “Comparing SQL Injection Detection Tools Using

Attack Injection: An Experimental Study”, The 21st annual International Symposium on

Software Reliability Engineering (ISSRE 2010), November, 2010.

3.1.2 Fault Injection

3.1.2.1 Fault Injection in FPGAs

Name of the method: Fault injection in FPGAs

Short description

The objective is the evaluation of possible results of fault injection and their propagation in an FPGA-

based Hardware Platform.

Limitations

Functionality

[GAPM-FIF01] This technique is based on Healing Core approach which is subject to errors as well.

Some of encountered errors may not be healed by simply resetting and/or rebooting the entire FPGA.

Thus, it is not clear that this method has an important advantage considering the time and cost

dedicated to it.

Accuracy

[GAPM-FIF02] It is up to test design to achieve a high‑level accuracy in these tests. By modifying data

residing in the configuration bits of an FPGA, the result of this fault injection can be observed.

However, there are many possible combinations of flipping configuration bits. Thus, overall accuracy

of this test is directly related to coverage of all possible scenarios.

Scalability and computational

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 29

No relevant gap or limitation has been identified since this technique can easily be scaled to any

FPGA so that there is not any expected scalability issue. Required computational resources to carry

out this test are considerably limited. Hence, it can be performed easily using a PC or Workstation,

but it is less certain that it can be carried out by processor cores embedded in the FPGA.

Deployment

[GAP-FIF03] The implementation of this test can be carried out mostly during the development

phase. Soft-Error Mitigation (SEM)-cores to detect errors and uses Run-Time Reconfiguration (RTR)

techniques to correct Single- and Multiple-Event Upsets (bit-flips) in the FPGA’s configuration

memory. Further, it has a classification system that can report and initiate appropriate

countermeasures for some faults. Thus, it can be used to implement self-repairing functionality in an

FPGA system.

Learning curve

[GAPM-FIF04] The test approach used requires some solid background in FPGAs. Thus, it requires

high-level skills for implementation.

Lack of automation

No relevant gap or limitation has been identified since the tests can be executed either manually or

in an automatic fashion once required test software is developed.

Reference environment

No relevant gap or limitation has been identified since the tests can be implemented in prototype

stage and at the operation environment (TRL-7). However, the software for using the method in the

operating environment is not currently developed.

Costs

No relevant gap or limitation has been identified since the tests currently require a workstation,

related software and human labor dedicated to this test.

Standards

[GAP-FIF05] Current Safety standards is not in favour of using FPGAs in the design because of the

risk for bit-flips and changed functionality.

References

• [FIF1] E. Kyriakakis, K. Ngo, J. Öberg, “Mitigating Single-Event Upsets in COTS SDRAM

using an EDAC SDRAM Controller”, In Proc. of 2017 IEEE Nordic Circuits and Systems

Conference (NorCAS-2017), Linköping, Sweden, Oct 24-25, 2017.

• [FIF2] E. Kyriakakis, K. Ngo, J. Öberg, “Implementation of a Fault-Tolerant, Globally-

Asynchronous-Locally-Synchronous, Inter-Chip NoC Communication Bridge on FPGAs”, In

Proc. of 2017 IEEE Nordic Circuits and Systems Conference (NorCAS-2017), Linköping,

Sweden, Oct 24-25, 2017.

Identified gaps and limitations of the V&V methods listed in D3.1

30 ECSEL JU, grant agreement No 876852.

• [FIF3] K. Ngo, T. Mohammadat, J. Öberg, “Towards a Single Event Upset Detector Based on

COTS FPGA”, In Proc. of 2017 IEEE Nordic Circuits and Systems Conference (NorCAS-2017),

Linköping, Sweden, Oct 24-25, 2017.

• [FIF4] Öberg, J., Robino, F., “A NoC System Generator for the Sea-of-Cores Era”, In Proc. of

FPGAWorld 2011, Copenhagen, Stockholm, Munich, September, 2011, ACM Digital

Libraries.

3.1.2.2 Interface Fault Injection

Name of the method: Interface fault injection

Short description

Injection of invalid inputs at the interface of software components (OS calls, APIs, services or any

type of interface defined in the component) in order to evaluate the behaviour of the target

component in the presence of such faulty inputs [IFI01], [IFI02], [IFI04]. Current tool (bBOXRT -

https://git.dei.uc.pt/cnl/bBOXRT) is available to inject fault in web services [IFI03], [IFI04].

Limitations

Functionality

[GAPM-IFI01] The classification of results is highly dependent on the detailed knowledge of the

system under testing and the target component (i.e., the component in which the faults are injected

at interface level).

[GAPM-IFI01] The quality of generated workloads often limits the disclosure of robustness problems.

Accuracy

[GAPM-IFI03] The method is accurate in the sense that it injects invalid parameters that allow

accurate assessment of the target component robustness (i.e., behaviour of the target component in

the presence of invalid inputs). In any case, the domain of invalid parameters could be quite large,

which means that only a sample of invalid parameters is tested (coverage problem).

Scalability and computational

Does not present limitations since the faults are determined by the interface of the target

component(s) and the method is not affected by the scale of the system under test.

Deployment

No relevant gap or limitation has been identified since the method is fully dynamic and can only be

used when a prototype or a deployed version of the system under test is available.

Learning curve

[GAPM-IFI05] The method is easy to use since the tool (bBOXRT) is fully automatic, but the method

requires the knowledge of the software architecture of the system under test and the interface of the

target component to allow correct result analysis and interpretation.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 31

Lack of automation

No relevant gap or limitation has been identified since the method is fully automatic.

Reference environment

[GAPM-IFI06] Requires a prototype or a real system.

Costs

[GAPM-IFI07] The number of faults and the time needed to perform an injection campaign depends

on the number of parameters and the domains of the parameters of the interface of the target

component. In any case, this is generally not a problem and does not represent a significant cost.

Standards

No relevant gap or limitation has been identified since the method is fully automatic. As a specific

type of fault injection, the method can be used in the context of the standards ISO 26262, IEC 62061,

IEC TR 63074, ISO PAS 21448, ISO 13849, IEC 61508, ISO/IEC TR 24028:2020, ISO/IEC WD 23053.

References

• IFI1] N. Laranjeiro, M. Vieira and H. Madeira, "Experimental Robustness Evaluation of JMS

Middleware," 2008 IEEE International Conference on Services Computing, Honolulu, HI,

2008, pp. 119-126, doi: 10.1109/SCC.2008.129.

• [IFI2] J. Cámara, R. de Lemos, N. Laranjeiro, R. Ventura and M. Vieira, "Robustness-Driven

Resilience Evaluation of Self-Adaptive Software Systems," in IEEE Transactions on

Dependable and Secure Computing, vol. 14, no. 1, pp. 50-64, 1 Jan.-Feb. 2017, doi:

10.1109/TDSC.2015.2429128.

• [IFI3] N. Laranjeiro, M. Vieira, & H. Madeira, A robustness testing approach for SOAP Web

services. J Internet Serv Appl3, 215–232 (2012).https://doi.org/10.1007/s13174-012-0062-2

• [IFI4] N. Laranjeiro, M. Vieira and H. Madeira, "A Technique for Deploying Robust Web

Services," in IEEE Transactions on Services Computing, vol. 7, no. 1, pp. 68-81, Jan.-March

2014, doi: 10.1109/TSC.2012.39.

3.1.2.3 Model-Based Fault Injection for Safety Analysis

Name of the method: Model-Based Fault Injection for Safety Analysis

Short description

In model-based fault injection, user-specified faults may be (automatically) injected into a system

model to generate an extended model that specifies the behavior of the system in presence of faults.

Fault injection can be performed manually or using a library of predefined failure modes. The

extended model can be used to perform safety analysis activities, such as FTA and FMEA.

Limitations

Functionality

Identified gaps and limitations of the V&V methods listed in D3.1

32 ECSEL JU, grant agreement No 876852.

[GAPM-MBI01] Tool support usability can be improved, e.g., editing and customization of fault

libraries.

Accuracy

[GAPM-MBI02] The method is accurate, as long as the system model and the fault specifications are

accurate. It is recommended to perform V&V activities to verify that the system model and the

extended system model accurately represent the intended behaviour.

Scalability and computational

[GAPM-MBI03] The automated analysis, in presence of a high number of faults, may be subject to the

state-explosion problem, impacting the effectiveness of verification.

Deployment

[GAPM-MBI04] The method is well supported by tools such as xSAP and COMPASS However, these

tools cover the phase of architectural design and the highest levels of behavior specifications; they

are not suitable for deployment to the target HW.

Learning curve

[GAPM-MBI05] The method requires model-based design skills, as well as safety expertise.

Lack of automation

No relevant gap or limitation has been identified, since the model extension is fully automated. The

method requires the user to specify a set of faults, taken from the fault library, to be injected into the

system model. The library of faults is fully general; if needed, additional user-defined faults can be

added.

Reference environment

No gap is envisaged since the method may be applied at development level in TRL6-7 environments

and prototypes.

Costs

The xSAP [MBI1] and OCRA [MBI2] tools are freely available for non-commercial applications. The

COMPASS tool [MBI3, MBI4] is freely available for ESA member states.

Standards

[GAPM-MBI06] The method is conceived to fulfil safety standards (e.g., ECSS, EN 50129, SAE-ARP-

4754, SAE-ARP-476). It has to be verified in VALU3S if the method is suitable for the specific medical

and agriculture domains (e.g., CEI EN 62304, ISO 14971, IEC 61508, ISO 26262).

References

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 33

• [MBI1] B. Bittner, M. Bozzano, R. Cavada, A. Cimatti, M. Gario, A. Griggio, C. Mattarei, A.

Micheli and G. Zampedri. The xSAP Safety Analysis Platform. In Proceedings of TACAS 2016.

Eindhoven, The Netherlands, April 2-8, 2016.

• [MBI2] A. Cimatti, M. Dorigatti, S. Tonetta. OCRA: A tool for checking the refinement of temporal

contracts. Proc. IEEE/ACM International Conference on Automated Software Engineering (ASE),

pages 702-705, IEEE, 2013.

• [MBI3] M.Bozzano, A.Cimatti, J.-P.Katoen, V. Y.Nguyen, T.Noll and M.Roveri. Safety,

Dependability, and Performance Analysis of Extended AADL Models. The Computer Journal,

54(5):754-775, 2011.

• [MBI4] M. Bozzano, A. Cimatti, J.-P. Katoen, P. Katsaros, K. Mokos, V.Y. Nguyen, T. Noll, B.

Postma and M. Roveri. Spacecraft Early Design Validation using Formal Methods. Reliability

Engineering & System Safety 132:20-35. December 2014.

3.1.2.4 Model-Implemented Fault Injection

Name of the method: Model-implemented Fault Injection

Short description

In this method, the faults are injected in the model of the system under test (SUT) [MIF01]. MATLAB

and LabVIEW are examples of tools used to build such system models. This method is used to verify

and validate the system’s capability to handle faults. The fault handling includes attributes such as

fault detection, correction, or fallback with or without the fault handling mechanisms implemented.

This type of fault injection method is used for the system’s evaluation at early design stages [MIF02].

Limitations

Functionality

[GAPM-MIF01] The method can be improved by adding techniques such as pre-injection analysis

and post-injection analysis [MIF03] [MIF04] [MIF05] [MIF06] to reduce the number of the tests and

still get the same or improved results in terms of time, cost and effort. Pre-injection analysis is done

before any fault injection experiments are performed while post-injection uses the results of previous

fault injection experiments.

[GAPM-MIF02] Adding more fault models will increase the functionality of the method.

Accuracy

[GAPM-MIF03] The accuracy of the method depends on the accuracy of the modelled faults and

systems.

Since the model of the system might not accurately represent the real system in a real environment,

V&V activities (acceptance tests) are recommended to be performed in a later development stage.

Scalability and computational

[GAPM-MIF04] Exhaustive fault injection or full system monitoring may require a lot of

computational resources depending on the complexity of the target system and its environment.

Identified gaps and limitations of the V&V methods listed in D3.1

34 ECSEL JU, grant agreement No 876852.

Deployment

[GAPM-MIF05] The model-implemented fault injection method is not feasible for final

implementations of systems.

[GAPM-MIF06] The method must be adapted for the simulation tool environment used, e.g.,

MATLAB toolboxes and MATLAB versions used.

Learning curve

[GAPM-MIF07] The method requires knowledge and skills regarding the simulation tool

environment, e.g., MATLAB/SIMULINK skills.

Lack of automation

[GAPM-MIF08] The configuration of fault injection campaigns and result analysis are done manually.

Reference environment

[GAPM-MIF09] This method is only applicable for the simulation environment.

Costs

[GAPM-MIF10] Software such as MATLAB/SIMULINK is not opensource and needs investments.

[GAPM-MIF11] There is also some cost involved in terms of time when conducting model

implemented fault injection. For example, exhaustive fault injection or full system monitoring

increases the cost of verification and validation.

Standards

No relevant gap or limitation has been identified. The requirements of the standards which this

method fulfils are ISO 2626, IEC 62061, IEC TR 63074, ISO PAS 21448, ISO 13849, IEC 61508, ISO/IEC

TR 24028:2020, ISO/IEC WD 23053.

References

• [MIF01] R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren, “Modifi: A model-

implemented fault injection tool,” in Proc. of the 29th Int. Conf. on Computer Safety,

Reliability, and Security, ser. SAFECOMP’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp.

210–222.

• [MIF02] P. Folkesson, F. Ayatolahi, B. Sangchoolie, J. Vinter, M. Islam, and J. Karlsson, “Back-

to-back fault injection testing in model-based development,” in Computer Safety, Reliability,

and Security, 2015.

• [MIF03] J. Grinschgl, A. Krieg, C. Steger, R. Weiss, H. Bock and J. Haid, "Efficient fault

emulation using automatic pre-injection memory access analysis," 2012 IEEE International

SOC Conference, Niagara Falls, NY, 2012, pp. 277-282.

• [MIF04] B. Sangchoolie, F. Ayatolahi, R. Johansson and J. Karlsson, "A Comparison of Inject-

on-Read and Inject-on-Write in ISA-Level Fault Injection," 2015 11th European Dependable

Computing Conference (EDCC), Paris, 2015, pp. 178-189.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 35

• [MIF05] Czeck, Edward W. and Daniel P. Siewiorek. “Observations on the Effects of Fault

Manifestation as a Function of Workload.” IEEE Trans. Computers 41 (1992): 559-566.

• [MIF06] Folkesson P., Karlsson J. (1999) Considering Workload Input Variations in Error

Coverage Estimation. In: Hlavička J., Maehle E., Pataricza A. (eds) Dependable Computing

— EDCC-3. EDCC 1999. Lecture Notes in Computer Science, vol 1667. Springer, Berlin,

Heidelberg

3.1.2.5 Simulation-Based Fault Injection at System-level

Name of the method: Simulation-Based Fault Injection at System-level

Short description

Simulation-based Fault Injection at System-level provides an opportunity of injecting faults on the

system level [SFI01]. The complete system behaviour can be analysed when a certain sub-system is

under the influence of faults. This method could span over various tools such as SUMO (Simulation

of Urban Mobility) [SFI02], CARLA (autonomous driving simulator) [SFI03], and VEINS (vehicular

network simulator) [SFI04], allowing different aspects of the system to be evaluated.

Limitations

Functionality

[GAPM-SFI01] More features can be added in the method functionality such as improving the

representativeness of both fault models and simulated systems.

[GAPM-SFI02] Moreover, pre-injection and post-injection techniques [SFI05] [SFI06] [SFI07] can also

be used to improve the functionality.

Accuracy

[GAPM-SFI03] Modelling of a system in a simulation environment might not accurately represent

the real system in a real environment. So, the V&V activities are also recommended to be performed

on a real system.

Scalability and computational

[GAPM-SFI04] Exhaustive fault injection, full system monitoring may require a lot of computational

resources.

[GAPM-SFI05] Selecting complex and more realistic scenarios for fault injection may also require

high computational resources.

[GAPM-SFI06] The simulation tools with intensive 3D simulations (which is in line with this

method implementation) often requires 3D rendering and that cannot be accomplished without

GPUs and increased processing power. This poses challenges on scalability and computational

power.

Deployment

[GAPM-SFI07] The method must be adapted for the simulation tools, such as SUMO, CARLA, and

VEINS, and the tools versions used.

Identified gaps and limitations of the V&V methods listed in D3.1

36 ECSEL JU, grant agreement No 876852.

Learning curve

[GAPM-SFI08] The method requires knowledge of traffic simulators and skills to use.

Lack of automation

[GAPM-SFI09] The test configuration and result analysis are done manually.

Reference environment

[GAPM-SFI10] This method is only applicable for the simulation environment.

Costs

[GAPM-SFI11] That could depend on the type of simulator required for the V&V of the specific

system requirements, e.g., proper system test for CARLA could costs a bit in terms of hardware and

processing.

[GAPM-SFI12] Fault injection is also time consuming which could increase the cost depending on

how we want to do it, e.g., running exhaustive fault injection experiments.

[GAPM-SFI13] The time could be reduced if experiments could be run in parallel on the expense of

the hardware increase which increases the cost factor.

Standards

No relevant gap or limitation has been identified. The requirements of the standards which this

method fulfils are ISO 26262, IEC 62061, IEC TR 63074, ISO PAS 21448, ISO 13849, IEC 61508, ISO/IEC

TR 24028:2020, ISO/IEC WD 23053

References

• [SFI01] M.-C. Hsueh, T.K. Tsai, and R.K. Iyer, “Fault Injection Techniques and Tools,” Computer,

vol. 40, no. 4, pp. 75-82, Apr. 1997.

• [SFI02] S. Jha et al., “AVFI: Fault Injection for Autonomous Vehicles,” in Proc. 2018 48th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-

W), pp. 55–56.

• [SFI03] Michael Behrisch, Laura Bieker et al., “SUMO – Simulation of Urban Mobility, An

Overview”, Institute of Transportation Systems, German Aerospace Center, Rutherfordstr. 2,

12489 Berlin, Germany.

• [SFI04] Veins - Vehicles in Network Simulation, http://veins.car2x.org

• [SFI05] B. Sangchoolie, F. Ayatolahi, R. Johansson and J. Karlsson, "A Comparison of Inject-on-

Read and Inject-on-Write in ISA-Level Fault Injection," 2015 11th European Dependable

Computing Conference (EDCC), Paris, 2015, pp. 178-189.

• [SFI06] Czeck, Edward W. and Daniel P. Siewiorek. “Observations on the Effects of Fault

Manifestation as a Function of Workload.” IEEE Trans. Computers 41 (1992): 559-566.

• [SFI07] Folkesson P., Karlsson J. (1999) Considering Workload Input Variations in Error Coverage

Estimation. In: Hlavička J., Maehle E., Pataricza A. (eds) Dependable Computing — EDCC-3.

EDCC 1999. Lecture Notes in Computer Science, vol 1667. Springer, Berlin, Heidelberg.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 37

3.1.2.6 Software-Implemented Fault Injection

Name of the method: Software-Implemented Fault Injection

Short description

The method [FIN1] emulates representative faults through the insertion of errors in computer

systems and/or components using software means. The errors inserted must reproduce similar

conditions observed in the field when real faults of different types occur. Existing tools (e.g.,

ucXception [FIN2]) basically emulate two types of faults: hardware transient faults (bit flips) and

software faults (most frequent types of bugs found in field studies [FIN3]).

Limitations

Functionality

[GAPM-FIN01] As it often happens in injection approaches, fault coverage is a limitation. It may

happen that the injected faults are not a representative sample of all possible faults.

[GAPM-FIN02] The used fault models should be realistic and represent faults that the system may

experience. It could be difficult to prove that is the case.

[GAPM-FIN03] Inherent intrusiveness of the tool as the fault injection tool may skew the results.

Accuracy

[GAPM-FIN04] The accuracy of the method is dependent on the realism of the fault models. The fault

types injected must be representative of real faults.

Scalability and computational

No relevant gap or limitation has been identified.

Deployment

[GAPM-FIN05] Tools always require some customization to be used in a given target system.

Learning curve

[GAPM-FIN06] Requires specific knowledge on fault injection and a good knowledge and a detailed

knowledge on the target system details.

Lack of automation

The method is largely automatic.

Reference environment

[GAPM-FIN07] It requires a prototype or a real system.

Costs

[GAPM-FIN08] They could be moderate/high due to specialized knowledge required.

Identified gaps and limitations of the V&V methods listed in D3.1

38 ECSEL JU, grant agreement No 876852.

Standards

No relevant gap or limitation has been identified. The method can be used in the context of the

following standards: ISO 26262, IEC 62061, IEC TR 63074, ISO PAS 21448, ISO 13849, IEC 61508,

ISO/IEC TR 24028:2020, ISO/IEC WD 23053

References

• [FIN1] R. Natella, D. Cotroneo, and H. Madeira, “Assessing Dependability with Software

Fault Injection: A Survey”, ACM Computing Surveys, Volume 48 Issue 3, February 2016.

