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The views expressed in this document are the sole responsibility of the authors and do not necessarily 

reflect the views or position of the European Commission. The authors, the VALU3S Consortium, and 

the ECSEL JU are not responsible for the use which might be made of the information contained in here. 
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Project Overview 

Manufacturers of automated systems and the manufacturers of the components used in these systems 

have been allocating an enormous amount of time and effort in the past years developing and 

conducting research on automated systems. The effort spent has resulted in the availability of 

prototypes demonstrating new capabilities as well as the introduction of such systems to the market 

within different domains. Manufacturers of these systems need to make sure that the systems function 

in the intended way and according to specifications which is not a trivial task as system complexity rises 

dramatically the more integrated and interconnected these systems become with the addition of 

automated functionality and features to them. 

With rising complexity, unknown emerging properties of the system may come to the surface making 

it necessary to conduct thorough verification and validation (V&V) of these systems. Through the V&V 

of automated systems, the manufacturers of these systems are able to ensure safe, secure and reliable 

systems for society to use since failures in highly automated systems can be catastrophic. 

The high complexity of automated systems incurs an overhead on the V&V process making it time-

consuming and costly. VALU3S aims to design, implement and evaluate state-of-the-art V&V methods 

and tools in order to reduce the time and cost needed to verify and validate automated systems with 

respect to safety, cybersecurity and privacy (SCP) requirements. This will ensure that European 

manufacturers of automated systems remain competitive and that they remain world leaders. To this 

end, a multi-domain framework is designed and evaluated with the aim to create a clear structure 

around the components and elements needed to conduct the V&V process through identification and 

classification of evaluation methods, tools, environments and concepts that are needed to verify and 

validate automated systems with respect to SCP requirements. 

In VALU3S, 12 use cases with specific safety, security and privacy requirements will be studied in detail. 

Several state-of-the-art V&V methods will be investigated and further enhanced in addition to 

implementing new methods aiming for reducing the time and cost needed to conduct V&V of 

automated systems. The V&V methods investigated are then used to design improved process 

workflows for V&V of automated systems. Several tools will be implemented supporting the improved 

processes which are evaluated by qualification and quantification of safety, security and privacy as well 

as other evaluation criteria using demonstrators. VALU3S will also influence the development of safety, 

security and privacy standards through an active participation in related standardisation groups. 

VALU3S will provide guidelines to the testing community including engineers and researchers on how 

the V&V of automated systems could be improved considering the cost, time and effort of conducting 

the tests. 

VALU3S brings together a consortium with partners from 10 different countries, with a mix of industrial 

partners (24 partners) from automotive, agriculture, railway, healthcare, aerospace and industrial 

automation and robotics domains as well as leading research institutes (6 partners) and universities (10 

partners) to reach the project goal. 
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Executive Summary 

Within the scope of WP3 - Design of SCP (Safety, Cybersecurity, and Privacy) V&V (Verification and 

Validation) methods for automated systems, D3.3 analyses the gaps and limitations of the state-of-the-art 

methods presented in D3.1. The analysis is done with a double approach: on one side, the 53 methods 

are analysed, and their general limitations are reviewed; on the other side, the use cases are reviewed 

in order to find the gaps that prevent or limit the application of V&V in those scenarios. 

For a better evaluation, gaps and limitations have been divided into different categories: 

• Accuracy: limitations in the accuracy of the method. 

• Scalability and computational: limitations in applying the method to larger problems. 

• Deployment: issues regarding the deployment of the method in real-world contexts. 

• Learning curve: limitations related to high-level skills required to apply the method. 

• Lack of automation: issues with allowing the method to be executed without human 

intervention. 

• Reference environment: limitations regarding the reference environment where the method 

can be applied. 

• Cost: limitations related to the high cost needed to use the method. 

The identification of gaps and limitations will guide the work of the next WP3 efforts, in particular 

regarding the development of improved, new or married (i.e. obtained by combining two already 

existing techniques) methods to bridge the gaps. This work is going to be performed in Task 3.3. 
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Chapter 1 Introduction 

As the use and complexity of automated systems are growing, system manufacturers and component 

suppliers require methods that can help them to confirm that the SCP requirements of the systems are 

satisfied. This is necessary so that the systems can be deemed dependable and secure. Even if much 

effort has been spent in research and development in the field of Verification & Validation (V&V), the 

rising complexity of automated systems makes very difficult to prove that systems will behave as they 

were planned to do. As illustrated in Figure 1.1, the frequency of cyber-physical disasters has increased 

in particular starting from 2005 affecting many sectors like automotive and health. The main point is 

that threats have evolved from mainly software-based ones to a complex combination of software and 

the hardware levels. So, the approach to respond to attacks on SCADA systems, sensor networks, 

automation software and control units should inevitably be holistic: no component can be considered 

separately. This increased the level of the challenge to ensure the SCP requirements are met in 

automated systems. The result is that many applications in different sectors are still not covered by the 

currently available methods. Many factors cause this technological gap, ranging from computational 

issues to the lack of a sufficient degree of accuracy. One of the goals of the VALU3S project is to develop 

new V&V methods that can overcome current limitations. 

 

Figure 1.1: Evolvement of