• [FIN2] F. Cerveira, R. Barbosa, H. Madeira and F. Araújo, "The Effects of Soft Errors and

Mitigation Strategies for Virtualization Servers," in IEEE Transactions on Cloud Computing,

doi: 10.1109/TCC.2020.2973146

• [FIN3] João A. Durães and Henrique S. Madeira “Emulation of Software Faults: A Field Data

Study and a Practical Approach”, IEEE Transactions on Software Engineering, vol. 32, no. 11,

pp. 849-867, November 2006.

3.2 Simulation

This sub-group of methods describes the simulation-based V&V of selected properties. By the

systematic development and exploitation of models, simulation-based approaches enable the

automated execution of validation scenarios at early design phases of a project. Simulation focuses on

the use of models that behave or operate like a given system to predict how the system would respond

to defined inputs.

3.2.1 Simulation-Based Robot Verification

Name of the method: Simulation-Based Robot Verification

Short description

Simulation-Based Robot Verification is proposed to assure a robots’ safety. This method aims to

decrease the cost of failures of robots before implementing them in real-world applications. At the

same time, the method aims to prevent possible accidents and to avoid possible loss of life and

properties by verifying the safety of systems.

Limitations

Functionality

[GAPM-SBV01] Simulation based robot verification method only accepts files in STL and DAE

formats as CAD data. In this case, many features of CAD data cannot be used in Simulation

environments such as colouring, etc.

Accuracy

[GAPM-SBV02] When a robot tested in a simulation environment is implemented in the real world,

there may be some situations where simulation does not give the same results. The reason is that the

physics engines of the simulations cannot meet the real world at 100 %. For this reason, when the

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 39

weights of the real-world model are entered, the error rate in the robot's controls increases and

accuracy decreases. This situation may pose a risk for robotic applications which are critical for

human life such as surgical robots.

Scalability and computational

[GAPM-SBV03] High processor power and RAM are needed to run complex models in Simulation-

based Fault injection. Since the processing load on the CPUs may increase in various simulation

applications, a large amount of processing power may be needed to implement this method in

complex simulation applications. This situation creates a limit in terms of computational and

scalability. For instance, due to the complex simulation of body-in white system of OTOKAR’s use

case, this kind of problem might occur.

Deployment

No relevant gap or limitation has been identified.

Learning curve

[GAPM-SBV04] Method implementation requires the base knowledge about ROS, Gazebo, Python

language.

Lack of automation

No relevant gap or limitation has been identified.

Reference environment

[GAPM-SBV07] The method is applied in simulation. It may require an adaptation to apply it in other

environments.

Costs

[GAPM-SBV05] When using this method, a large amount of hardware resources might be required

depending on the number of tests to be performed.

Standards

No relevant gap or limitation has been identified.

References

• [SBV1] Timperley, C. S., Afzal, A., Katz, D. S., Hernandez, J. M., & Le Goues, C. (2018, April).

Crashing simulated planes is cheap: Can simulation detect robotics bugs early? In 2018 IEEE

11th International Conference on Software Testing, Verification and Validation (ICST) (pp.

331-342). IEEE.

3.2.2 Simulation-Based Testing for Human-Robot Collaboration

Name of the method: Simulation-Based Testing for Human-Robot Collaboration

Identified gaps and limitations of the V&V methods listed in D3.1

40 ECSEL JU, grant agreement No 876852.

 Short description

Test-based simulation for human-robot collaboration provides the opportunity to evaluate the

feasibility and performance of the system. Simulation allows evaluating particularly the layout or

workplace planning, production reliability and, especially, the safety and efficiency of human-robot

collaboration.

Limitations

Functionality

[GAPM-SBT01] The method is missing an oracle of the Human-Robot Collaboration part that will

provide real time diagnosis for the interaction between human and robots. This is especially

important in the UC7: Human-Robot Collaboration in a Disassembly Process with Workers with

Disabilities, where a diagnosis is required for the interaction between disabled humans and robots in

a manufacturing and disassembly domain.

Accuracy

[GAPM-SBT02] The accuracy of the simulation is a limitation as it can varies compared to real

behaviour.

Scalability and computational

[GAPM-SBT03] Simulation tools that use constraint-based modelling for assertion require much

computational power and limit real-time applications.

Deployment

No relevant gap or limitation has been identified.

Learning curve

No relevant gap or limitation has been identified.

Lack of automation

No relevant gap or limitation has been identified.

Reference environment

[GAPM-SBT04] This method is applied in simulation.

Costs

No relevant gap or limitation has been identified.

Standards

No relevant gap or limitation has been identified.

References

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 41

3.2.3 Test Optimization for Simulation-Based Testing of Automated Systems

Name of the method: Test Optimization for Simulation-Based Testing of Automated Systems

Short description

The objective of test optimization is to cost-effectively test a system, i.e., reduce the cost of testing a

system while the overall test quality is maintained. Test optimization could include test case selection,

test case minimization, test case prioritization, etc. Test optimization could be also obtained using

automatic test case generation: the process of generating test suites for a particular system.

Limitations

Functionality

No relevant gap or limitation has been identified.

Accuracy

No relevant gap or limitation has been identified.

Scalability and computational

[GAPM_TOS01] In order to apply the method to a new domain or scenario, empirical evaluation may

be required.

[GAPM_TOS02] In order to apply the method to a new domain or scenario, to gather enough

historical data may be required.

Deployment

[GAPM_TOS03] The method works mainly in Simulation environments. It may require an adaptation

when the simulation tool used is changed.

Learning curve

No relevant gap or limitation has been identified.

Lack of automation

No relevant gap or limitation has been identified.

Reference environment

[GAPM_TOS04] The method is applied in Simulation. It may require an adaptation to apply it in

other environments, for example using the real robot.

Costs

No relevant gap or limitation has been identified.

Standards

No relevant gap or limitation has been identified.

References

Identified gaps and limitations of the V&V methods listed in D3.1

42 ECSEL JU, grant agreement No 876852.

• [TOS1] A. Arrieta, S. Wang, G. Sagardui, L. Etxeberria. “Search-Based Test Case Prioritization

for Simulation-Based Testing of Cyber-Physical System Product Lines” in Journal of Systems

and Software. Volume 149, 2019, Pages 1-34, ISSN 0164-1212,

https://doi.org/10.1016/j.jss.2018.09.055.

• [TOS2] A. Arrieta, S. Wang, U. Markiegi, G. Sagardui, L. Etxeberria. “Employing Multi-

Objective Search to Enhance Reactive Test Case Generation and Prioritization for Testing

Industrial Cyber-Physical Systems” in IEEE Transactions on Industrial Informatics, vol. 14,

no. 3, pp. 1055-1066, March 2018, doi: 10.1109/TII.2017.2788019.

• [TOS3] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Ainhoa Arruabarrena, Leire Etxeberria,

Goiuria Sagardui, Pareto efficient multi-objective black-box test case selection for simulation-

based testing, Information and Software Technology, Volume 114, 2019, Pages 137-154, ISSN

0950-5849, https://doi.org/10.1016/j.infsof.2019.06.009.

• [TOS4] A. Arrieta, S. Wang, U. Markiegi, G. Sagardui and L. Etxeberria, "Search-based test

case generation for Cyber-Physical Systems," 2017 IEEE Congress on Evolutionary

Computation (CEC), San Sebastian, 2017, pp. 688-697, doi: 10.1109/CEC.2017.7969377.

• [TOS5] Arrieta, A., Shuai Wang, Ainhoa Arruabarrena, Urtzi Markiegi, G. Mendieta and L.

Etxeberria. “Multi-objective black-box test case selection for cost-effectively testing

simulation models.” Proceedings of the Genetic and Evolutionary Computation Conference

(2018).

3.2.4 Virtual Architecture Development and Simulated Evaluation of Software

Concepts

Name of the method: Virtual Architecture Development and Simulated Evaluation of Software

Concepts

Short description

The method deals with the efficient and reliable prototyping of complex systems involving cross-

domain aspects by integrating heterogeneous components within holistic testing scenarios subject

to goal-specific model fidelity and by systematically evaluating properties of interest in self-

contained virtual runtime environments. It enables the automated generation, deployment,

execution, and evaluation of test scenarios and test cases for early design verification and

simulation of cross-domain systems with heterogeneous simulation models and network models.

Limitations

Functionality

[GAPM-VAD01] For the application of the method in new use cases, connectors for additional

communication protocols and simulation component types might need to be added.

[GAPM-VAD02] For the design of virtual validation scenarios system-level model architecture has to

be defined in detail prior to the implementation and adoption.

Accuracy

https://doi.org/10.1016/j.jss.2018.09.055
https://doi.org/10.1016/j.infsof.2019.06.009

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 43

[GAPM-VAD03] The accuracy of virtual validation and simulation scenarios depends on the accuracy

of the underlying simulation and behaviour model. There is a trade-off between accuracy on the one

hand and simulation speed, resource consumption, and effort for constructing simulation models on

the other hand.

Scalability and computational

[GAPM-VAD04] The scalability of the validation approach is related to the maximum available time

for executing simulation scenarios and single simulation steps. When real time components are

connected, the real time represent the upper boundary for the execution of the simulation scenarios,

method is scalable considering the trade-off between accuracy and performance of the simulation.

[GAPM-VAD05] The simulation scenario can be deployed to multiple hosts to enable a distributed

execution. The number of hosts is limited to 1000. The performance of the validation framework is

influenced by the number of hosts due to the communication and synchronization overhead.

Deployment

[GAPM-VAD06] The deployment of simulation components to host nodes requires the development

or adaptation of platform-specific connectors, which depend on component type, communication

protocols, and operating system. FERAL comprises a library of existing and available platform-

specific connectors, which is continuously updated and extended.

[GAPM-VAD07] Host node shall run Windows or Linux operating systems, preferably in 64-bit

mode.

[GAPM-VAD08] Host node must support Java version 11 or higher.

Learning curve

[GAPM-VAD09] The learning curve depends on the concrete activities. The actual use and execution

of simulation scenario is trivial and easy to learn. The construction of new simulation scenarios and

the extension of existing scenarios is rather complex and requires some learning. The design of new

simulation models and components requires the understanding of detailed method and tool insights,

especially of the FERAL kernel and messaging paradigm.

Lack of automation

[GAPM-VAD10] The implementation of the method in the FERAL tool framework is partially

automated. Currently, the execution of simulation scenarios and the recording of data flows through

the interfaces are fully automated. Further steps involved manual activities, such as the construction

of simulation models, the definition and configuration of simulation scenarios, and the deployment

of simulation components to host nodes. The evaluation of use-case specific properties can be

automated by developing corresponding data processing and reporting engines.

Reference environment

[GAPM-VAD11] Simulation is supported on pure model level, the called Model-in-the-Loop Test

(MiL), on software level, the so-called Software-in-the-Loop Test (SiL), and for virtual hardware

platforms, i.e. processor and network models to which the software components can be deployed in

a virtual Hardware-in-the Loop (vHil) simulation.

Identified gaps and limitations of the V&V methods listed in D3.1

44 ECSEL JU, grant agreement No 876852.

Costs

[GAPM-VAD12] For academic use and evaluation purposes, dedicated evaluation licenses are

provided. For commercial use, customer-specific commercial licenses have to be purchased.

Standards

[GAPM-VAD13] FERAL is applied in development projects for technical applications from different

domains that consider specific process standards, such as IEC 61508 or ISO 26262. Nevertheless,

FERAL is not qualified or operationally proven to be used in official release processes and audits

with certification authorities.

References

• [MVV1] T. Kuhn, T. Forster, T. Braun, R. Gotzhein: Feral - framework for simulator coupling

on requirements and architecture level. In: ACM/IEEE MEMOCODE, pp. 11–22, 2013

• [MVV2] P. Oliveira Antonino, J. Jahic, B. Kallweit, A. Morgenstern, T. Kuhn: Bridging the

Gap between Architecture Specifications and Simulation Models. International Conference

on Software Architecture (ICSA) Companion: 77-80, 2018 doi:

http://dx.doi.org/10.1109/ICSA-C.2018.00029

• [MVV3] A. Bachorek, F. Schulte-Langforth, A. Witton, T. Kuhn, P. Oliveira Antonino:

Towards a Virtual Continuous Integration Platform for Advanced Driving Assistance

Systems. International Conference on Software Architecture (ICSA) Companion, 61-64

(2019), doi: http://dx.doi.org/10.1109/ICSA-C.2019.00018

3.2.5 Virtual & Augmented Reality-Based User Interaction V&V and Technology

Acceptance

Name of the method: Virtual & Augmented Reality-Based User Interaction V&V and Technology

Acceptance

Short description

This is a method aimed at involving the end-user early in the validation process. Human factors,

technology acceptance, and trust can be tested even before the system/robot is fully implemented by

using virtual/augmented reality simulation and robot simulator [VUR1] [VUR2].

Limitations

Functionality

[GAPM-VUR01] The simulation of the interaction between the end-user and the system/robot may

be difficult to implement depending on the tasks to be performed and the level or realism desired.

Accuracy

[GAPM-VUR02] This method relies on the accuracy of the system/robot simulation with which the

end-user interacts and the realism of the human-robot interaction.

http://dx.doi.org/10.1109/ICSA-C.2019.00018

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 45

Scalability and computational

[GAPM-VUR03] The method is designed to be used in a distributed environment in which each

component can run in dedicated hardware. Different simulators can be combined in the same

distributed simulation, so scalability will depend on the individual simulators used.

Deployment

[GAPM-VUR04] Deployment can be complex if the method is planned to be used in the end-user

facilities using augmented reality. Using virtual reality to recreate the facilities can also be complex

and time consuming due to the need for creating realistic 3D of the facility.

Learning curve

[GAPM-VUR05] It requires specific knowledge about networking and virtual reality/augmented

reality development. In the application of the method used as reference, it requires knowledge about

Unity3D and MQTT.

Lack of automation

[GAPM-VUR06] This type of method requires participation of the end-users in order to obtain useful

data.

Reference environment

[GAPM-VUR07] This method is applied in a simulation environment, with the corresponding

limitations (real-world representativeness, etc.)

Costs

[GAPM-VUR08] The virtual/augmented reality simulator has to be implemented from scratch. Thus,

cost may be high depending on the requirements.

Standards

No relevant gap or limitation has been identified.

References

• [VUR1] Belmonte, L.; Garcia, A.S.; Segura, E.; Novais, P.J.; Morales, R.; Fernandez-Caballero,

A. Virtual Reality Simulation of a Quadrotor to Monitor Dependent People at Home. IEEE

Transactions on Emerging Topics in Computing, 2020. doi:10.1109/TETC.2020.30003.

• [VUR2] Belmonte, L.M.; García, A.S.; Morales, R.; de la Vara, J.L.; López de la Rosa, F.;

Fernández-Caballero, A. Feeling of Safety and Comfort towards a Socially Assistive

Unmanned Aerial Vehicle That Monitors People in a Virtual Home. Sensors 2021, 21, 908.

doi: 10.3390/s21030908.

3.2.6 V&V of Machine Learning-Based Systems Using Simulators

Name of the method: V&V of Machine Learning-Based Systems Using Simulators

Identified gaps and limitations of the V&V methods listed in D3.1

46 ECSEL JU, grant agreement No 876852.

Short description

The traditional methods for V&V of a rule-based system are not effective for testing fuzzy machine

learning-based models. Hence, for safety reasons these models are initially tested in simulators where

the gap between the simulated environments and the real-world environments are being minimized.

Limitations

Functionality

[GAPM-VVM01] Uncertainty in behaviour of machine learning-based systems.

[GAPM-VVM02] Traditional rule-based methods not being efficient in testing Machine Learning

(ML) systems.

Accuracy

[GAPM-VVM03] ML algorithm’s correct behaviour cannot be guaranteed by traditional software

engineering approaches. Using simulators in V&V for ML will enable generation of annotated INFOR

datasets. However, the accuracy limitations exist since data generated from sensor models in

simulator does not represent data from real sensors. [VVM1]

[GAPM-VVM04] Gap between test methods and evaluation criteria in real world and simulator and

the test coverage of scenarios.

Scalability and computational

[GAPM-VVM05] Coverage of scenario. Only few tests can be done on a real-world track. Using a

simulator, we can test several instances of a model at the same time.

Deployment

[GAPM-VVM06] Lack of industrial standard or systematic approach to integrate simulation into

CI/CD pipeline.

Learning curve

[GAPM-VVM07] Lack of knowledge about corner cases for test purposes. As Some preliminary

knowledge is required to properly use a simulator

[GAPM-VVM08] Lack of mature process for V&V of ML models. As Some preliminary knowledge is

required of how to perform V&V for ML-based systems.

Lack of automation

[GAPM-VVM09] Lack of automated tools for generating test cases and data of realistic sensor

responses of real-world environment.

Reference environment

No relevant gap or limitation has been identified.

Costs

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 47

[GAPM-VVM10] Modelling the real world in simulators requires manual intervention and is

therefore time-consuming and expensive.

[GAPM-VVM12] Real-world testing raises safety and ethical issues for test participants.

[GAPM-VVM13] Open-source community working with these methods is limited and the quality of

the software is not comparable with the commercial alternatives.

Standards

[GAPM-VVM11] ISO26262 (functional safety) does not take ML into account while SOTIF (ISO 21448)

is still in the development that comes with argumentations of ML based system to meet the safety

requirements for critical applications.

References

• [VVM1] A. Ngo, M. P. Bauer, and M. Resch, “A Sensitivity Analysis Approach for Evaluating a

Radar Simulation for Virtual Testing of Autonomous Driving Functions,” arXiv:2008.02725 [cs,

eess], Oct. 2020, Accessed: Mar. 10, 2021. [Online]. Available: http://arxiv.org/abs/2008.02725.

3.3 Testing

This group of methods focuses on validating a system by executing it in the frame of so-called test cases.

At least, a test case contains two fundamental sets of information: input data to be provided to the

System Under Test (SUT), and a description of the expected output or behaviour. In order to execute a

test case, an environment is used that allows to feed the SUT with the input data in a controlled manner,

as well as to monitor its reactions.

3.3.1 Behaviour-Driven Model Development and Test-Driven Model Review

Name of the method: Behaviour-Driven Model Development and Test-Driven Model Review

Short description

Uses automated model testing, test case generation and scenario review to ensure the correctness of

behaviour models.

Limitations

Functionality

No relevant gap or limitation has been identified.

Accuracy

[GAPM-MBT03] (Inherited from the used part-method Model-Based Testing, see section 3.3.6)

The quality of the generated tests depends not only on the model and the tool, but also on the

coverage criterion used to drive the generation of the tests. Tests generated to achieve control flow

coverage reach a location in the system code where a problem could happen, but do not follow

http://arxiv.org/abs/2008.02725

Identified gaps and limitations of the V&V methods listed in D3.1

48 ECSEL JU, grant agreement No 876852.

through to a point where the problem would become observable on the outside interface. For this,

data flow coverage or mutation coverage would be needed.

For the integration in this method, this might lead to model behaviour that is not reviewed.

Scalability and computational

[GAPM-MBT04] (Inherited from Model-Based Testing, see section 3.3.6)

Conceptually, MBT uses enumerative or symbolic search over a state space. More complex systems

have exponentially growing state spaces. Compared to, e.g., Model Checking, it does not necessarily

need to cover the complete state space. Instead, it is sufficient to reach the requested coverage of the

given model, but in the worst case, searching for this can take as long as full state space coverage.

Various heuristics exist when to end the search but are rarely compared in detail. Method support to

select a fitting heuristic based on the given model could mitigate this problem.

Deployment

[GAPM-BHM01] Only limited and no integrated tool support for Behaviour-Driven Model

Development and Test-Driven Model Review is available yet.

Learning curve

If the tests used for model review shall also be used to test the implementation:

[GAPM-MBT08] (Inherited from Model-Based Testing, see section 3.3.6)

Behaviour models usable for MBT need to be (semi-)executable to generate tests. But to generate tests

that reflect the requirements (what shall be done), there should be as little as possible how it is done

– otherwise the generated tests would be more specific than the requirements and implementations

under test might not pass the tests despite being perfectly in line with the requirements. This is hard

to learn and get right. A method/guideline and/or tool support to find a reasonable balance of

executability and abstraction might help.

[GAPM-MBT09] (Inherited from Model-Based Testing, see section 3.3.6)

 Building behaviour models usable for MBT requires some additional knowledge and experience to

correctly capture the test interface. A method/guideline and/or tool supporting the test interface

definition might help.

For the integration in this method, this is also important for the communication between modelling

expert and domain expert.

Lack of automation

[GAPM-BHM02] As of now, no recommender support for the modelling expert to better fit the given

behaviours to be model is available.

Reference environment

No relevant gap or limitation have been identified.

Costs

[GAPM- BHM03] (Related to GAPM-MBT11 from the used part-method Model-Based Testing, see

section 3.3.6):

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 49

Hardware Costs: Adding test case generation to modelling might need investment in dedicated test

case generation equipment.

[GAPM- BHM04] If the used test case generation approach produces more tests than necessary to

cover all the functionality, review efforts might become infeasibly high.

[GAPM- BHM05] Process change – investment: Replacing an established process is a considerable

effort.

Standards

The used base method Model-Based Testing is highly recommended for SIL3/4 by IEC 61508.

No gaps related to standards known.

References

3.3.2 Assessment of Cybersecurity-Informed Safety

Name of the method: Assessment of Cybersecurity-Informed Safety

Short description:

Black-box testing for security-informed safety of automated driving systems [ACS1]. To support

black-box testing (that is testing without knowing the internal workings of the test object, see e.g.

[ACS2]) as part of an independent evaluation, with the aim of producing an understanding of the

interplay between safety and security, enabling a comparison of how well different ADSs can

withstand safety-relevant security threats.

Limitations

Functionality

[GAPM-ACS1] Development of an appropriate test suite for test facilities to assess cybersecurity,

matching the feature class and sensor setup.

[GAPM-ACS2] Develop and evaluating a coverage measure for a cybersecurity teste suite.

[GAPM-ACS3] Capturing of post-attack behaviour and co-simulation with critical traffic scenarios to

evaluate safety criteria need to be developed.

Accuracy

[GAPM-ACS4] Validity, and a measure thereof, for co-simulation of post-attack behaviour with

critical traffic scenarios to evaluate safety criteria need to be investigated.

Scalability and computational

[GAPM-ACS5] This is an aspect that needs further investigation for the method that depends on the

needed validity and successfulness of limiting the combinatorial state explosion in scenario-based

testing.

Deployment

Identified gaps and limitations of the V&V methods listed in D3.1

50 ECSEL JU, grant agreement No 876852.

The goal of the investigation is limited to a small assessment test where a small test batch that can be

shown to be representative for a whole class of ADS features, mainly to show feasibility and efficacy

gains.

[GAPM-ACS6] Integration with test track infrastructure is needed.

Learning curve

[GAPM-ACS7] Requires high-level multi-disciplinary skill, the slope in the learning curve could be

lowered by standardized information exchange formats and a more mature product under test.

Lack of automation

[GAPM-ACS8] Potentially high level of automation but that also puts high requirements on the

testing infrastructure, not present at this time.

Reference environment

[GAPM-ACS9] The reference environment is real traffic where the vehicle is meant to operate, where

the validity is hopefully preserved to proving grounds and by extension simulation. It is initially the

proving ground vs simulation validity that is investigated here.

Costs

No relevant gap or limitation has been identified.

Standards

No relevant gap or limitation has been identified. Relevant standards are fulfilled: ISO26262,

ISO21434 and ISO21448.

References

• [ACS1] Skoglund, M. et al.: Black-Box Testing for Security-Informed Safety of Automated

Driving Systems, VTS 2021-spring (to appear)

• [ACS2] Forgács, István; Kovács, Attila (2019). Practical Test Design: Selection of Traditional

and Automated Test Design Techniques.

3.3.3 Machine Learning Model Validation

Name of the method: Machine Learning Model Validation

Short description

Model validation in machine learning automated systems serves to evaluate how a system performs

and how safe it is when applied to input data other than the data used to train it.

Limitations

Functionality

No relevant gap or limitation has been identified.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 51

Accuracy

[GAPM-MLV01] Machine learning is intrinsically a statistical approach. Therefore, the goal of

machine learning techniques is generalizing well in most of the cases, accuracy on infrequent

configurations could be limited.

[GAPM-MLV02] Machine learning validation works well if the data are representative of the real

situations that may happen in a real-world situation. If the available are limited or if they are not fully

describing the reality, the accuracy will be lower.

Scalability and computational

[GAPM-MLV03] If machine learning models are complex, also their application for validation

purposes could require high computational resources.

Deployment

No relevant gap or limitation has been identified.

Learning curve

[GAPM-MLV04] Some knowledge about machine learning is required to properly interpret and

improve the results.

Lack of automation

Most validation or cross-validation approaches as well as the tuning of ML model parameters could

be automated, so automation is usually not an issue.

Reference environment

No relevant gap or limitation has been identified.

Costs

No relevant gap or limitation has been identified since most machine learning tools are freely

available.

Standards

No relevant gap or limitation has been identified.

References

3.3.4 Model-Based Mutation Testing

Name of the method: Model-Based Mutation Testing

Short description

Model-based mutation testing is a form of model-based testing. As coverage criterion to drive the test

case generation, it uses mutations – artificial faults injected into the test model that the generated tests

must be able to expose. The method shares the limitations of Model-Based Testing.

Identified gaps and limitations of the V&V methods listed in D3.1

52 ECSEL JU, grant agreement No 876852.

Limitations

Functionality

No relevant gap or limitation has been identified.

Accuracy

[GAPM-MBT01] (Inherited from Model-Based Testing, see section 3.3.6)

Level of model detail: as a black-box testing method, the method does not use any internal knowledge

about the implementation, only its requirements and specification as inputs. Thereby, it can only

systematically test what has been explicitly specified. It might therefore benefit from combinations

with methods supporting model quality assurance or methods that learn models from operations

data.

[GAPM-MBT02] (Inherited from Model-Based Testing, see section 3.3.6)

Factoring: Well-designed models strive to have each piece of information just in one place. The same

cannot be guaranteed for an implementation, where bad habits like re-use by copy and paste as well

as fundamental technical reasons can lead to having the same information in multiple locations. This

might allow something to go wrong in one location and not in the other. Tests generated from a well-

factored model might assume that having one test reaching a specific state (and potential fault) in the

system under test is enough. In the implementation, this would then only help finding a problem at

one of the locations, but not the other.

[GAPM-MMT01] (Related to [GAPM-MBT03] from Model-Based Testing, see section 3.3.6)

The quality of the generated tests depends not only on the model and the tool, but also on the

coverage criterion used to drive the generation of the tests. In case of mutation testing, a badly

selected set of mutation operators can limit the quality of the generated tests – both by stopping too

early with a sub-optimal test suite and by not finding all interesting situations because the available

effort is spent on less interesting situations provoked by too many mutants.

Scalability and computational

[GAPM-MBT04] (Inherited from Model-Based Testing, see section 3.3.6)

Conceptually, MBT uses enumerative or symbolic search over a state space. More complex systems

have exponentially growing state spaces. Compared to, e.g., Model Checking, it does not necessarily

need to cover the complete state space. Instead, it is sufficient to reach the requested coverage of the

given model, but in the worst case, searching for this can take as long as full state space coverage.

Various heuristics exist when to end the search but are rarely compared in detail. Method support to

select a fitting heuristic based on the given model could mitigate this problem.

Deployment

This method inherits the typical issues for integrating all Model-Based Testing approaches (See

section 3.3.6) into a validation workflow:

[GAPM-MBT05] Without an automated test execution environment, some benefits are limited. E.g.

re-running multiple tests automatically to generate a failing short test that can be easily analysed,

does not help if the of the originally failing long test needs to be stepped through manually anyway.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 53

[GAPM-MBT06] Existing test execution environments might not fit the needs of tests from MBT (e.g.

some things might not be observable in the test environment)

Learning curve

[GAPM-MBT07] (Inherited from Model-Based Testing, see section 3.3.6)

Building good test models needs a somewhat different skill set than building good tests. Not all good

testers become also good test modelers. Interpretation of test results is not the same as with manual

tests. The learning curve can be steep.

[GAPM-MBT08] (Inherited from Model-Based Testing, see section 3.3.6)

Behaviour models usable for MBT need to be (semi-)executable to generate tests. But to generate tests

that reflect the requirements (what shall be done), there should be as little as possible how it is done

– otherwise the generated tests would be more specific than the requirements and implementations

under test might not pass the tests despite being perfectly in line with the requirements. This is hard

to learn and get right. A method/guideline and/or tool support to find a reasonable balance of

executability and abstraction might help.

[GAPM-MBT09] (Inherited from Model-Based Testing, see section 3.3.6)

Building behaviour models usable for MBT requires some additional knowledge and experience to

correctly capture the test interface. A method/guideline and/or tool supporting the test interface

definition might help.

Lack of automation

GAPM-MBT10] (Inherited from Model-Based Testing, see section 3.3.6)

Building the test model is not easily automatable.

Reference environment

No relevant gap or limitation have been identified.

Costs

[GAPM-MBT11] (Inherited from Model-Based Testing, see section 3.3.6)

Hardware Costs: Shifting from personnel efforts to automation for test design for complex systems

might need investment in dedicated test case generation and/or execution hardware equipment.

[GAPM-MBT12] (Inherited from Model-Based Testing, see section 3.3.6)

Human Resources: The effort of creating a test model is often seen as an otherwise unnecessary effort.

It can be balanced with reduced test design efforts, but in situations where the benefits of repeated

test case generation cannot be reaped for some reason, overall efforts might go up. Combining with

methods for “model play-in” could reduce the problem.

[GAPM-MBT13] (Inherited from Model-Based Testing, see section 3.3.6)

Process change – investment: Replacing an established testing process with MBT is a considerable

effort for a development/testing team.

Standards

The base method Model-Based Testing is highly recommended for SIL3/4 by IEC 61508.

No gaps related to standards known.

Identified gaps and limitations of the V&V methods listed in D3.1

54 ECSEL JU, grant agreement No 876852.

Potential gaps regarding certification, depending on tool implementations:

[GAPM-MBT14] (Inherited from Model-Based Testing, see section 3.3.6)

For certification, it is usually necessary to demonstrate why the test cases are there – therefore, an

implementation of the method should provide sufficient traceability to link successful tests as

evidence to the fulfilment of requirements.

[GAPM-MBT15] (Inherited from Model-Based Testing, see section 3.3.6)

For re-certification of new releases of a software, as little tests as possible should be changed, since

all changed (new, modified and removed) tests would need to be re-evaluated in a review.

References

3.3.5 Model-Based Robustness Testing

Name of the method: Model-Based Robustness Testing

Short description

This method uses a behaviour model of the system under test to derive unexpected inputs that can

be used to check the implementation of the functionality for robustness.

Limitations

Functionality

No general gaps known – different tools e.g. smart fuzzing tools have very diverse feature sets.

Accuracy

No general gaps known – it depends on the exploration algorithms used by a specific

implementation.

Scalability and computational

[GAPM-MRT01] For complex systems, it is often just not feasible to run a robustness test suite of the

size objectively needed.

Deployment

No relevant gap or limitation has been identified.

Learning curve

No relevant gap or limitation has been identified.

Lack of automation

[GAPM-MRT02] Model-Based Robustness Testing feeds the system under test with unexpected input

stimuli. There are almost endless possibilities to do so. A selection needs to be made which parts shall

be tested for which unexpected inputs. If the selection is too big, the test will not terminate within a

reasonable amount of time. The selection needs to be made manually, can get very detailed and needs

sufficient experience.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 55

Reference environment

No relevant gap or limitation has been identified.

Costs

[GAPM-MRT03] The method depends on the availability of a behaviour model - if this needs to be

built, personnel effort and costs go up.

Standards

No relevant gap or limitation has been identified.

References

3.3.6 Model-Based Testing

Name of the method: Model-Based Testing (MBT)

Short description

Model-Based Testing allows the derivation of tests from specification models and thereby automated

test design. Specification models usually are behaviour models, but for some variants of the method

can also be models of test scenarios, models of input and output interface and models of invariants.

Limitations

Functionality

No relevant gap or limitation has been identified.

Accuracy

[GAPM-MBT01] Level of model detail: as a black-box testing method, the method does not use any

internal knowledge about the implementation, only its requirements and specification as inputs.

Thereby, it can only systematically test what has been explicitly specified. It might therefore benefit

from combinations with methods supporting model quality assurance or methods that learn models

from operations data.

[GAPM-MBT02] Factoring: Well-designed models strive to have each piece of information just in one

place. The same cannot be guaranteed for an implementation, where bad habits like re-use by copy

and paste as well as fundamental technical reasons can lead to having the same information in

multiple locations. This might allow something to go wrong in one location and not in the other. Tests

generated from a well-factored model might assume that having one test reaching a specific state

(and potential fault) in the system under test is enough. In the implementation, this would then only

help finding a problem at one of the locations, but not the other.

[GAPM-MBT03] The quality of the generated tests depends not only on the model and the tool, but

also on the coverage criterion used to drive the generation of the tests. Tests generated to achieve

control flow coverage reach a location in the system code where a problem could happen, but do not

Identified gaps and limitations of the V&V methods listed in D3.1

56 ECSEL JU, grant agreement No 876852.

follow through to a point where the problem would become observable on the outside interface. For

this, data flow coverage or mutation coverage would be needed.

Scalability and computational

[GAPM-MBT04] Conceptually, MBT uses enumerative or symbolic search over a state space. More

complex systems have exponentially growing state spaces. Compared to, e.g., Model Checking, it

does not necessarily need to cover the complete state space. Instead, it is sufficient to reach the

requested coverage of the given model, but in the worst case, searching for this can take as long as

full state space coverage. Various heuristics exist when to end the search but are rarely compared in

detail. Method support to select a fitting heuristic based on the given model could mitigate this

problem.

Deployment

Typical issues for integrating MBT into a validation workflow are:

[GAPM-MBT05] Without an automated test execution environment, some benefits are limited. E.g.

re-running multiple tests automatically to generate a failing short test that can be easily analysed,

does not help if the of the originally failing long test needs to be stepped through manually anyway.

[GAPM-MBT06] Existing test execution environments might not fit the needs of tests from MBT (e.g.

some things might not be observable in the test environment)

Learning curve

[GAPM-MBT07] Building good test models needs a somewhat different skill set than building good

tests. Not all good testers become also good test modelers. Interpretation of test results is not the same

as with manual tests. The learning curve can be steep.

[GAPM-MBT08] Behaviour models usable for MBT need to be (semi-)executable to generate tests. But

to generate tests that reflect the requirements (what shall be done), there should be as little as possible

how it is done – otherwise the generated tests would be more specific than the requirements and

implementations under test might not pass the tests despite being perfectly in line with the

requirements. This is hard to learn and get right. A method/guideline and/or tool support to find a

reasonable balance of executability and abstraction might help.

[GAPM-MBT09] Building behaviour models usable for MBT requires some additional knowledge

and experience to correctly capture the test interface. A method/guideline and/or tool supporting the

test interface definition might help.

Lack of automation

[GAPM-MBT10] Building the test model is not easily automatable.

Reference environment

No relevant gap or limitation have been identified.

Costs

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 57

[GAPM-MBT11] Hardware Costs: Shifting from personnel efforts to automation for test design for

complex systems might need investment in dedicated test case generation and/or execution hardware

equipment.

[GAPM-MBT12] Human Resources: The effort of creating a test model is often seen as an otherwise

unnecessary effort. It can be balanced with reduced test design efforts, but in situations where the

benefits of repeated test case generation cannot be reaped for some reason, overall efforts might go

up. Combining with methods for “model play-in” could reduce the problem.

[GAPM-MBT13] Process change – investment: Replacing an established testing process with MBT is

a considerable effort for a development/testing team.

Standards

MBT is highly recommended for SIL3/4 by IEC 61508.

No gaps related to standards known.

Potential gaps regarding certification, depending on tool implementations:

[GAPM-MBT14] For certification, it is usually necessary to demonstrate why the test cases are there

– therefore, an implementation of the method should provide sufficient traceability to link successful

tests as evidence to the fulfilment of requirements.

[GAPM-MBT15] For re-certification of new releases of a software, as little tests as possible should be

changed, since all changed (new, modified and removed) tests would need to be re-evaluated in a

review.

References

3.3.7 Risk-Based Testing

Name of the method: Risk-Based Testing

Short description

Risk-based testing uses identified risks in a system to prioritize and/or select test execution and

sometimes even test development/generation.

Limitations

Functionality

[GAPM-RBT01] Risk assessment artefacts and results need description in a format and approach that

allows their usage by automated testing tools.

Accuracy

[GAPM-RBT02] Prioritization by risk can reduce the remaining risk if test efforts need to be limited,

but it cannot address the inherent incompleteness of testing.

[GAPM-RBT03] Risk assessment artefacts and results need to be described on a technical / near

implementation level in order to be usable for risk-based testing. Current concept level / preliminary

architecture level assessments are difficult to utilize in testing.

Identified gaps and limitations of the V&V methods listed in D3.1

58 ECSEL JU, grant agreement No 876852.

Scalability and computational

No relevant gap or limitation has been identified.

Deployment

No relevant gap or limitation has been identified.

Learning curve

No relevant gap or limitation has been identified.

Lack of automation

[GAPM-RBT04] For security testing, risk-based testing is currently a manual activity, e.g. risk

assessments results are considered for test planning, but there is no automated linkage from risk

assessment to testing.

Reference environment

No relevant gap or limitation have been identified.

Costs

No relevant gap or limitation has been identified. Costs highly depend on concrete risk assessment

and testing approaches.

Standards

In certification of safety-critical systems, risk-based testing can usually not be used to reduce the sub-

set of tests that is run. It can be used to prioritize test execution for regression tests.

References

3.3.8 Signal Analysis and Probing

Name of the method: Signal Analysis and Probing

Short description

A method to validate signals on an IC based on using a tester setup that probes the IC to measure the

signals on the chip. These signals are post-processed on the tester by means of complex signal analysis

in order to assess the SoC’s performance.

Limitations

Functionality

[GAPM-SAP01] Without probing, the IC is a black box and intermediate processing stages cannot be

evaluated. Errors are difficult to track down to the faulty subsystem in the IC.

Accuracy

[GAPM-SAP02] Insufficient accuracy in testing due to missing intermediate test parameters.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 59

Scalability and computational

No relevant gap or limitation has been identified.

Deployment

No relevant gap or limitation has been identified.

Learning curve

[GAPM-SAP03] Interpretation of results at the end of the processing chain is more complex and

requires a high level of skill to interpret them compared to analysis of intermediate results.

Lack of automation

No relevant gap or limitation has been identified.

Reference environment

No relevant gap or limitation have been identified.

Costs

[GAPM-SAP04] Error tracking is slow because multiple test runs are required with different

stimulation patterns to track down a problem.

Standards

No relevant gap or limitation have been identified.

References

3.3.9 Software Component Testing

Name of the method: Software Component Testing

Short description

Software Component Testing relies on tests on each SW component of the system under test in order

to find poor and potentially incorrect program structures or failures. It is done at SW unit test and at

SW units integration stages, which are iterations of tests involving the interfaces of each component

to be put in the same system.

Limitations

Functionality

[GAPM-SCT01] Current tool support is good but not prone to automation.

Accuracy

No relevant gap or limitation has been identified.

Identified gaps and limitations of the V&V methods listed in D3.1

60 ECSEL JU, grant agreement No 876852.

Scalability and computational

No relevant gap or limitation has been identified.

Deployment

No relevant gap or limitation has been identified.

Learning curve

[GAPM-SCT02] The method requires good software design and development skills.

Lack of automation

[GAPM-SCT03] The method requires slight system design, and safety expertise, but the analysis

results can be mostly automated and can be solidly gathered.

Reference environment

[GAPM-SCT04] The method can be applied in any environment provided that the level of

development of the component is completed.

Costs

[GAPM-SCT05] Some tools are freely available as open-source software, some other requires quite

an investment (thousands of euro) to be acquired.

Standards

No relevant gap or limitations has been identified.

References

3.3.10 Test Parallelization and Automation

Name of the method: Test Parallelization and Automation

Short description:

Complex systems require testing of a huge number of use cases and varieties of parameters.

Expensive test equipment and time to market requirements demand efficient use of test resources

and reliable result tracking.

Limitations

Functionality

No relevant gap or limitation has been identified.

Accuracy

[GAPM-TPL01] With thousands of test cases, manual test execution can lead to forgotten tests.

Computational test administration and scheduling ensures full coverage of defined test plans.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 61

[GAPM-TPL02] Visual evaluation of test results makes it difficult to compare large number of test

results and find correlations or corner cases between test parameters.

Scalability and computational

[GAPM-TPL03] Manual administration of test resources does not optimize the utilization of the

available test equipment like computational administration can do.

Deployment

No relevant gap or limitation has been identified.

Learning curve

No relevant gap or limitation has been identified.

Lack of automation

[GAPM-TPL04] Manual administration of test resources (planning, execution, and result evaluation)

is time consuming, error prone and leads to increased wear of the equipment.

Reference environment

No relevant gap or limitation has been identified.

Costs

[GAPM-TPL05] Manual administration of test resources is time consuming and therefore more costly.

[GAPM-TPL06] Expensive equipment is required for this method even if it is not used continuously

24h per day, causing waste of resources.

[GAPM-TPL07] Time to market is increased cause by long test cycles.

Standards

No relevant gap or limitation has been identified.

References

3.4 Runtime Verification

This group of methods focuses on verifying a system during execution. Today's automated systems are

continuously growing in complexity, notably in what respects to the nature of their distributed

architectures, the size and number of software components, and the amount of concurrency associated

with these components. This makes most state-of-the art static verification techniques unscalable and

impracticable. Runtime verification techniques are lightweight alternatives that make use of monitors,

build based on formal specifications, that observe the target system and verify at execution time whether

a set of specifications are met.

Identified gaps and limitations of the V&V methods listed in D3.1

62 ECSEL JU, grant agreement No 876852.

3.4.1 Dynamic Analysis of Concurrent Programs

Name of the method: Dynamic Analysis of Concurrent Programs

Short description

Dynamic analysis of concurrent programs aims at coping with the inherent non-determinism in

scheduling concurrent threads (processes or other units of computation) due to which it is difficult

to catch rarely occurring but often critical bugs in synchronisation. To counter the problem,

approaches such as extrapolating checkers, systematic exploration of all schedules up to some bound,

and/or noise injection are used.

Limitations

Functionality

[GAPM-DAC01] Approaches based on systematic exploration of schedules have problems with

operations such as input/output, network communication, etc., which should be repeatedly executed

with the same effect. Extrapolating checkers do not support all classes of bugs and programming

constructions. Noise injection is often also optimised for specific classes of bugs and programming

idioms. In general, there is much less support for multi-process programs than for multi-threaded

ones. Approaches based on noise injection may be unusable for real-time systems.

Accuracy

[GAPM-DAC02] Methods of dynamic analysis cannot offer formal guarantees that no bug of the

given kind is missed. They can be used in less critical applications, during development phases, or in

scenarios where more accurate approaches fail to scale enough or fail to cover all the needed

programming constructions. Methods based on extrapolation may produce false alarms.

Scalability and computational

[GAPM-DAC03] Approaches based on systematic exploration of schedules are in principle less

scalable than extrapolation or noise injection, and they may fail to scale to truly large systems (though

they may still be more scalable than heavy-weight formal verification approaches). Monitoring and

analysing the run of the program under extrapolation-based analysis may also slow down the

monitored program significantly (the base time can be multiplied from several times to even several

thousand times). Noise-based injection may slow down the run of the monitored program

comparably to extrapolation or even more. Despite that, successful applications have been reported

even for programs of sizes up even millions of lines of code (though tens or hundreds of KLOCs are

more common) [DAC1, DAC2].

Deployment

[GAPM-DAC04] There exist solid tools for systematic exploration of schedules, extrapolation-based

analysis, as well as noise injection. However, there are not too many of them, and quite some come

from academia.

Learning curve

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 63

[GAPM-DAC05] The learning curve is not too steep: to start using techniques of dynamic analysis of

concurrent programs, no truly special skills are needed. To master the techniques and to achieve the

maximum possible efficiency, some experience in using them is, however, needed.

Lack of automation

[GAPM-DAC06] The methods may often be used fully automatically though to ensure the highest

possible efficiency, they may require the user to suitably set their various parameters (e.g., type and

strength of noise, etc.).

Reference environment

[GAPM-DAC07] The methods can be applied once some runnable version of the system to be

analysed is available. A test harness is needed for full automation.

Costs

No relevant gap or limitation has been identified since the approach comes with moderate costs only.

Standards

[GAPM-DAC08] Not covered by standards.

References

• [DAC1] Rhodes, D., Flanagan, C., Freund, S.N.: BigFoot: Static Check Placement for Dynamic

Race Detection. Proc. of PLDI’17, ACM, 2017.

• [DAC2] Fiedor, J., Muzikovska, M., Smrcka, A., Vasicek, O., Vojnar, T.: Advances in the

ANaConDA Framework for Dynamic Analysis and Testing of Concurrent C/C++ Programs. Proc.

of ISSTA’18, ACM, 2018.

3.4.2 Runtime Verification Based on Formal Specification

Name of the method: Runtime Verification Based on Formal Specification

Short description

This method consists in verifying the properties of a system by employing monitors that run

alongside it. Such properties are usually impractical to verify offline (static formal verification) due

to either complexity or to the very nature of the information to be verified (e.g., some data that is only

known during runtime). Such monitors are to be generated automatically by being derived from

formal specifications provided by the system developer.

Limitations

Functionality

[GAPM-RVF01] The correct functional behaviour of monitors is highly dependent on two mains

aspects: 1) the quality of the data collected for monitors to consume and make decisions; 2) that

monitors respect the scheduling policy defined for the system they are bound to observe and analyse.

Moreover, both 1) and 2) are dependent on each other, in the sense that monitors not respecting

Identified gaps and limitations of the V&V methods listed in D3.1

64 ECSEL JU, grant agreement No 876852.

scheduling policies are not guaranteed to reason over the correct set of events, whereas processing

wrong set of events may cause the monitors to take more time than expected to compute and thus

break the pre-defined scheduling policy.

Accuracy

[GAPM-RVF02] The accuracy of the verdicts given by the monitors is heavily dependent on user-

defined specifications. Automating the generation of such monitors could drastically reduce human

errors by abstracting the use of formal methods to verify a given user-defined specification's

correctness.

[GAPM-RVF03] The expressiveness of formal specification languages is notoriously limited.

Combining multiple languages could partially mitigate the problem, but the accuracy of what needs

to be specified could be compromised. An important point related to expressiveness is related to the

limitation of specifying properties only on the observable part of the system or the ability to specify

assumptions on the system behaviour. Current approaches to assumption-based runtime verification

[RVF1] are limited to propositional models of the system.

Scalability and computational

[GAPM-RVF04] Monitoring architectures imply an inevitable overhead on the target system. The

monitoring architecture's actual impact on the target system’s performance will depend on its

complexity. The system's scalability could also be limited depending on the coupled monitors'

complexity and the nature of the data they verify.

[GAPM-RVF05] Local and distributed monitoring architectures will, most likely, have very different

impacts on scalability and computational resources.

[GAPM-RVF06] Monitors synthesized through hardware specification languages could be an option

to mitigate the computational impact caused by software-based monitors. However, such an

approach also entails additional expenses like, for instance, space, cost, power consumption, and

weight.

Deployment

[GAPM-RVF07] Guaranteeing that monitors do not affect the safety non-functional properties or,

unintendedly, the target system's functional properties, is a serious concern for monitor architectures

deployment. Formal methods could be applied to guarantee the compliance of the coupled

monitoring architecture and the target system's safety aspects.

[GAPM-RVF08] Deployment of monitors in systems not originally designed to be

monitored/instrumented could require additional cost and effort because the designed system

architecture is potentially not suitable to work alongside monitors at runtime. This is mainly due to

the fact that no formal specifications of properties to be monitored were defined during the initial

design stage. As a result, the definition of such formal specifications at later verification stages might

require difficult rework at system's architectural level to accommodate the system instrumentation

required by the monitors.

Learning curve

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 65

[GAPM-RVF09] In general, formal methods have a steep learning curve. However, the creation or the

use of existing tools that can abstract part of the formalism could make the formal specification of the

monitors a much easier task.

Lack of automation

[GAPM-RVF10] Although monitors do not need any human intervention once deployed, the

instrumentation process itself is heavily human-dependent as there is not much research on

automated system instrumentation.

Reference environment

No relevant gap or limitation have been identified.

Costs

[GAPM-RVF11] Costs of software-based monitors are mainly associated with research efforts,

technology transfer from the academy to the industry, and software licensing. In the case of

hardware-based monitors, there is an additional cost associated to the hardware itself and its

instrumentation on the target system.

Standards

Standards are not a limitation, there are many standards that require the verification of safety

conditions. For example, DO-178C, DO-278A, ISO26262 and ISO21448. The following forthcoming

standards may also be of interest: IEEE P2846 and IEEE P7009.

References

• [RVF1] Cimatti, A., Tian, C., Tonetta, S.: “Assumption-Based Runtime Verification with

Partial Observability and Resets.” In Runtime Verification (RV 2019), pp. 165–184. Springer.

doi: 10.1007/978-3-030-32079-9_10

3.4.3 Test Oracle Observation at Runtime

Name of the method: Test Oracle Observation at Runtime

Short description

Uses Runtime verification based on formal specifications to evaluate if and with which safety-margin the

behaviour of a tested system is within the specification.

Limitations

Functionality

[GAPM-TOO01] The method only performs analyses on an individual behaviour, it is not exhaustive.

[GAPM-TOO02] Specification languages have certain expressiveness limits.

Accuracy

Identified gaps and limitations of the V&V methods listed in D3.1

66 ECSEL JU, grant agreement No 876852.

[GAPM-TOO03] The method needs to be combined with a manual or automated method to provide

test stimuli, since it is only passively observing the behaviour.

Scalability and computational

No relevant gap or limitation has been identified.

Deployment

[GAPM-TOO04] To apply the method, the observed outputs need to be technically accessible in the

test environment with the needed accuracy.

Learning curve

[GAPM-TOO05] While less complex than other formal modelling notations, identifying what correct

expected behaviour is and expressing it formally takes training.

Lack of automation

[GAPM-TOO06] Formalisation of the specification could be supported.

Reference environment

No relevant gap or limitation has been identified.

Costs

No relevant gap or limitation has been identified since costs of the method are benign.

Standards

No relevant gap or limitation has been identified.

References

3.5 Formal Verification

This group of methods aims to mathematically prove properties of a system or of information about it.

We distinguish between formal verification for source code and formal verification in general.

3.5.1 Formal Source Code Verification

3.5.1.1 Deductive Verification

Name of the method: Deductive Verification

Short description

Deductive verification is a method for verifying properties about a software system. Properties are

usually expressed in some formal logic and then a series of mathematical rules/techniques are used

to reason about these properties [DEV1, DEV2, DEV3, DEV4, DEV5, DEV6].

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 67

Limitations

Functionality

[GAPM-DEV01] The functionality of deductive verification is dependent on the tools that implement

this method. This typically involves the definition of a property called a pre-condition and another

property called a post-condition. A series of deduction rules/steps are then applied to demonstrate

that the postcondition can be derived from the precondition based on some intermediate steps that

are specific to the program/system being modelled.

Accuracy

[GAPM-DEV02] This method provides a proof of correctness, so the results are accurate and all

possible valuations of the state space are reasoned about. However, the user usually reasons over an

abstraction of the system, reasoning that a concrete implementation satisfies its abstract specification,

so there can be a "reality gap" between the final, implemented system and the model that the proofs

were carried out with respect to.

Scalability and computational

[GAPM-DEV03] Deductive verification involves carrying out a series of proofs about a system. As

systems increase in complexity, so does the associated proof effort which can present scalability

issues depending on the prover used. Techniques such as formal refinement help to improve the

scalability of this method but do not solve the problem completely.

Deployment

[GAPM-DEV04] Some deductive verification approaches have been integrated well with existing

programming paradigms such as VCC, OpenJML, and Why, which integrate well with programming

languages like C and Java. However, some are standalone, such as Dafny, and offer little integration

with other tools/formalisms.

Learning curve

[GAPM-DEV05] Deductive verification usually requires expert knowledge of both the system to be

verified as well as the tools to be used. Many of them offer a programmer-friendly environment with

a mixture of automated and interactive theorem proving working in the background. However, the

specification notation and the generated proofs are generally not familiar to software engineers and

there is therefore a learning curve associated with both using the tools and interpreting the proof

results. For example, some tools output a full proof derivation which can be difficult to parse for non-

expert users.

Lack of automation

[GAPM-DEV06] This approach has a high degree of automation as used by SMT solvers. However,

some other tools facilitate both automatic and interactive proof (e.g., Event-B [DEV7]). This has the

advantage of the user being able to contribute to a proof that the tool is struggling with but, in

practice, interactive proofs can be quite time consuming.

Identified gaps and limitations of the V&V methods listed in D3.1

68 ECSEL JU, grant agreement No 876852.

Reference environment

No relevant gap or limitation have been identified.

Costs

[GAPM-DEV06] High costs associated with training expert users.

Standards

No relevant gap or limitation has been identified since there are many standards that require the

verification of safety conditions. For example, DO-178C, DO-278A, ISO26262 and ISO21448. The

following forthcoming standards may also be of interest: IEEE P2846 and IEEE P7009.

References

• [DEV1] Filliâtre, J. Deductive software verification. Int J Software Tools Technology Transfer

13, 397 (2011). https://doi.org/10.1007/s10009-011-0211-0

• [DEV2] Hähnle R., Huisman M. (2019) Deductive Software Verification: From Pen-and-Paper

Proofs to Industrial Tools. In: Computing and Software Science. LNCS, vol 10000. Springer,

Cham. https://doi.org/10.1007/978-3-319-91908-9_1

• [DEV3] Towards deductive verification of control algorithms for autonomous marine

vehicles S Foster, M Gleirscher, R Calinescu- arXiv preprint arXiv:2006.09233, 2020 - arxiv.org

• [DEV4] Luo Z., Siegel S.F. (2018) Symbolic Execution and Deductive Verification Approaches

to VerifyThis 2017 Challenges. In: ISoLA 2018. LNCS, vol 11245. Springer, Cham.

https://doi.org/10.1007/978-3-030-03421-4_12

• [DEV5] Oortwijn W., Huisman M. (2019) Formal Verification of an Industrial Safety-Critical

Traffic Tunnel Control System. In: Integrated Formal Methods. IFM 2019. Lecture Notes in

Computer Science, vol 11918. Springer, Cham. https://doi.org/10.1007/978-3-030-34968-4_23

• [DEV6] Marieke Huisman, Rosemary Monahan, Peter Müller, Andrei Paskevich, Gidon

Ernst. VerifyThis 2018: A Program Verification Competition. [Research Report] Université

Paris-Saclay. 2019

• [DEV7] Abrial, Jean-Raymond. Modeling in Event-B: system and software engineering.

Cambridge University Press, 2010.

3.5.1.2 Source Code Static Analysis

Name of the method: Source Code Static Analysis

Short description

Static code analysis strives to analyse programs without executing them at all (i.e., purely on the

syntactic level) or at least without executing them under the original semantics, meaning that some

abstract semantics is used. There exist many different forms of static analysis based, e.g., on syntactic

error patterns, data-flow analysis, extended type and effect analysis, abstract interpretation, or

symbolic execution [SAN1, SAN2].

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 69

Limitations

Functionality

Static analyses, when used for verification purposes, are often designed to look for a specific class of

defects in a specific class of programs.

[GAPM-SAN01] While there are many different analyses and tools for some classes of errors and

programming constructions, there are classes of errors and programs for which not many (or no)

analyses and tools are available or those that exist are of limited precision or scalability. Specific

classes of errors and programming constructions not so well supported include dealing with low-

level memory operations especially when dynamic linked data structures are used, dealing with

concurrent programs, looking for defects related to non-functional properties such as performance,

dealing with complex operations on arrays or strings, or dealing with various combinations of

different data types (e.g., hash tables of linked lists of numeric values).

[GAPM-SAN02] Even if some analysis exists for a given class of errors and programs, it often needs

some fine-tuning for a given industrial setting so that its accuracy and scalability are appropriate.

Accuracy

For different static analyses, the accuracy may vary very significantly. While there are sound static

analyses guaranteeing conservative results (i.e., no error of a given kind is missed) implemented in

certified tools, there are also analyses that are neither sound nor complete.

[GAPM-SAN03] A significant risk of many of the sound approaches and tools is then that they may

produce quite many false alarms, requiring manual checking, further fine-tuning of the analysis for

the given code, and/or changing the code such that it passes the analysis.

[GAPM-SAN04] Analyses not striving to be sound are typically designed such that they scale to huge

code bases where they should be able to find at least some real errors while not reporting too many

false alarms, but, of course, they may miss real errors.

Scalability and computational

The scalability of static analyses does vary a lot: lightweight static analyses not required to be sound

nor complete are capable of handling code bases having billions of lines of code while still producing

useful results).

[GAPM-SAN05] However, the more precise and conservative the analysis is required to be, the

scalability typically decreases (though there are conservative analyses implemented in commercial

certified tools such as AbsInt or Polyspace that are in routine use for checking specific classes of

properties of real-life critical industrial code, e.g., in the area of automotive or aerospace industries).

Deployment

A basic application of a static analyser supporting some classes of errors and programs may be easy

when not insisting too much on accuracy and scalability.

[GAPM-SAN06] Otherwise, much more effort is needed in the deployment: Fine-tuning existing

analysers for a given industrial setting requires significant expertise and ideally a dedicated

verification engineer (or verification group, depending on the extent of the verification tasks). It may

also be needed to change the coding style used by the developers in order to facilitate scalability and

accuracy of static analyses on the produced code. Developing a new static analysis in case an

Identified gaps and limitations of the V&V methods listed in D3.1

70 ECSEL JU, grant agreement No 876852.

appropriate one is missing will typically require a very high level of expertise. Moreover, while some

static analysers may easily integrate with the development tools used, others may require dedicated

code be developed to facilitate the integration.

Learning curve

[GAPM-SAN07] As indicated already above, basic usage of existing static analysers does not require

any special skills. However, fine-tuning the analysers to be efficient and accurate in a given setting

requires significant expertise (and typically a specialised verification engineer). If a suitable analysis

is missing completely, a very high level of specialist education may be required.

Lack of automation

[GAPM-SAN08] While a basic application of a static analyser may be fully automated, serious usage

in a larger industrial setting will typically require some fine-tuning.

Reference environment

[GAPM-SAN09] Some static analyses may be applicable on code fragments that are not even runnable

(the fact they pass syntax analysis may be sufficient). However, other static analyses may require

code that is runnable and some even code with a test harness.

Costs

Basic usage of static analysis may come with rather moderate costs.

[GAPM-SAN10] However, more serious applications may incur significant costs. Indeed, while some

static analysis tools may come for free (including some commercial tools when used in the open-

source domain), the costs of using some of the current, commercially available tools may reach high

tens of thousands of EUR per year when certification, customisation, and support are needed. Further

costs may then be associated with a need to have a dedicated verification engineer (or engineers),

which can, however, replace some number of testers.

Standards

[GAPM-SAN11] Some static analysers support standards such as MISRA C/C++, ISO 26262, DO-

178B/C, IEC 61508, but many of them do not address any standards.

References

• [SAN1] Krena, B., Vojnar, T.: Automated Formal Analysis and Verification: An Overview.

International Journal of General Systems, 42(4), 2013.

• [SAN2] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, Springer-Verlag,

2005.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 71

3.5.2 General Formal Verification

3.5.2.1 Behaviour-Driven Formal Model Development

Name of the method: Behaviour-Driven Formal Model Development

Short description

This approach uses scenarios to specify example use cases of the system in question. Based on a

predefined set of requirements and these scenarios, a formal model of the system is devised along

with the desired verification conditions.

Limitations

Functionality

[GAPM-BFM01] This is usually more suitable to discrete than it is to continuous systems.

Accuracy

[GAPM-BFM02] This method requires input from both formal methods and domain experts, so its

accuracy depends on the quality of the communication and understanding between them.

Scalability and computational

[GAPM-BFM03] The limitations of this method are those which are present in the tool support that

is used to develop the formal model and the expressivity of the formalism chosen to define the

verification conditions.

Deployment

No relevant gap or limitation has been identified since many tools can facilitate the development of

formal models.

Learning curve

No relevant gap or limitation has been identified. This approach has the advantage of splitting the

verification task between different experts so that one does not need to be fully trained on the other's

topic. It thereby addresses a gap of classical formal methods e.g. Model Checking (see [GAPM-

MCH05])

Lack of automation

[GAPM-BFM04] This is an iterative process that requires frequent communication between

individuals.

Reference environment

No relevant gap or limitation have been identified.

Costs

No relevant gap or limitation has been identified.

Identified gaps and limitations of the V&V methods listed in D3.1

72 ECSEL JU, grant agreement No 876852.

Standards

No relevant gap or limitation has been identified since standards are not a limitation, there are many

standards that that require the verification of safety conditions. For example, DO-178C, DO-278A,

ISO26262 and ISO21448. The following forthcoming standards may also be of interest: IEEE P2846

and IEEE P7009.

References

3.5.2.2 Formal Requirements Validation

Name of the method: Formal Requirements Validation

Short description

Requirements are formalized in a formal language, typically a temporal logic, and analysed to find

defects in the specification such as inconsistencies, incompleteness, errors, or unrealizability.

Limitations

Functionality

[GAPM-FRV01] Since the requirements specification is validated against the intentions of the

requirements engineer and the needs of the stakeholders, the quest for new checks to perform to find

new issues is always open.

Accuracy

[GAPM-FRV02] There is always a gap between the natural language text and its formal counterpart.

This limits the accuracy of the formal analysis with respect to the informal specification. It often

happens that issues found in the formal properties are due to missing assumption or wrong choice

in the formalization step.

Scalability and computational

[GAPM-FRV03] Since the underlying formal problem is usually a problem of satisfiability or

realizability for temporal logics such as LTL, one of the main issues is the scalability of the procedures.

In some cases, considering for example first-order logic, the problem may be even undecidable.

Deployment

[GAPM-FRV04] Some formal requirements tools, such as NASA's Formal Requirements Elicitation

Tool (FRET) [FRV9], support the generation of verification conditions (in CoCoSim) based on the

formalised requirements [FRV10]. However, there is often a gap between the requirements

themselves and their associated verification conditions due to the requirements being expressed at a

higher level of abstraction than the implementation.

Learning curve

[GAPM-FRV05] The formalization of requirements is still a manual process and requires that the

domain engineer, expert in the domain of the requirements, learns the formal language.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 73

Lack of automation

[GAPM-FRV06] The formalization of natural language requirements remains largely a manual step.

Reference environment

No relevant gap or limitation have been identified.

Costs

[GAPM-FRV07] The human effort in the formalization of requirements and in the analysis of the

formal results is a limitation for a more widespread industrial adoption.

Standards

No relevant gap or limitation has been identified since there are many standards that require the

verification of safety conditions. For example, DO-178C, DO-278A, ISO26262 and ISO21448. The

following forthcoming standards may also be of interest: IEEE P2846 and IEEE P7009.

References

• [FRV1] Ingo Pill, Simone Semprini, Roberto Cavada, Marco Roveri, Roderick Bloem,

Alessandro Cimatti: Formal analysis of hardware requirements. DAC 2006: 821-826

• [FRV2] Roderick Bloem, Roberto Cavada, Ingo Pill, Marco Roveri, Andrei Tchaltsev: RAT: A

Tool for the Formal Analysis of Requirements. CAV 2007: 263-267

• [FRV3] Alessandro Cimatti, Marco Roveri, Stefano Tonetta: Requirements Validation for

Hybrid Systems. CAV 2009: 188-203 Requirements Validation for Hybrid Systems. CAV 2009:

188-203

• [FRV4] Alessandro Cimatti, Marco Roveri, Angelo Susi, Stefano Tonetta: Validation of

requirements for hybrid systems: A formal approach. ACM Trans. Softw. Eng. Methodol.

21(4): 22:1-22:34 (2012)

• [FRV5] Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri, Stefano

Tonetta: SMT-based satisfiability of first-order LTL with event freezing functions and metric

operators. Inf. Comput. 272: 104502 (2020)

• [FRV6] Amir Pnueli, Roni Rosner: On the Synthesis of a Reactive Module. POPL 1989: 179-

190

• [FRV7] Dana Fisman, Orna Kupferman, Sarai Sheinvald-Faragy, Moshe Y. Vardi: A

Framework for Inherent Vacuity. Haifa Verification Conference 2008: 7-22

• [FRV8] Koen Claessen: A Coverage Analysis for Safety Property Lists. FMCAD 2007: 139-145

• [FRV9] Giannakopoulou, D., Mavridou, A., Rhein, J., Pressburger, T., Schumann, J. and Shi,

N., 2020. Formal requirements elicitation with fret.

• [FRV10] Mavridou, Anastasia, Hamza Bourbouh, Pierre-Loic Garoche, and Mohammad

Hejase. Evaluation of the FRET and CoCoSim tools on the ten Lockheed Martin cyber-

physical challenge problems. NASA, Tech. Rep., oct (2019).

Identified gaps and limitations of the V&V methods listed in D3.1

74 ECSEL JU, grant agreement No 876852.

3.5.2.3 Model Checking

Name of the method: Model Checking

Short description

Given a formal model of the system and a formal specification of the properties, model checking

provides automated procedures to prove or disprove that the system satisfies the property. This is

achieved via an exhaustive examination of the state space.

Limitations

Functionality

[GAPM-MCH01] When the property is satisfied, most model checkers do not provide any further

information. Certifying model checking [MCH1] is an approach that provides also a deductive proof

extracted from the model checker internals. Only few cases extended the approach beyond invariant

properties [MCH2].

Accuracy

[GAPM-MCH02] The results are accurate because every system state is explored in the process.

However, model checkers usually require an abstract model of the system that is written in a different

language to the final implementation. As a result, there can be a slight mismatch between the model

that has been checked and the final, implemented solution.

Scalability and computational

[GAPM-MCH03] The method exhaustively explores the state space of the system, which is often

exponential in the number of variables and the number of system components executing in parallel.

This problem is known as the state space explosion, which can make the application of model

checking to industrial use cases impractical. In order to tackle this problem one has to choose suitable

reduction and abstraction techniques, which basically consist in reducing the number of state

transition paths to be explored by avoiding visiting those unnecessary paths that will not affect the

verification outcome and limiting the number of system variables to a minimum by abstracting away

those details that are not relevant to the system properties to be verified.

[GAPM-MCH04] In case of hybrid systems or software systems, the model checking problem is

usually undecidable. Although automated incomplete procedures exist, they may not scale up to the

complexity required in an industrial context.

Deployment

No relevant gap or limitation has been identified.

Learning curve

[GAPM-MCH05] System and properties must be formalized into a formal language. Thus, it is

required to have some background in formal methods such as temporal logic and associated proof

strategies.

Lack of automation

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 75

No relevant gap or limitation has been identified since once the model and properties to be checked

are formalized, then the process of checking the model against the properties is automatic.

Reference environment

No relevant gap or limitation have been identified.

Costs

No relevant gap or limitation has been identified.

Standards

No relevant gap or limitation has been identified.

References

• [MCH1] Kedar S. Namjoshi: Certifying Model Checkers. CAV 2001: 2-13

• [MCH2], Marco Roveri, Stefano Tonetta: Certifying Proofs for LTL Model Checking. FMCAD

2018: 1-9, https://dblp.org/pid/19/3686.html

3.5.2.4 Reachability-Analysis-Based Verification for Safety-Critical Hybrid Systems

Name of the method: Reachability-analysis-based verification for safety-critical hybrid systems

Short description:

Reachability analysis constitutes a powerful –yet not mature enough– verification method for

validating safety and robustness of safety-critical cyber-physical systems. It is based on a combination

of formal methods and applied mathematics using techniques such as zonotopes, in order to co-

analyse the continuous dynamics of (linear or non-linear) physical processes controlled by a discrete

controller and verify that the control logic will reside only in acceptable states.

Limitations

Functionality

[GAPM-RAV01] A major limitation with regard to functionality is that (by itself) this approach can

only typically provide results for a finite time horizon of evolution of system behaviour. Invariant

extraction and satisfaction checking can be used to alleviate this situation, but this is not always

possible and even when it is, identification of the invariant itself can be quite computationally

expensive.

Accuracy

[GAPM-RAV02] The verification of safety and robustness of safety-critical systems has to fulfil

several accuracy requirements especially in cases when random faults are present during the

controller’s operation. Reachability analysis in cases of those control perturbations require an over

approximation of reachable (numerical) states that lead to state space explosion problems, setting the

analysis incomplete.

https://dblp.org/db/conf/cav/cav2001.html#Namjoshi01
https://dblp.org/pid/83/563.html
https://dblp.org/db/conf/fmcad/fmcad2018.html#GriggioRT18
https://dblp.org/db/conf/fmcad/fmcad2018.html#GriggioRT18

Identified gaps and limitations of the V&V methods listed in D3.1

76 ECSEL JU, grant agreement No 876852.

Scalability and computational

[GAPM-RAV03] Especially for non-linear dynamical and stiff systems, V&V methods have to cope

with large system complexity, which usually form a hard problem to solve. Reachability analysis is

not scalable enough in its current state as more efficient and approximation-sound techniques should

be developed to tackle the problem.

Deployment

[GAPM-RAV04] Reachability analysis for hybrid system verification usually requires an advanced

expertise from the system engineer to be deployed (knowledge of hybrid automata, linearization and

system hybridization). Currently it lacks fully automated and integrated characteristics as the

engineer needs to specify its system in different representation semantics bounded by each

reachability analysis solution.

Learning curve

[GAPM-RAV05] Engineers need to have multidisciplinary capabilities in applied mathematics,

control design and formal verification (reachability analysis principles).

Lack of automation

[GAPM-RAV06] Semi-automated method lacking full integration with current model-based design

frameworks.

Reference environment

[GAPM-RAV07] Currently reachability analysis is at TRL3-4 and is being used in an ad-hoc manner

during control system design and validation phases.

Costs

[GAPM-RAV08] Large human resources demand cost

Standards

[GAPM-RAV09] No standard currently addressed.

References

3.5.2.5 Theorem Proving and SMT Solving

Name of the method: Theorem proving and SMT solving

Short description

Usually, theorem provers and SMT solvers are used as back-end proof support in deductive

verification systems and model checkers where the user describes properties to be verified using a

formal logic. Typically, these properties focus on safety and liveness aspects of the system. This

method produces a proof of correctness for a system that it obeys the specified properties [TPS5,

TPS6].

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 77

Limitations

Functionality

[GAPM-TPS01] Tools for theorem proving and SMT solving usually focus on using a single logic to

represent formal properties [TPS1, TPS2, TPS3, TPS4]. Incorporating multiple logical representations

could potentially be beneficial.

Accuracy

[GAPM-TPS02] This method provides a proof of correctness, so the results are accurate and all

possible valuations of the state space are reasoned about. However, the user usually reasons over an

abstraction of the system so there can be a "reality gap".

Scalability and computational

[GAPM-TPS03] This technique involves carrying out a series of proofs about a system. As systems

increase in complexity, so does the associated proof effort which can present scalability issues

depending on the prover used.

Techniques such as formal refinement help to improve the scalability of this method but do not solve

the problem completely.

Deployment

No relevant gap or limitation has been identified.

Learning curve

[GAPM-TPS04] The supporting tools can be either automatic or interactive. In either case, the

properties/system must be specified in a given logic and this can often require expert knowledge of

the tools.

[GAPM-TPS05] In the interactive case, since the user must contribute to the proof itself, the user must

have a deep understanding of how the tools work.

Lack of automation

[GAPM-TPS06] These tools tend to have a high degree of automation but when a proof attempt fails

then the user may need to rewrite parts of their system specification and properties in order for the

proof to be discharged.

Reference environment

No relevant gap or limitation have been identified.

Costs

[GAPM-TPS07] High costs associated with training expert users.

Standards

Identified gaps and limitations of the V&V methods listed in D3.1

78 ECSEL JU, grant agreement No 876852.

Standards are not a limitation, there are many standards that that require the verification of safety

conditions. For example, DO-178C, DO-278A, ISO26262 and ISO21448. The following forthcoming

standards may also be of interest: IEEE P2846 and IEEE P7009.

References

• [TPS1] KeYmaera: a hybrid theorem prover for hybrid systems (system description) A.

Platzer and J.-D. Quesel, Automated Reasoning, Springer, Berlin (2008), pp. 171-178

• [TPS2] Z. Manna, N. Bjoerner, A. Browne, and E. Chang, STeP: The Stanford Temporal

Prover, LNCS, Vol. 915, 1995, pp. 793–794.

• [TPS3] A. Rizaldi, J. Keinholz, M. Huber, J. Feldle, F. Immler, M. Althoff, E. Hilgendorf, and

T. Nipkow. Formalising and monitoring traffic rules for autonomous vehicles in

Isabelle/HOL. volume 10510 of LNCS, pages 50–66. Springer, 2017.

• [TPS4] Deductive verification of hybrid systems using step, Z. Manna and H.B. Sipma Hybrid

Systems: Computation and Control, Springer, Berlin (1998), pp. 305-318

• [TPS5] P. Bagade, A. Banerjee, S.K.S. Gupta, Chapter 12 - Validation, Verification, and Formal

Methods for Cyber-Physical Systems, In Intelligent Data-Centric Systems, Cyber-Physical

Systems, Academic Press, 2017

• [TPS6] A Survey on Theorem Provers in Formal Methods M. Saqib Nawaz, Moin Malik, Yi

Li, Meng Sun and M. Ikram Ullah Lali, https://arxiv.org/pdf/1912.03028.pdf

3.6 Semi-Formal Analysis

This group of methods deals with system evaluation by using structured means whose application does

not result in a mathematical proof. The methods have been divided into two sub-groups: one for SCP-

focused semi-formal analysis and another for general semi-formal analysis.

3.6.1 SCP-Focused Semi-Formal Analysis

3.6.1.1 Human Interaction Safety Analysis

Name of the method: Human interaction safety analysis (HISA)

Short description

Safety analysis method for human interaction with automated systems. The aim is to reduce

interaction risks and provide evidence to a safety case [HIS1].

Limitations

Functionality

[GAPM-HIS01] The method is a process for systematic analysis of interactions between a human and

automated system. Lacking functionality is that the process currently only considers a specific type

of interactions and need to be elaborated to become more generic.

[GAPM-HIS02] It also does not currently take the impact of cybersecurity into account.

Accuracy

https://arxiv.org/pdf/1912.03028.pdf

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 79

[GAPM-HIS03] Risk assessment is based on qualitative expert judgment. Quantitative metrics could

be added where applicable.

Scalability and computational

[GAPM-HIS04] V&V of analysis results require real-world user tests which can be resource heavy

and lack scalability, and potentially be dangerous as humans need to be involved. An open question

is if simulation can be used to lower V&V time and costs.

Deployment

[GAPM-HIS05] Current lack of tool support for efficient use of the method. [GAPM-HIS06] Also lack

integration of verification tools (e.g. simulation) to back up claims from expert judgment.

Learning curve

[GAPM-HIS07] Requires highly skilled personnel as it relies on both human factors and functional

safety expertise.

Lack of automation

[GAPM-HIS08] Currently there is no custom tool for this method.

Reference environment

No relevant gap or limitation has been identified.

Costs

No relevant gap or limitation has been identified.

Standards

No standard specifically references this method as it is not an established method, however, it could

become useful as part of an argumentation for fulfilling ISO PAS 21448, and potentially functional

safety standards such as ISO 26262.

References

• [HIS1] Warg, F., Ursing, S., Kaalhus, M. and Wiik, R., 2020, January. Towards Safety Analysis

of Interactions Between Human Users and Automated Driving Systems. In 10th European

Congress on Embedded Real Time Software and Systems (ERTS 2020).

3.6.1.2 Intrusion Detection for WSN based on WPM State Estimation

Name: Intrusion detection for wireless sensor networks based on WPM state estimation

Short description

Intrusion detection system which targets WSN hardware platforms and help identify incoming

attacks by means of (node) state estimation via the Weak Process Modelling of the attacks.

Limitations

Identified gaps and limitations of the V&V methods listed in D3.1

80 ECSEL JU, grant agreement No 876852.

Functionality

[GAPM-IDS01] The method helps identifying attacks but does not offer support to WSN operators

for performing forms of active self-defence (i.e., there is no active reactions to attacks)

Accuracy

Accuracy is not a limitation of the method itself, but it depends only on how the attack is modelled.

Scalability and computational

No relevant gap or limitation has been identified.

Deployment

No relevant gap or limitation has been identified.

Learning curve

No relevant gap or limitation has been identified.

Lack of automation

[GAPM-IDS02] Attack families have to be modelled in a WPM to allow the IDS to detect them. The

automation of WPM creation is possible but unfeasible in most situations since it requires separate

WPMs for each combination of attack vs. application running on the node.

Reference environment

[GAPM-IDS03] It can be applied to in-lab experiments; not yet tested in a real-world scenario.

Costs

No relevant gap or limitation has been identified.

Standards

No relevant gap or limitation has been identified.

References

3.6.1.3 Kalman Filter-Based Fault Detector

Name: Kalman filter-based fault detector

Short description: Use of historical data collected from a system via sensors to build mathematical

models to be used to detect system’s faults with respect to its nominal operation.

Limitations

Functionality

[GAPM-KFB01] For model-based approaches, conditions for Identification with respect to detection

are much more conservative.

[GAPM-KFB02] Lack of rigorous mathematical guarantees about whether a fault can be detected.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 81

Accuracy

[GAPM-KFB03] The method provides good accuracy in the context of systems that exhibit a linear

behaviour. Model accuracy can be limited if the system’s dynamics are more complex.

Scalability and computational

[GAPM-KFB04] Although the method itself is theoretically scalable, there are scalability and

computational issues when applications to complex systems are considered. The main issue is related

to the coding part due to the lack of powerful tools.

Deployment

[GAPM-KFB05] There is lack of tools that can be directly used for the real-world applications.

Learning curve

[GAPM-KFB06] Due to lack of tools, theoretical and programming skills are required.

Lack of automation

[GAPM-KFB07] The code needs to be adapted case by case.

Reference environment

No relevant gap or limitation has been identified.

Costs

No relevant gap or limitation has been identified.

Standards

No relevant gap or limitation have been identified.

References

3.6.1.4 Model-Based Safety Analysis

Name: Model-Based Safety Analysis

Short description

Model-Based Safety Analysis (MBSA) is an approach in which the system and safety engineers share

a common system model created using a model-based development process. By extending the system

model with a fault model as well as relevant portions of the physical system to be controlled,

automated support can be provided for safety analysis, in particular for FMEA and FT generation.

Failure Logic Analysis (FLA) and Model-Based Fault Injection (MBFI) for safety analysis are building blocks

for Model-Based Safety Analysis that can be applied for V&V at different levels across the project life

cycle.

Limitations

Identified gaps and limitations of the V&V methods listed in D3.1

82 ECSEL JU, grant agreement No 876852.

Functionality

[GAPM-MSA01] Use of results in relation with other V&V methodologies may be explored (e.g.

optimization of failure injection tests).

[GAPM-MSA02] The FLA and MBFI building blocks may be connected, for their application in the

same scenarios at different levels consistently.

[GAPM-MSA03] Extensions in support of cybersecurity for FLA may be explored in real scenarios.

Accuracy

[GAPM-MSA04] A potential gap between the conceptual level analysis and the real system could

arise due to the fact that analysis requires to abstract away the critical aspects about both the system

under development and the external environment.

Scalability and computational

[GAPM-MSA05] The Failure propagation algorithm for FLA may be improved for large systems,

impacting FMEA and FT generation.

[GAPM-MSA06] The automated analysis for MBFI may be subject to the state-explosion problem,

impacting the effectiveness of verification.

Deployment

The method is well-supported by tools (e.g. CHESS, CHESS-FLA, xSAP, ocra, COMPASS).

[GAPM-MSA07] Deployment for the use cases has to be experimented.

Learning curve

[GAPM-MSA08] The method requires model-based design skills, as well as safety expertise.

Lack of automation

The method requires system design and some safety expertise for failure definition; however, the

analysis results are mostly automated.

[GAPM-MSA09] Improvements for FMEA and FT generation for FLA are required.

Reference environment

No relevant gap or limitation has been identified. The method may be applied at development level

in TRL6-7 environments and prototypes.

Costs

No relevant gap or limitation has been identified. No hardware and software specific costs, as the

building blocks are available with the CHESS open-source tool. In particular, the xSAP and OCRA

tools are freely available for non-commercial applications. The COMPASS tool is freely available for

ESA member states.

Standards

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 83

No relevant gap or limitation has been identified. The method is conceived to fulfil safety standards

(e.g. ECSS, EN 50129, SAE-ARP-4754, SAE-ARP-476), and may be applied in VALU3S for the medical

and agriculture domains (e.g. by applying the CEI EN 62304, ISO 14971, IEC 61508, ISO 26262

standards).

References

• [MSA1] Wallace, Modular Architectural Representation and Analysis of Fault Propagation

and Transformation, in proceedings of 2nd International Workshop on Formal Foundations

of Embedded Software and Component-Based Software Architectures (FESCA 2005).

• [MSA2] R. F. Paige, L. M. Rose, X. Ge, D. S. Kolovos, and P. J. Brooke. FPTC: automated safety

analysis for domain-specific languages. In Models in Software Engineering, M. R. Chaudron

(Ed.). Lecture Notes In Computer Science, Vol. 5421. Springer-Verlag, Berlin, Heidelberg, pp.

229-242, 2009Space Product Assurance: Software product assurance, id. ECSS-Q-ST-80 issue

C, 06.03.2009.

• [MSA3] B. Gallina and S. Punnekkat, “FI4FA: A Formalism for Incompletion, Inconsistency,

Interference and Impermanence Failures Analysis,” in Proc. of EUROMICRO, ser. SEAA ’11.

IEEE Computer Society, 2011, pp. 493–500.

• [MSA4] B. Gallina, M. A. Javed, F. U. Muram, and S. Punnekkat, “Model-driven

dependability analysis method for component-based architectures,” in Euromicro-SEAA

Conference. IEEE Computer Society, 2012.

• [MSA5] Gallina, B., Sefer, E., and Refsdal, A. (2014). Towards safety risk assessment of socio-

technical systems via failure logic analysis. In Proceedings of the 2014 IEEE International

Symposium on Software Reliability Engineering Workshops, pages 287–292.

• [MSA6] B. Gallina and Z. Haider, A. Carlsson, S. Mazzini S. Puri, “Multi‑concern

Dependability‑centered Assurance for Space Systems via ConcertoFLA”, International

Conference on Reliable Software Technologies- Ada-Europe 2018, Lisbon, June 2018

• [MSA7] Mazzini S., J. Favaro, S. Puri, L. Baracchi., “CHESS: an open source methodology and

toolset for the development of critical systems”, 2nd International Workshop on Open Source

Software for Model Driven Engineering (OSS4MDE), Saint-Malo, October 2016.

• [MSA8] CHESS Dependability Guide – FLA

(https://www.eclipse.org/chess/publis/CHESS_DependabilityGuide.pdf)

• [MSA9] B. Bittner, M. Bozzano, R. Cavada, A. Cimatti, M. Gario, A. Griggio, C. Mattarei, A.

Micheli and G. Zampedri. The xSAP Safety Analysis Platform. In Proceedings of TACAS

2016. Eindhoven, The Netherlands, April 2-8, 2016.

• [MSA10] M.Bozzano, A.Cimatti, J.-P.Katoen, V. Y.Nguyen, T.Noll and M.Roveri. Safety,

Dependability, and Performance Analysis of Extended AADL Models. The Computer Journal,

54(5):754-775, 2011.

• [MSA11] M. Bozzano, A. Cimatti, J.-P. Katoen, P. Katsaros, K. Mokos, V.Y. Nguyen , T. Noll,

B. Postma and M. Roveri. Spacecraft Early Design Validation using Formal Methods.

Reliability Engineering & System Safety 132:20-35. December 2014.

https://www.eclipse.org/chess/publis/CHESS_DependabilityGuide.pdf

Identified gaps and limitations of the V&V methods listed in D3.1

84 ECSEL JU, grant agreement No 876852.

3.6.1.5 Model-Based Threat Analysis

Name: Model-Based Threat Analysis

Short description

Automated threat analysis based on

a. a system model, enhanced with security properties and security related information.

b. a threat model, containing formalized vulnerabilities, attacks and weaknesses.

Results are potential risks.

Limitations

Functionality

[GAPM-MTA01] The method itself is complete, but better integration into model-based engineering

could enhance functionality and work is ongoing regarding an interconnection with SysML.

Accuracy

[GAPM-MTA06] The accuracy of the approach is not limited by the method itself, but limited by the

level of detail available in the system model and the completeness of the threat model.

Scalability and computational

[GAPM-MTA02] System models can be created on different granularities, but threat and risk results

from different granularities are not connected. We aim towards an integration of threats from “lower

level” models into “higher level” models.

Deployment

[GAPM-MTA03] The tool support is integrated in Enterprise Architect but integration with other

related tools could enhance usability and offer features like access control, versioning and auditing.

Learning curve

[GAPM-MTA04] Application of tools is easy, but creation and maintenance of threat models requires

security expert knowledge.

Lack of automation

[GAPM-MTA05] Currently the impact (risk = impact * likelihood) can be automatically identified

based on assets. Likelihood needs expert judgment. In the future the likelihood should be also

automatically identified based on attack potential.

Reference environment

No relevant gap or limitation has been identified.

Costs

No relevant gap or limitation has been identified.

Standards

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 85

[GAPM-MTA07] Tool (ThreatGet) was originally developed for the automotive domain and fully

supports ISO/SAE 21434. We aim to enhance support to other domains and their respective security

standards (IoT, industrial with IEC 62443).

References

3.6.1.6 Risk Analysis

Name: Risk Analysis

Short description

Quantitative deterministic Risk Analysis methodology to evaluate the risk level of a system

considering a wide set of threat scenarios (attacks and incidents), as well as the effectiveness of proper

countermeasures. This methodology can be tailored on the specific features of a system, such as

different components or different threats to be examined within the risk analysis process. In fact,

starting from the modelling of the system and of the threat landscape, a set of algorithms is in charge

of generating all the possible threat scenarios, simulating their outcomes evaluating the effect of

countermeasures, and finally evaluating the likelihood and the potential impact of each outcome. In

the end, the risk is calculated as a combination between likelihood and impact.

Limitations

Functionality

[GAPM-RAS01] The proposed Risk Analysis methodology does not take into account cascading effect

properly. This heavily limits the number of scenarios generated, as well as the level of detail of the

impact simulation for each scenario.

[GAPM-RAS02] The proposed Risk Analysis methodology does not allow to perform a cost-benefit

analysis between costs related to protection (e.g. implementation of countermeasures) and reduction

of risk.

Accuracy

[GAPM-RAS03] If no wide dataset concerning threats is available, estimation of likelihood of threats

can be inaccurate and, as a consequence, also outputs of Risk Analysis are not reliable.

[GAPM-RAS04] Neglecting cascading effect could lead to a low level of accuracy of Risk Analysis

outputs.

Scalability and computational

[GAPM-RAS05] The methodology is scalable, but the computational time grows proportionally with

the complexity of the system.

Deployment

[GAPM-RAS06] The proposed Risk Analysis methodology needs a detailed modelling of the system

under examination and a fine breakdown of the system into different components.

[GAPM-RAS07] Wide datasets about past threats and incidents are needed to make the proposed

Risk Analysis methodology work properly.

Identified gaps and limitations of the V&V methods listed in D3.1

86 ECSEL JU, grant agreement No 876852.

Learning curve

No relevant gap or limitation has been identified.

Lack of automation

[GAPM-RAS08] Modelling of the system under examination should be done manually by the user.

Reference environment

[GAPM-RAS09] The proposed Risk Analysis methodology has TRL 6 and it can be implemented in

prototypal application.

Costs

[GAPM-RAS10] The proposed Risk Analysis methodology has a computational time proportional to

the size of the system under examination, therefore in case of complex systems, costs of computation

could be high.

Standards

[GAPM-RAS11] Risk Analysis proposed methodology does not fulfil any standard.

References

3.6.1.7 Vulnerability Analysis of Cryptographic Modules Against Hardware-Based Attacks

Name: Vulnerability analysis of cryptographic modules against hardware-based attacks

Short description

According to Kerckhoff's hypothesis [VAC1], it is assumed that the overall security of any

cryptographic system depends entirely on the security of the key and all other parameters of the

crypto system are public. According to this hypothesis, encryption algorithms are assumed to be open

as long as the key generation scheme is not secure. Vulnerability analysis is complementary to

cryptography. The strength of a cryptosystem depends on the key used, or in other words, the

attacker's ability to predict the key. In this method, a 4-step key security evaluation method is

proposed.

Limitations

Functionality

[GAPM-VAC01] Only chaotic and ring oscillatory-based RNGs can be analysed for vulnerability.

Accuracy

[GAPM-VAC02] The probability that the bits of ring oscillator RNGs can be predicted as a result of

vulnerability analysis is 50 % and above. This ratio is 100 % for chaotic oscillator-based RNGs.

Scalability and computational

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 87

[GAPM-VAC03] Vulnerability analysis of ring oscillator-based RNGs can only be made at the FPGA

design stage.

Deployment

[GAPM-VAC04] For vulnerability analysis of ring oscillator-based RNGs, FPGA design IDEs and

many numerical analysis tools can be used. Also, numerical analysis tools are required for analysis

of chaotic oscillator-based RNGs (DynamicSolver, Matlab etc.).

Learning curve

[GAPM-VAC05] Lack of standardised interoperability scheme in deployment of the proposed

method) Since the provided method has many different interpretations in different contexts, the

viewpoint taken in Valu3S is that an interoperable and generic model is needed to incorporate the

interoperability of the presented V&V method with all systems at deployment phase. There is still a

lack of a standardised interoperability scheme to deploy both hardware and software components of

the proposed V&V method. This gap can be mitigated by context-specific analysis of integration and

deployment requirement particular for the operational goals of the use case.

Lack of automation

[GAPM-VAC06] The method requires effective and qualified human intervention. It is not applicable

on systems operating in the field.

Reference environment

[GAPM-VAC07] This method can only be applied in simulation environment for ring oscillator-based

RNGs. For chaotic oscillator-based RNGs, analyses can be made on the prototype in lab environment.

Costs

No relevant gap or limitation has been identified.

Standards

No relevant gap or limitation has been identified.

References

• [VAC1] K. Martin, Everyday Cryptography: Fundamental Principles and Applications, 2nd

Edition, Oxford University Press,2017.

3.6.1.8 Wireless interface network security assessment

Name: Wireless interface network security assessment

Short description

Both radio link and Wi-Fi interfaces, which are normally used by the authorized teleoperator to send

commands and other instructions to the Robotic Control Unit, can be also exploited for malicious

purposes thanks to its direct connectivity with the CANBUS.

The aim of this method is twofold:

Identified gaps and limitations of the V&V methods listed in D3.1

88 ECSEL JU, grant agreement No 876852.

1. Radio link interface: the radio link communications can be based on proprietary protocols,

making its security level evaluation difficult. Software-Defined Radio (SDR)-based solutions

can be used to this aim, monitoring the activity on the teleoperation radio link, capturing and

replying commands, and even acting as fake controllers.

2. Wi-Fi interface: other CANBUS-related attacks can exploit the Wi-Fi interface. This method

aims to focus on the possible harms due to this kind of attacks considering the rightful use of

this interface. For example, the consequences of injection of packets containing modified

maps directly on the CANBUS through the Wi-Fi interface.

Limitations

Functionality

[GAPM-WIN01] There could be possible limitations depending on the frequency bands used for the

radio link communications and on the hardware and CANBUS network segmentation.

Accuracy

[GAPM-WIN02] Different factors could limit the accuracy, such as the power and the signal to noise

ratio of the signal received by the radio link interface and how close to the attacker system the

malicious user can stay and how long.

Scalability and computational

No particular restrictions for scalability. No need for particular computational resources.

Deployment

No limitations that could hinder the method’s employment in a real-world context.

Learning curve

No relevant gap or limitation has been identified.

Lack of automation

[GAPM-WIN03] The method requires human intervention to iterate the method, at least at the first

stage. Different attacks can be employed and each of them could need a “tuning” phase to better

adapt and be effective to the attacked system.

Reference environment

[GAPM-WIN04] The method can be applied in simulation, emulation, and prototype environments.

Its possible application in TRL6-7 environment could not be straightforward and require a further

integration effort.

Costs:

No relevant gap or limitation has been identified since no huge investments are required.

Standards

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 89

No relevant gap or limitation has been identified.

References

3.6.2 General Semi-Formal Analysis

3.6.2.1 Code design and coding standard compliance checking

Name: Code design and coding standard compliance checking

Short description

Coding standards and coding rules, agreed at design stages and employed both at design and

development phases, facilitate the verifiability of produced code.

Design of the code based on modularization: a method to organize large programs in smaller parts,

i.e., the modules. Every module has a well-defined interface toward client modules that specifies how

provided functionalities are made available. Moreover, every module has an implementation part

that hides the code and any other private implementation detail the client modules should not care

of with private data protection and interface.

Limitations

Functionality

[GAPM-CDC01] Automation in this method is not applicable, as the method itself relies on the coding

skills of the programmers. However, the application of standard coding rules and design patterns

leads to a fast and proven development of the code by different programmers.

Accuracy

[GAPM-CDC02] The accuracy of the method is related on the knowledge and continuous application

of the rules by the software designers and developers.

Scalability and computational

No relevant gap or limitation has been identified.

Deployment

[GAPM-CDC03] Style-specific rules may not be covered by tools

Learning

[GAPM-CDC04] Depending on the code design and code rules, the curve can be gentle (i.e. takes a

slightly large amount of time) but it may not need high-level skills for coding; in fact to some extent,

the lower the coding skill, the better to comply to the coding rules.

Lack of automation

[GAPM-CDC05] Little automations are feasible.

Reference environment

Identified gaps and limitations of the V&V methods listed in D3.1

90 ECSEL JU, grant agreement No 876852.

No relevant gap or limitation has been identified.

Costs

[GAPM-CDC04] Costs related are the training of the employees and the practice related. Other costs

may be estimated by the time spent in the execution of walkthrough verification of the code.

Standards

No relevant gap or limitation has been identified.

References

3.6.2.2 Knowledge-centric system artefact quality analysis

Name: Knowledge-centric system artefact quality analysis

Short description

Method to assess the quality of systems artefacts (e.g. textual requirements specifications and system

models) by exploiting knowledge bases, e.g. an ontology [KCQ1]. The assessment is quantitative

according to different artefact characteristics (correctness, consistency, and completeness) and to

different metrics (e.g. based on the number of elements with a given property in an artefact, such as

the number of vague words in a requirement).

Limitations

Functionality

[GAPM-KCQ01] The amount of model-specific quality analysis means is currently limited. Most of

the available support focuses on textual requirements.

Accuracy

[GAPM-KCQ02] A detailed study of quality analysis accuracy has not been conducted. Nonetheless,

the practical experience and the feedback from the users suggest that the accuracy is suitable.

Scalability and computational

[GAPM-KCQ03] Issues can arise with large and complex system artefacts. Tool solutions have

nonetheless been developed to mitigate it.

Deployment

[GAPM-KCQ04] Connectors with the system artefact sources are required.

Learning curve

[GAPM-KCQ05] There is a barrier in the need for knowing how to create and manage ontologies.

Lack of automation

[GAPM-KCQ06] Creation and management of ontologies is mostly a manual effort that can require

significant time.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 91

Reference environment

No relevant gap or limitation has been identified.

Costs

[GAPM-KCQ07] Creation and management of ontologies is mostly a manual effort that can require

significant time.

Standards

[GAPM-KCQ08] No explicit and direct link with compliance has been established for most

assurance/engineering standards. Nonetheless, the method (1) has been applied for many systems

under regulatory requirements and (2) supports INCOSE rules for writing for writing requirements,

among other reference documents.

References

• [KCQ1] Parra, E., Alonso, L., Mendieta, R., de la Vara, J.L.: Advances in Artefact Quality

Analysis for Safety-Critical Systems. 30th International Symposium on Software Reliability

Engineering (ISSRE 2019)

3.6.2.3 Knowledge-Centric Traceability Management

Name: Knowledge-Centric Traceability Management

Short description

V&V method to manage the relationships between system artefacts, and thus how the system

lifecycle has evolved and whether it has been adequate, that exploits knowledge representations in

the form of ontologies for trace creation, management, and discovery, among other tasks.

Limitations

Functionality

[GAPM-KCT01] Several activities of the traceability management process [KCT1] are not supported.

Accuracy

[GAPM-KCT02] Accuracy has not been formally assessed.

Scalability and computational

[GAPM-KCT03] Issues can arise with large and complex system artefacts. Tool solutions have

nonetheless been developed to mitigate it.

Deployment

[GAPM-KCT04] Connectors with the system artefact sources are required.

Learning curve

[GAPM-KCT05] There is a barrier in the need for knowing how to create and manage ontologies.

Identified gaps and limitations of the V&V methods listed in D3.1

92 ECSEL JU, grant agreement No 876852.

Lack of automation

No relevant gap or limitation has been identified.

Reference environment

No relevant gap or limitation has been identified.

Costs

[GAPM-KCT06] Creation and management of ontologies is mostly a manual effort that can require

significant time.

Standards

[GAPM-KCT07] No explicit and direct link with compliance has been established for most

assurance/engineering standards. Nonetheless, the method has been applied for systems under

regulatory requirements.

References

• [KCT1] Cleland-Huang, J., Gotel, O. and Zisman, A. (eds.): Software and systems traceability.

Heidelberg, Springer. 2012

3.6.2.4 Model-based assurance and certification

Name: Model-based assurance and certification

Short description

Method that supports activities explicitly and directly targeted at system assurance and certification,

e.g. management of compliance with standards, of assurance cases, and of assurance evidence. The

method uses model-based technologies to facilitate the activities and ensure their suitability, such as

correct and complete collection of assurance information.

Limitations

Functionality

[GAPM-MAC01] The method could be further integrated with others for further assurance

information analysis and collection.

Accuracy

No relevant gap or limitation has been identified.

Scalability and computational

[GAPM-MAC02] Depending on how the method is enacted, issues can arise with the management of

large models.

Deployment

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 93

[GAPM-MAC03] The method most often requires tailoring (selection of activities needed) to specific

companies and projects.

[GAPM-MAC04] Integration with further methods and tools can be needed in practice, e.g. with

further means for model-based systems engineering.

[GAPM-MAC05] The support for workflow configuration is limited.

[GAPM-MAC06] Tool support usability can be improved.

Learning curve

No relevant gap or limitation has been identified.

Lack of automation

[GAPM-MAC07] The level of automation in assurance information management could be higher for

certain tasks, e.g. for assurance information traceability management and verification.

Reference environment

[GAPM-MAC08] The application in real projects is limited for several elements of the method.

[GAPM-MAC09] The method has not been used in some domains, e.g. healthcare.

Costs

No relevant gap or limitation has been identified.

Standards

[GAPM-MAC10] The method explicitly supports compliance with standards. However, compliance

management for some domains and standards has not been conducted yet.

References

• [MAC1] de la Vara, J.L., Ruiz, A., Gallina, B., Blondelle, G., Alaña, E., Herrero, J., Warg, F.,

Skoglund, M., Bramberger, R.: The AMASS Approach for Assurance and Certification of

Critical Systems. embedded world Conference 2019

3.6.2.5 Model-based Design Verification

Name: Model-based Design Verification

Short description

Model-Based Design (MBD) provides a basis for machine-assisted verification of the system under

development by the definition of models, supporting initial design decisions as well as enabling early

discovery of errors. Models are typically described in high-level languages, either standardized or

proprietary, and can be analysed with different MBD Verification methods. When the models are

defined with formal semantics, formal methods can be applied for a rigorous automatic analysis of

system properties.

Limitations

Functionality

Identified gaps and limitations of the V&V methods listed in D3.1

94 ECSEL JU, grant agreement No 876852.

[GAPM-MBD01] Existing methodologies and tools may need to be extended depending on the

specific domain of the system under development.

Accuracy

[GAPM-MBD02] A potential gap between the system-level analysis and the real system could arise

due to the fact that formal analysis may require to abstract away some critical aspects about both the

system under development and the external environment it will operate in.

Scalability and computational

[GAPM-MBD03] The automated exhaustive analysis is subject to the state-explosion problem, which

can prevent verification activities from scaling up to the complexity required in an industrial context.

Deployment

[GAPM-MBD04] In some contexts, the methods may focus on high-level system views and are not

integrated with the deployment to real-world contexts or are limited to few target platforms.

Learning curve

[GAPM-MBD05] The method requires MBD skills, as well as expertise in the formalization of

requirements. Formal methods have a steep learning curve, however the use of existing tools in a

specific domain can make the formal specification process a much easier task.

Lack of automation

[GAPM-MBD06] MBD Verification requires the formalization of natural language requirements,

which is largely a manual step. However, the verification results are mostly automated.

Reference environment

No relevant gap or limitation has been identified.

Costs

[GAPM-MBD07] Some MBD methods have only proprietary tool support with expensive licenses.

Standards

No relevant gap or limitation has been identified.

References

3.6.2.6 Traceability Management for Safety Software

Name: Traceability Management for Safety Software

Short description

Methodological method, that aims to formalize and make traceable the decisions taken during all the

stages of the V-cycle process.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 95

Limitations

Functionality

No relevant gap or limitation has been identified.

Accuracy

No relevant gap or limitation has been identified.

Scalability and computational

No relevant gap or limitation has been identified.

Deployment

[GAPM-TMS01] Proper tools may need docker or server instances available.

Learning curve

[GAPM-TMS02] The curve is quite steep but needs constant application throughout the process.

Lack of automation

[GAPM-TMS03] Some automations are feasible.

Reference environment

No relevant gap or limitation has been identified.

Costs

[GAPM-TMS04] Proper tools may be expensive in terms of license costs and at a lower extent for the

hardware required.

Standards

No relevant gap or limitation has been identified.

References

3.7 System-Type-Focused V&V

This group of methods tackles general or several V&V needs specific to certain system types, typically

covering different V&V areas, e.g., formal verification and testing, that can be combined for system V&V

as a whole. Therefore, this group complements the previous ones by presenting wider V&V needs for

specific situations, e.g. in the scope of some VALU3S use case. In this sense, the methods below can

correspond to larger aspects of V&V processes that need to be reviewed in the project to set their current

status, including their strengths and limitations.

Identified gaps and limitations of the V&V methods listed in D3.1

96 ECSEL JU, grant agreement No 876852.

3.7.1 CPU Verification

Name: Central Processing Unit (CPU) verification

Short description

CPU verification ensures that a CPU delivers services as intended. Several verification approaches

and activities must be applied to reach this goal. The focus lies on open-source and free CPU

verification methods.

Limitations

Functionality

[GAPM-CPU01] A limitation is that a CPU cannot be verified for every possible software – state space

is too large.

[GAPM-CPU02] Free open-source tools for industry-grade CPU verification are currently under

development (e.g. Open HW group RISC-V verification: https://github.com/openhwgroup/core-v-

verif)

[GAPM-CPU03] Some verification standards such as UVM are limited to block-level verification and

are not easily extendable to the software layer.

Accuracy

[GAPM-CPU14] Precise power consumption (for Differential Power Analysis Attacks mitigation)

hardly verifiable on CPU models (e.g. RTL simulation).

[GAPM-CPU04] Signal-integrity analysis has limited accuracy (e.g. maximum frequency for stable

operation might differ for each produced CPU).

[GAPM-CPU05] Simulation-based methods do not provide a proof of correct behaviour if not

exhaustively exercised. For safety-critical applications, a combination with formal methods should

be applied.

Scalability and computational

[GAPM-CPU06] Higher accuracy (cycle-accurate verification and below, e.g. gate-level simulation)

demands high computation power and limits the testing capacity for software.

Deployment

[GAPM-CPU07] Industry-grade open-source tools not available yet.

[GAPM-CPU08] Open-source tools do not provide a production verification environment. At

integration, verification test programs have to be defined to test the desired functionality.

Learning curve

[GAPM-CPU09] CPU verification demands highly skilled verification engineers (testing, simulation,

formal verification, etc.)

Lack of automation

[GAPM-CPU10] Traceability of requirements to design and implementation artifacts. Requirements

and artifacts should be linked with tool support.

https://github.com/openhwgroup/core-v-verif
https://github.com/openhwgroup/core-v-verif

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 97

[GAPM-CPU11] Tool-assisted generation of formal statements (assertions, properties) from a

textual/graphical specification.

Reference environment

No relevant gap or limitation has been identified.

Costs

[GAPM-CPU15] CPU verification is very expensive (lots of hardware resources needed since CPUs

have a high state space – lots of testcases necessary, tools might be expensive, lots of human resources

needed)

[GAPM-CPU12] Tool licenses become a dominating cost factor.

[GAPM-CPU13] Modern SoC emulators are expensive on purchase and operation.

Standards

No relevant gap or limitation has been identified.

References

3.7.2 Penetration Testing

Name: Penetration Testing

Short description

Analysis of data corruption in communication between server, PLC and sensors.

Limitations

Functionality

[GAPM-DMD01] Cybersecurity approaches have a fundamental weakness which is that some

security vulnerabilities cannot be detected like “Zero Day Attacks”. But there is no alternative healthy

solution for penetration testing. Penetration testing must be applied by someone, who is outside the

company, in order to get information from a different point of view in security.

Accuracy

[GAPM-DMD02] The method does not provide a perfect security level. But it is enough for not being

the weakest link in the chain. Sometimes false positive and false negative results can be achieved,

thus it is required to double check the test and system. Additionally, a full-force attack may have

some damage risk so that the penetration tests may be executed in lighter fashion.

Scalability and computational

[GAPM-DMD03] Penetration test services need to access some base system at the implementation

area (i.e. physical and virtual access). For a large wide area network, some regional administrators

may not allow access to their domains so there might be some scalability issues not originating from

the method itself but because of operational decisions. From a computational point of view no gaps

Identified gaps and limitations of the V&V methods listed in D3.1

98 ECSEL JU, grant agreement No 876852.

or limitations have been identified since the resources to perform penetration testing is considerably

neglectable and a powerful PC will be enough to carry out the test appropriately.

Deployment

No relevant gap or limitation has been identified: deployment of the method is not complicated since

only network access is needed to perform the test. Base of penetration testing tools and methods are

usually well-known.

Learning curve

[GAPM-DMD05] The testing approach used requires some solid background knowledge. Actually,

since the cyber-attacks evolve by the time, it is important to be up to date by continuously following

state-of-the-art attacks. Hence, proper implementation of this attack requires high-level skills.

Lack of automation

[GAPM-DMD06] Performance of penetration testing always depends on performance of penetration

tester. We standardize the system using appropriate methods. However, it is not possible to fully

automate these tests.

Reference environment

No relevant gap or limitation has been identified. The tests will be carried out in the operational

environment (TRL-7).

Costs

No relevant gap or limitation has been identified since open-source software could be used. The main

cost is originating from human resources.

Standards

No relevant gap or limitation has been identified. The method fulfils ISO/IEC 27002:2013, which gives

guidelines about organizational information security standards and information security

management practices including the selection, implementation and management of controls taking

into consideration the organization's information security risk environment(s).

References

3.7.3 Failure Detection and Diagnosis (FDD) in Robotic Systems

Name: Failure Detection and Diagnosis (FDD) in Robotic Systems

Short description

Failure Detection and Diagnosis is a data-driven process monitoring method for testing and

minimising downtimes, increasing the safety of operations, and reducing manufacturing costs. FDD

comprises different approaches that can be distinguished into data-based, model-based, and

knowledge-based approaches.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 99

Limitations

Functionality

[GAPM-FDD01] Data-based resp. data-driven approaches rely on the gained data in order to be able

to extract useful information for failure detection and diagnosis. Thus, quantity and quality of the

data is of utmost importance. Model-based approaches are totally dependent on the knowledge about

the system in advance. The related diagnostic process relies on an explicit model of the normal system

behaviour, its structure, and/or its known faults.

[GAPM-FDD02] Knowledge-based approaches typically mimic the behaviour of a human expert and

can combine model-based and data-driven approaches in a hybrid FDD approach, i.e., the failure can

be detected through data analytics which is associated to a diagnosis afterwards by the model-based

approach. The challenge with knowledge-based approach is the detection of unknown faults.

Accuracy

[GAPM-FDD03] Robotic systems are typically highly dynamic and, if not completely covered, act in

an uncertain physical environment. They may interact with objects, other robots, and humans and

consequently carry a high degree of uncertainty, where unexpected outcomes might lead to unknown

faults and failed interactions. An FDD technique is supposed to detect failures and to distinguish

between failed interactions that resulted from internal faults and failed interactions that resulted from

exogenous events. Regarding Human-Robot Interaction (HRI) in UC4, FDD is mainly concerned with

safety such as safety protocols and standards, risk assessment techniques and collision avoidance.

The usage of FDD in this kind of scenarios is still new and cover some uncertainties and inaccuracies

which must be tackled.

Scalability and computational

[GAPM-FDD04] Regarding and depending on data-driven model testing, the data volume will affect

the scalability and computational performance. In fact, the number of, e.g., sensors that are used for

process monitoring and data gathering will affect the required computational resources.

Deployment

[GAPM-FDD05] FDD in HRI context is a relatively new field of application, thus it will have to cope

with early adoption challenges, adaptations, connectivity, accessibility, etc.

Learning curve

[GAPM-FDD06] FDD requires high-level skills as it can comprise and apply a variety respectively a

combination of approaches at the same time for monitoring and testing. In case of e.g. applying data-

driven machine learning, expert knowledge is required to identify and select the most accurate

technique based on the available data (data volume, velocity, variety, veracity).

Lack of automation

[GAPM-FDD07] The method requires some intervention and effort, e.g., for modelling involved

devices and/or humans to a required detail for simulating real world behaviour for testing.

Identified gaps and limitations of the V&V methods listed in D3.1

100 ECSEL JU, grant agreement No 876852.

Reference environment

[GAPM-FDD08] FDD can be applied in various environments and is not limited to a single or small

group of it. However, it has to be adapted to the particularities of the scenario.

Costs

[GAPM-FDD09] As there will be always effort for e.g., adaptation, modelling, data collection, etc.,

carried out by an expert or group of experts, a mid to high investment need to be considered.

Standards

[GAPM-FDD10] Some gaps have been pointed out in all the identified FDD-related standards as the

applicability of the method in robotics is not yet broadly validated.

ISO TS 15066 defines safety requirements for collaborative industrial robot systems and working

environment. In order to fulfil these, FDD has to define and use specific test scenarios taking into

account the specific safety requirements which is a relatively new field of application. The standard

supplements the requirements and instructions for the operation of collaborative industrial robots

and robot systems listed in ISO 10218-1 and ISO 10218-2.

Same applies for the related methods mentioned in D3.1 and which FDD does not directly / namely

consider:

- EN ISO 13849 Safety of machines - safety-related parts of control systems

- EN ISO 12100 Safety of machinery - General principles for design - Risk assessment and risk

reduction

- EN 61508-1 Functional safety of electrical/electronic/programmable electronic safety-related

systems

References

3.7.4 Model-Based Formal Specification and Verification of Robotic Systems

Name: Model-Based Formal Specification and Verification of Robotic Systems

Short description

The software of autonomous robot systems is generally complex and safety critical. Model-checking,

which is a powerful technique for software verification, can verify the safety requirements of robotic

systems in the early design stages. With the combination of runtime verification, the verification

coverage can be improved by ensuring the safety of the robotic system during execution.

Limitations

Functionality

[GAPM-MBF01] Creating a model is very difficult and time-consuming. It needs to be facilitated.

[GAPM-MBF02] The method requires some components to verify robotic systems, such as checking

compliance with safety standards and checking collisions.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 101

Accuracy

The method is accurate if the system was modelled correctly and the system software was developed

according to the model.

Scalability and computational

[GAPM-MBF03] When robotic system software becomes too complicated, the state space expands,

and consequently, many computation resources and long waiting times for verification are required.

Deployment

[GAPM-MBF04] There are case studies in the literature in which this method is used in robotic

systems, but there is no evidence for its use in industry.

Learning curve

[GAPM-MBF05] The robotic system software must be formally specified and modelled with a formal

language to verify the system by model checking. It requires expertise and experience gained during

a long learning period.

Lack of automation

[GAPM-MBF06] All system models and specifications are created manually by human users.

Reference environment

No relevant gap or limitation has been identified.

Costs

[GAPM-MBF07] There are both free and paid model-checker software tools. A software tool cost can

be incurred if a paid one is chosen.

[GAPM-MBF08] If the state spaces of the models are too large, there may be a need for powerful

computers to reduce the verification time, causing a hardware cost.

[GAPM-MBF09] The creation of the models takes time and requires experience. In this case, human

resources will also constitute a cost item.

Standards

[GAPM-MBF10] The method does not have tools that consider robot safety standards ((ISO 10218-1,

ISO 10218-2, ISO/TS 15066) holistically.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 103

Chapter 4 Gaps Overview

In this chapter an overview of the gaps is presented, highlighting which are the most frequent category

of gaps found in the analysed methods.

Overall, 400 gaps have been identified as summarized in Table 4.1. Notice that some methods (namely

Behaviour Driven Model Development and Test-Driven Model Review and Model-based Mutation Testing) are

inheriting gaps from Model-based Testing: these gaps are counted in this table and in the following

reports only with regard to Model-based Testing.

Table 4.1: The number of identified gaps for each method

Method Category # of gaps

Model-Implemented Attack Injection Attack Injection 12

Simulation-based Attack Injection at System-

level

Attack Injection 11

Vulnerability and Attack Injection Attack Injection 11

Fault Injection in FPGAs Fault Injection 5

Interface Fault Injection Fault Injection 6

Model-Based Fault Injection for Safety Analysis Fault Injection 6

Model-Implemented Fault Injection Fault Injection 11

Simulation-based Fault Injection at System-level Fault Injection 13

Software-Implemented Fault Injection Fault Injection 8

Simulation-Based Robot Verification Simulation 6

Simulation-Based Testing for Human-Robot

Collaboration

Simulation 4

Test Optimization for Simulation-Based Testing

of Automated Systems

Simulation 3

Virtual Architecture Development and

Simulated Evaluation of Software Concepts

Simulation 13

Virtual & Augmented Reality-Based User

Interaction V&V and Technology Acceptance

Simulation 8

V&V of Machine Learning-Based Systems Using

Simulators

Simulation 13

Behaviour-Driven Model Development and Test-

Driven Model Review

Testing 5

Identified gaps and limitations of the V&V methods listed in D3.1

104 ECSEL JU, grant agreement No 876852.

Method Category # of gaps

Assessment of Cybersecurity-Informed Safety Testing 9

Machine Learning Model Validation Testing 4

Model-Based Mutation Testing Testing 2

Model-Based Robustness Testing Testing 3

Model-Based Testing Testing 15

Risk-Based Testing Testing 4

Signal Analysis and Probing Testing 4

Software Component Testing Testing 5

Test Parallelization and Automation Testing 7

Dynamic Analysis of Concurrent Programs Runtime Verification 8

Runtime Verification Based on Formal

Specification

Runtime Verification 11

Test Oracle Observation at Runtime Runtime Verification 6

Deductive Verification Formal Source Code

Verification

7

Source Code Static Analysis Formal Source Code

Verification

11

Behaviour-Driven Formal Model Development General Formal

Verification

4

Formal Requirements Validation General Formal

Verification

7

Model Checking General Formal

Verification

5

Reachability-Analysis-Based Verification for

Safety-Critical Hybrid Systems

General Formal

Verification

9

Theorem Proving and SMT Solving General Formal

Verification

7

Human Interaction Safety Analysis SCP-Focused Semi-

Formal Analysis

7

Intrusion Detection for WSN based on WPM

State Estimation

SCP-Focused Semi-

Formal Analysis

3

Kalman Filter-Based Fault Detector SCP-Focused Semi-

Formal Analysis

7

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 105

Method Category # of gaps

Model-Based Safety Analysis SCP-Focused Semi-

Formal Analysis

9

Model-Based Threat Analysis SCP-Focused Semi-

Formal Analysis

7

Risk Analysis SCP-Focused Semi-

Formal Analysis

11

Vulnerability Analysis of Cryptographic

Modules against Hardware-based Attacks

SCP-Focused Semi-

Formal Analysis

7

Wireless Interface Network Security Assessment SCP-Focused Semi-

Formal Analysis

4

Code Design and Coding Standard Compliance

Checking

General Semi-Formal

Analysis

6

Knowledge-Centric System Artefact Quality

Analysis

General Semi-Formal

Analysis

8

Knowledge-Centric Traceability Management General Semi-Formal

Analysis

7

Model-Based Assurance and Certification General Semi-Formal

Analysis

10

Model-Based Design Verification General Semi-Formal

Analysis

7

Traceability Management for Safety Software General Semi-Formal

Analysis

4

CPU Verification System-Type-Focused

V&V

15

Penetration Testing System-Type-Focused

V&V

5

Failure Detection and Diagnosis (FDD) in

Robotic Systems

System-Type-Focused

V&V

10

Model-Based Formal Specification and

Verification of Robotic Systems

System-Type-Focused

V&V

10

Total number of gaps 400

On average, 7.5 gaps or limitations have been identified for each method. The methods with the highest

number of gaps or limitations (15) are Model-based Testing and Penetration Testing. The category with the

highest number of highlighted gaps or limitations is Attack Injection, whose methods have 11.3 gaps or

Identified gaps and limitations of the V&V methods listed in D3.1

106 ECSEL JU, grant agreement No 876852.

limitations on average. The list of categories with the associated average number of gaps is shown in

Table 4.2.

Table 4.2: Average number of gaps for each category of methods

Category # of gaps

Attack Injection 11.3

Fault Injection 8.1

Simulation 7.8

Testing 5.8

Runtime Verification 8.3

Formal Source Code Verification 9.0

General Formal Verification 6.4

SCP-Focused Semi-Formal Analysis 6.9

General Semi-Formal Analysis 7.0

System-Type-Focused V&V 10.0

The type of gap with the highest number of occurrences is Functionality, about which 69 gaps have been

identified. The complete list of type of gaps and the relative number of occurrences are shown in Table

4.3.

Table 4.3: Total number of gaps for each type of gap.

Type of gap # of gaps

Functionality 69

Accuracy 56

Scalability 49

Deployment 47

Learning Curve 45

Reference Environment 25

Costs 50

Lack of Automation 43

Standards 16

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 107

Figure 4.1: The average number of gaps per category of method and type of gap.

Figure 4.1 reports the average number of gaps for each category of method and for each type of gap.

For example, Attack Injection methods include about 12 gaps on average overall: about 1 regards

Accuracy, about 2 regard Costs etc… This allows to qualitatively understand which type of gap are

more frequent in each category. For example, Testing methods have more frequently gaps or limitations

about Accuracy, while fewer limitations were pointed out as regards Functionality.

Of course, these indications could be further analysed during the next activities of VALU3S (in

particular, Task 3.3) because the detected gaps and limitations are going to drive the development of

improved or new methods. So, understanding if some methods share the same type of limitations and

which type of limitations are more frequent could clarify the direction where the improvements should

be carried out.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 109

Chapter 5 Tool-related Gaps and Limitations

Besides the gaps and limitations of the methods, it is worth highlighting that many applications cannot

be faced with state-of-the-art V&V methods due to the lack or inadequacy of tools supporting such

methods. As a matter of fact, a tool should implement all the functionalities of a method, should achieve

high performances also on complex problems and should allow an easy and quick deployment in

different real-world contexts. Moreover, since tools are supposed to be used by people with different

technological skills, the ease of use and, in general, the user experience are important topics, too. For

this reason, this section is focused on highlighting which methods tools are currently available for the

methods analysed in Chapter 3 and the relative limitations. The focus here is not on the limitations of

the methods but rather on the limitations in the implementation of the methods. Also, for tools, gaps

and limitations have been labelled using the prefix “GAPT”. Table 5.1 reports the results of this analysis.

Notice that the table reports only the tools for which some gaps or limitations have been identified. Of

course, other tools are available for each method but they are not reported here. A more complete report

of available tools can be found in [1].

Table 5.1: List of the tools associated with different methods and the relative gaps and limitations.

V&V method Tool Limitations / gaps

Simulation-based Fault Injection at

System-level.

Fault and Attack

insertion in

SUMO

(Simulation of

Urban MObility)

[GAPT01] The tool is limited to inject faults in

SUMO.

[GAPT02] Test configuration and results analysis

are done manually.

[GAPT03] No support for pre- and post-injection

analysis.

Behaviour-Driven Formal Model

Development

Gherkin [GAPT04] Gherkin integration to ProB is only

prototypical.

Behaviour-Driven Formal Model

Development

MoMuT::Event-B [GAPT05] MoMuT for Event-B is a prototype tool

that does support only a subset of Event-B.

Deductive Verification VCC [GAPT07] No integration with other

V&V/development tools, e.g. Simulink.

Deductive Verification Frama-C [GAPT08] No integration with other

V&V/development tools, e.g. Simulink.

Identified gaps and limitations of the V&V methods listed in D3.1

110 ECSEL JU, grant agreement No 876852.

V&V method Tool Limitations / gaps

Deductive Verification Verifast [GAPT09] No integration with other

V&V/development tools, e.g. Simulink.

Deductive Verification Dafny [GAPT10] No integration with other

V&V/development tools e.g. Simulink.

Dynamic Analysis of Concurrent

Programs

ANaConDA [GAPT11] Missing support of some programming

features (e.g., multi-process programs).

[GAPT12] Some forms of properties to be checked

not supported in sufficient generality (e.g., contracts

of concurrency are not supported in a way

distinguishing values of parameters of the functions

involved in the contracts).

Failure Detection and Diagnosis

(FDD) in Robotic Systems

CIROS Studio

[GAPT13] The model library does not include all

types of devices needed in the simulation of some

applications.

[GAPT14] Human model needs enhancements.

Formal Requirements Validation FRET [GAPT15] It does not support first-order

quantification.

General Formal Verification Rodin [GAPT16] Interactive proofs can be very time

consuming.

Knowledge-Centric System Artefact

Quality Analysis

RQA - Quality

Studio

[GAPT17] The amount of available model-specific

metrics is limited.

[GAPT18] Some tools cannot be integrated.

Knowledge-Centric Traceability

Management

Traceability

Studio

[GAPT19] Some tools cannot be integrated.

Model Checking Kind2 [GAPT20] Limited by state space explosion.

Model Checking CoCoSim [GAPT21] Limited integration with the other

V&V/development tools, e.g. Simulink. Also,

limited support for verifying detailed properties

about arrays.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 111

V&V method Tool Limitations / gaps

Model-Based Assurance and

Certification

OpenCert [GAPT22] There can be performance issues

depending on how storage is configured.

[GAPT23] Usability can be improved.

[GAPT24] Support for workflow configuration is

limited.

[GAPT25] Further integration with external tools

can be needed.

Model-based fault injection for safety

analysis

xSAP [GAPT26] Tool support usability can be improved,

e.g., editing and customization of fault libraries.

Model-based fault injection for safety

analysis

COMPASS [GAPT27] Tool support usability can be improved,

e.g., editing and customization of fault libraries.

Model-Based Formal Specification

and Verification of Robotic Systems

ROS [GAPT28] Needs integration with formal

verification models

Model-Based Formal Specification

and Verification of Robotic Systems

UPPAAL [GAPT29] Creating models is difficult and requires

expertise.

Model-Based Formal Specification

and Verification of Robotic Systems

ROSRV [GAPT30] It does not use formal models. It does not

verify formally.

[GAPT31] There are security problems.

Model-Based Formal Specification

and Verification of Robotic Systems

GAZEBO [GAPT32] It needs integration with formal

verification methods

Model-Based Mutation Testing Conformiq

Designer

[GAPT33] Very limited set of mutations is provided.

Model-Based Robustness Testing MoMuT [GAPT34] The “fuzzing" features implemented are

up to now rudimentary compared to fuzzing tools

for e.g. protocol testing.

Model-Based Safety Analysis CHESS FLA [GAPT36] In presence of a large and complex

systems, false FMEA rows may be generated and FT

generation has to be improved.

Identified gaps and limitations of the V&V methods listed in D3.1

112 ECSEL JU, grant agreement No 876852.

V&V method Tool Limitations / gaps

Model-Based Testing MoMuT [GAPT37] Proprietary test case format.

Model-Implemented Attack

Injection.

MODIFI

(Matlab/Simulink

based)

[GAPT38] Limited number and accuracy of attack

models.

[GAPT39] Limited support for pre- and post-

injection analysis.

Model-Implemented Fault Injection. MODIFI

(Matlab/Simulink

based)

[GAPT40] Limited number and accuracy of fault

models.

[GAPT41] Limited support for pre- and post-

injection analysis.

Runtime Verification Based on

Formal Specification

Copilot [GAPT42] No integration with other

V&V/development tools, e.g. Simulink.

Runtime Verification Based on

Formal Specification

Spectra [GAPT43] Missing support of automatic

instrumentation of check points.

Signal Analysis and Probing TestStand [GAPT44] Proprietary data storage approach.

Flexibility by e.g. SQL databases is needed

Simulation-based Fault and Attack

Injection at System-level.

Fault and Attack

insertion in

SUMO

(Simulation of

Urban MObility)

[GAPT45] The tool is limited to inject attacks in

SUMO.

[GAPT46] Test configuration and results analysis

are done manually.

[GAPT47] No support for pre- and post-injection

analysis.

Source Code Static Analysis Frama-C [GAPT48] Weak support of concurrency-related

program issues.

Source Code Static Analysis Facebook Infer [GAPT49] Weak support of concurrency-related

program issues, especially for low-level

synchronisation.

Source Code Static Analysis 2LS [GAPT50] Missing support for programs using

certain kinds of data structures, such as arrays and

hash tables.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 113

V&V method Tool Limitations / gaps

Theorem Proving and SMT Solving Z3 [GAPT51] Can time-out on complex properties.

V&V of Machine Learning-Based

Systems Using Simulators

SUMO

(Simulation of

Urban Mobility)

[GAPT52] Only macro level simulations, not directly

support for V&V of ML-based perception systems

V&V of Machine Learning-Based

Systems Using Simulators

TASS/Siemens

PreScan

[GAPT53] Limited support for diversity of

scenarios.

V&V of Machine Learning-Based

Systems Using Simulators

ESI Pro-SiVIC [GAPT54] No comprehensive digital twin library.

V&V of Machine Learning-Based

Systems Using Simulators

CARLA [GAPT55] No comprehensive sensor models.

[GAPT56] No comprehensive digital twin library

V&V of Machine Learning-Based

Systems Using Simulators

Unreal Engine [GAPT57] No comprehensive library of digital twin

[GAPT58] Limitation in sensor models

V&V of Machine Learning-Based

Systems Using Simulators

Environment

Simulator

Minimalistic

(ESMINI)

[GAPT59] Not user friendly, written in C/C++.

[GAPT60] Difficult to integrate it with machine

learning software stack.

Virtual & Augmented Reality-Based

User Interaction V&V and

Technology Acceptance

Unity 3D [GAPT61] It is a closed-source software. Apart from

that, the cost of deep customization of the user

interaction can be high (development from scratch)

Vulnerability analysis of

cryptographic modules against

hardware-based attacks

Anadigm

Designer2

[GAPT62] It is used to evaluate RNG designs, but

requires high knowledge and experience.

[GAPT63] Only analogue-based RNGs can be

designed and evaluated.

[GAPT64] Cannot work at high frequencies (max

1MHZ)

Identified gaps and limitations of the V&V methods listed in D3.1

114 ECSEL JU, grant agreement No 876852.

V&V method Tool Limitations / gaps

Vulnerability analysis of

cryptographic modules against

hardware-based attacks

Xilinx Vivado

Design Suite

[GAPT65] It is used to evaluate RNG designs, but

requires high knowledge and experience.

[GAPT66] Only digital-based RNGs can be designed

and evaluated.

Vulnerability analysis of

cryptographic modules against

hardware-based attacks

BigCrush [GAPT67] Big Crush tests require at least 1TB of

data. Thus, this test can only be implemented over

strong computers

Vulnerability analysis of

cryptographic modules against

hardware-based attacks

DieHard [GAPT68] Tests can be made by collecting the RNG

output of the system to be evaluated as at least 1

million bits. This process takes time and requires

extra hardware if it is not already integrated.

Vulnerability analysis of

cryptographic modules against

hardware-based attacks

NIST 800-22 [GAPT69] Tests can be made by collecting the RNG

output of the system to be evaluated as at least 1

million bits. This process takes time and requires

extra hardware if it is not already integrated.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 115

Chapter 6 Use Case-related Gaps and Limitations

In this chapter, use cases are analysed to find the gaps in current V&V methods that prevent their

application in real world scenarios. To reach this goal, the first step has been the identification of the

state-of-the-art methods for the different use cases to understand what is currently used and which are

the needed intervention to allow a better implementation of the scenarios. In particular, for each use

case, the available methods have been divided into four groups:

1. Methods that are currently used in the use case.

2. Methods that will likely be used during the use case without any major development or

improvement.

3. Methods that could be used in the use case after removing some limitations.

4. Methods that are not relevant for the use case, so they will not be used during the project for

that use case.

This categorization allows one to identify where the effort should be put in place in the improvement

and development of new methods. In particular, groups 1, 2 and 4 do not need any intervention, while

methods in group 3 deserve some further analyses to understand which are the current limitations and

how technology providers in WP3 should work to address such limitations.

It is worth noting that the definition of use cases is an ongoing process, so the definition of usable

methods has been quite conservative: it is likely that not all the methods tagged as potentially usable

will be actually used during the use case implementation. At the same time, the analysis presented in

this chapter of the deliverable is necessarily partial, since not all the details of the demonstrators are

known during this phase. Subsequent deliverables (in particular, all future deliverables of WP5 and

D3.5 about new V&V methods) will address this topic more precisely. What is presented here is aimed

only at providing some elements that could guide the work to develop new methods (Task 3.3, in

particular).

Section 6.1—Section 6.12 report the results of these analysis for the 12 use cases. For each method,

already identified issues are listed: for each of them it is specified between parentheses if it is a gap (i.e.

something missing to allow the implementation of the method) or a limitation (i.e. some intrinsic limit

of the method for that specific application). Notice that not all the use cases have some gaps or

limitations reported. In these cases, the implementation of the use case is in an early stage and it is not

possible to define use case driven limitations: of course, the gaps and limitations described for methods

in Chapter 3 still hold true.

6.1 UC1 – Intelligent Traffic Surveillance

Currently Used Methods: Software Component Testing, Test Parallelization and Automation.

Methods that are planned to be used: Source Code Static Analysis.

Identified gaps and limitations of the V&V methods listed in D3.1

116 ECSEL JU, grant agreement No 876852.

Potentially usable methods: Simulation-based Attack Injection at System-level, Software-Implemented

Fault Injection, V&V of Machine Learning-Based Systems Using Simulators, Model-Based Testing,

Dynamic Analysis of Concurrent Programs, Penetration testing of Industrial Systems.

6.1.1 Identified Gaps and Limitations for Use Case Application

V&V of Machine Learning-Based Systems Using Simulators

• Availability of UC- related digital twin in simulator (scenes, scenarios, sensor models). Recreate

the real-world scenarios of UC1 system in the simulator. (gap)

• V&V process that can use both real-world and simulation data. (gap)

• V&V of ML needs novel approaches as conventional techniques such as code reviews and

coverage testing are only partly applicable. (gap)

Simulation-based Attack Injection at System-level

• A detailed description of the system from UC owner should be provided to apply this method.

(gap)

• The availability of UC related digital twin in simulator (scenes, scenarios, sensor models) is

needed for the method to work properly. (gap)

Penetration testing

• A detailed description of the system from UC owner should be provided to apply this method.

(gap)

• The hardware/software related to the use case should be provided. (gap)

• Several variants of the method should be tried to improve its effectiveness, but, due to limited

tools, time, scope, and access, not all of them will we explored. (limitation)

Dynamic Analysis of Concurrent Programs

• It requires one or more automatic tests (no assertion needed though) including execution

environment or its test double (or the test harness). (gap)

• In the context of the use case, the method may provide a lot of false positives. (limitation)

• The method introduces significant overhead, so it cannot be used on SUT with real-time

characteristic. (limitation)

6.2 UC2 – Car Teleoperation

Methods that are planned to be used: Software-Implemented Fault Injection, Assessment of

Cybersecurity-Informed Safety, Dynamic Analysis of Concurrent Programs, Source Code Static

Analysis, Penetration testing of Industrial Systems.

Potentially usable methods: Simulation-based Attack Injection at System-level, Simulation-based Fault

Injection at System-level, Virtual Architecture Development and Simulated Evaluation of Software

Concepts, Model-Based Testing, Human Interaction Safety Analysis

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 117

6.2.1 Identified Gaps and Limitations for Use Case Application

Simulation-based Attack Injection at System-level

• A proper tool to be applied in the context of the use case is currently to be identified. (gap)

Simulation-based Fault Injection at System-level

• The configuration of the Clumsy tool, currently used in the scope of the use case, is unsatisfiable.

The development of a network monitoring tool to cover areas out of scope of Clumsy is needed.

(gap)

Software-Implemented Fault Injection

• The configuration of the Clumsy tool, currently used in the scope of the use case, is unsatisfiable.

(gap)

• The development of a network monitoring tool to cover areas out of scope of Clumsy is needed.

(gap)

Source Code Static Analysis

• The number of checks is not sufficient for the target of the use case. Extension of Facebook Infer

and/or Frama-C frameworks will be needed to support more common weakness or specific-

purpose analyses (gap).

6.3 UC3 – Radar Systems for ADAS

Currently used methods: Fault Injection in FPGAs, Interface Fault Injection, Software-Implemented

Fault Injection, Software Component Testing, Runtime Verification Based on Formal Specification,

Source Code Static Analysis, Behaviour-Driven Formal Model Development, Formal Requirements

Validation, Model Checking, Model-Based Safety Analysis, Model-Based Threat Analysis, Risk

Analysis, Wireless Interface Network Security Assessment, Code Design and Coding Standard

Compliance Checking, Model-Based Design Verification, Traceability Management for Safety Software

Methods that are planned to be used: Test Parallelization and Automation, Signal Analysis and

Probing

Potentially usable methods: Model-Based Fault Injection for Safety Analysis, Model-Implemented

Fault Injection, Risk-Based Testing

6.4 UC4 – Human-Robot-Interaction in Semi-Automatic Assembly

Processes

Currently used methods: Model-Based Fault Injection for Safety Analysis, Simulation-Based Testing

for Human-Robot Collaboration, Virtual Architecture Development and Simulated Evaluation of

Software Concepts, Machine Learning Model Validation, Model-Based Testing, Model-Based Safety

Analysis, Model-Based Threat Analysis, Failure Detection and Diagnosis (FDD) in Robotic Systems.

Methods that are planned to be used: Virtual & Augmented Reality-Based User Interaction V&V and

Technology Acceptance.

Identified gaps and limitations of the V&V methods listed in D3.1

118 ECSEL JU, grant agreement No 876852.

Potentially usable methods: Model-Implemented Attack Injection, Model-Implemented Fault Injection,

Simulation-based Fault Injection at System-level, Software-Implemented Fault Injection, V&V of

Machine Learning-Based Systems Using Simulators, Behaviour-Driven Model Development and Test-

Driven Model Review, Assessment of Cybersecurity-Informed Safety, Formal Requirements Validation,

Reachability-Analysis-Based Verification for Safety-Critical Hybrid Systems, Human Interaction Safety

Analysis, Kalman Filter-Based Fault Detector, Model-Based Formal Specification and Verification of

Robotic Systems.

6.4.1 Identified Gaps and Limitations for Use Case Application

Behaviour-Driven Model Development and Test-Driven Model Review

• The use case has not adopted a tool to sketch, generate and evaluate the UML diagrams. (gap)

• The methodology and the tool proposed seem to be more intended for the software

development field. (limitation)

• The availability and encourage to use the referred tool have not been done properly. (limitation)

• The method seems to strongly rely into the proposed tool framework. (gap)

Formal Requirements Validation

• Formal specifications and requirements have not been defined for the use case. (gap)

• Currently no formal checkers or tools have been implemented in the use case. (gap)

Model-Based Formal Specification and Verification of Robotic Systems

• Property specifications has to be provided. (limitation)

• System level model has to be provided. (gap)

• The model checker is not clearly defined. (limitation)

• Adoption of an extra tool to apply the method. (limitation)

Model-Implemented Attack Injection

• Clearly define the fault models. (gap)

• Difficult to extend the fault injection methodology to the actual physical system. (limitation)

Model-Implemented Fault Injection

• Evaluate possible scenarios for application and define the attack models. (gap)

• Difficult to extend the attack injection methodology to the actual physical system. (limitation)

Simulation-based Fault Injection at System-level

• The system level model platform is currently under development. (gap)

• No knowledge about the proposed traffic simulators. (limitation)

6.5 UC5 – Aircraft Engine Controller

Currently used methods: Reachability-Analysis-Based Verification for Safety-Critical Hybrid Systems.

Methods that are planned to be used: Model-Implemented Attack Injection, Model-Implemented Fault

Injection, Behaviour-Driven Formal Model Development, Formal Requirements Validation, Model

Checking, Theorem Proving and SMT Solving, Model-Based Design Verification.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 119

Potentially usable methods: Interface Fault Injection, Runtime Verification Based on Formal

Specification, Deductive Verification, Source Code Static Analysis.

6.6 UC6 – Agricultural Robot

Methods that are planned to be used: Interface Fault Injection, Human Interaction Safety Analysis,

Model-Based Safety Analysis, Wireless Interface Network Security Assessment.

Potentially usable methods: Simulation-Based Robot Verification, Assessment of Cybersecurity-

Informed Safety, Software Component Testing, Code Design and Coding Standard Compliance

Checking, Traceability Management for Safety Software.

6.6.1 Identified Gaps and Limitations for Use Case Application

Model-Based Safety Analysis - Failure Logic Analysis (FLA)

• Since the method has not been used in this context yet, the workflow and the different

components that should be used is still to be defined. (gap)

Risk Analysis

• A dataset about threats and faults occurred to agricultural automated systems is currently not

available, so gathering this information with the higher level of detail is required for applying

the method. (gap)

• The modelling of each system component could be difficult to be performed with high

granularity. Moreover, also the interdependencies among them, could be very complex and not

fully described by a model. (limitation)

• Since it is a new application field, compliance to standard related to utilization of robots and

automated systems in the agriculture domain should be addressed. (gap)

6.7 UC7 – Human-Robot Collaboration in a Disassembly Process with

Workers with Disabilities

Methods that are planned to be used: Simulation-Based Testing for Human-Robot Collaboration, Test

Optimization for Simulation-Based Testing of Automated Systems, Virtual & Augmented Reality-Based

User Interaction V&V and Technology Acceptance.

6.8 UC8 – Neuromuscular Transmission for Muscle Relaxation

Measurements

Methods that are planned to be used: Model-Based Safety Analysis, Risk Analysis.

Potentially usable methods: Software-Implemented Fault Injection.

6.8.1 Identified Gaps and Limitations for Use Case Application

Software-Implemented Fault Injection

Identified gaps and limitations of the V&V methods listed in D3.1

120 ECSEL JU, grant agreement No 876852.

• The modelling of stochastic processes in infusion pumps and TOF measurements is currently

not available and needs to be developed to apply the model. (gap)

• A model for pseudo-random noise to infusion pump outputs and to TOF/PTC measurements

need to be developed to apply the method. (gap)

• Some adaptation is needed to apply the method in the Infusion controller for NMT regulation.

(gap)

6.9 UC9 – Autonomous Train Operation

Potentially usable methods: V&V of Machine Learning-Based Systems Using Simulators, Machine

Learning Model Validation.

6.9.1 Identified Gaps and Limitations for Use Case Application

V&V of Machine Learning-Based Systems Using Simulators

• A complete dataset containing a variety of scenarios covering (almost) all possible working

conditions should be developed to apply the method. While most simulators to generate this

type of datasets is focused on automotive, no railway scenarios are currently achievable by

means of them. (gap)

• The method is statistical, so cannot ensure sufficient reliability for critical applications and

cannot fulfil standards in the railway domain, since they are based on deterministic

applications. (limitation)

Machine Learning Model Validation

• Since fully auto labelled data in railway domain simulators is not available, a custom semi-

automatic validation framework should be created, which requires huge investments in terms

of budget and human resources. (gap)

• The method is statistical, so cannot ensure sufficient reliability for critical applications and

cannot fulfil standards in the railway domain, since they are based on deterministic

applications. (limitation)

6.10 UC10 – Safe Function Out-Of-Context

Methods that are planned to be used: Fault Injection in FPGAs, Model-Based Testing, Model Checking

Potentially usable methods: Interface Fault Injection, Model-Based Fault Injection for Safety Analysis,

Software-Implemented Fault Injection, Software Component Testing, Runtime Verification Based on

Formal Specification, Source Code Static Analysis, Formal Requirements Validation, Theorem Proving

and SMT Solving, Model-Based Safety Analysis, Knowledge-Centric Traceability Management, Model-

Based Assurance and Certification, Model-Based Design Verification, Traceability Management for

Safety Software.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 121

6.11 UC11 – Automated Robot Inspection Cell for Quality Control of

Automotive Body-In-White

Currently Used Methods: Simulation-Based Robot Verification

Methods that are planned to be used: Model-Based Testing, Runtime Verification Based on Formal

Specification, Model-Based Threat Analysis, Vulnerability analysis of cryptographic modules against

hardware-based attacks, Penetration testing of Industrial Systems, Model-Based Formal Specification

and Verification of Robotic Systems.

Potentially usable methods: Model-Implemented Attack Injection, Simulation-based Attack Injection

at System-level, Vulnerability and Attack Injection, Interface Fault Injection, Model-Based Fault

Injection for Safety Analysis, Software-Implemented Fault Injection, Software Component Testing,

Human Interaction Safety Analysis

6.11.1 Identified Gaps and Limitations for Use Case Application

Virtual Architecture Development and Simulated Evaluation of Software Concepts

• Since the Simulation environments cannot simulate the accelerated movements, start and

slowdown acceleration movements of the UC11 could not be able to be simulated. (gap)

• Body-in white system of UC11 works with PLCs in real world and simulation world does not

have any perfection to simulate the PLC works. (gap)

6.12 UC13 – Industrial Drives for Motion Control

Methods that are planned to be used: Behaviour-Driven Model Development and Test-Driven Model

Review, Model-Based Mutation Testing, Model-Based Robustness Testing, Model-Based Testing, Test

Oracle Observation at Runtime, Model Checking, CPU Verification.

Potentially usable methods: Model-Based Fault Injection for Safety Analysis, Virtual Architecture

Development and Simulated Evaluation of Software Concepts.

6.12.1 Identified Gaps and Limitations for Use Case Application

Virtual Architecture Development and Simulated Evaluation of Software Concepts

• Fault injection for changing the behavior of simulation components is not directly supported

by current tools associated with the method, which would be needed for fault-injection analysis

of motor position sensor data. (gap)

• The technical connection of FERAL to the simulation components of the UC (e.g., proprietary

multi-physics simulator AMESim for motor modelling and simulation, QEMU, SystemC and

(real-time) operating systems) needs to be implemented by means of proper connectors and

adaptors. (gap)

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 123

Chapter 7 Conclusions

In this deliverable, gaps and limitations of V&V methods presented in D3.1 have been reviewed and

analysed. Overall, 53 methods belonging to 13 groups (as defined in D3.1 [1]) have been analysed

considering 9 categories of limitations. Considering all the categories, 400 gaps have been identified.

The number of gaps per method ranges from 1 to 15, with an average of 7.5. The category with the

highest average number of gaps or limitations is Attack Injection, whose methods have 11.3 gaps on

average. The most frequent type of gap or limitation is Functionality: 69 of them have been pointed out.

In addition, some gaps and limitations of tools have been considered, too, to highlight, besides the

theoretical limitations, the practical issues that prevent actual deployment of V&V methods.

At last, also inputs from use cases have been considered, identifying what is missing in the state-of-the-

art of V&V methods to allow an effective implementation of the VALU3S demonstrators. Since the

implementation of use cases is an ongoing process, this picture is necessarily partial, but still, it is a good

starting point to identify the direction of further developments in V&V methods. The limitations of

methods together with the limitations derived from use cases will be the input for Task 3.3 since they

will guide the improvements to existing methods and the development of new methods.

The results of this deliverable are in connection with the VALU3S objectives and KPIs. In particular, the

identification of gaps and limitations is a prerequisite for Objective 2 (To overcome the SCP gaps and

limitations of cyber-physical systems), Objective 5 (To suggest and validate new as well as state-of-the-

art evaluation scenarios for safety, cybersecurity and privacy evaluation) and Objective 6 (To develop

and improve V&V tools and evaluation criteria). Related to these objectives, this deliverable is

contributing to achieve some of the project’s KPIs, namely:

• Improve at least 14 V&V methods in order to create VALU3S repository of improved V&V

methods (related to Objective 2).

• Present and detail at least 13 novel evaluation scenarios (including their requirement

specifications) for safety, security and privacy evaluation through 13 realistic use cases (related

to Objective 5).

• Improve and/or develop at least 24 V&V tools that aim to improve the time and cost of V&V

processes while dealing with hardware-, software- and system-level cyber-physical risks

(related to Objective 6).

• Incorporate and make use of at least 13 SCP evaluation criteria as well as at least 11 evaluation

criteria suitable for measuring the level of improvement obtained in the V&V processes (related

to Objective 6).

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 125

References

[1] VALU3S Consortium, “Deliverable D3.1 - V&V methods for SCP evaluation of automated

systems,” 2020.

[2] VALU3S Consortium, “Deliverable D1.1 - Description of use cases as well as scenarios,” 2020.

[3] VALU3S Consortium, “Deliverable D1.2 - SCP requirements as well as identified test cases,” 2020.

[4] VALU3S Consortium, “Deliverable D5.1 - Initial Demonstration Plan and a List of Evaluation

Criteria,” 2020.

Identified gaps and limitations of the V&V methods listed in D3.1

ECSEL JU, grant agreement No 876852. 127

www.valu3s.eu

This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 876852. The JU
receives support from the European Union’s Horizon 2020 research and innovation programme and Austria, Czech Republic,

Germany, Ireland, Italy, Portugal, Spain, Sweden, Turkey.

http://www.valu3s.eu/

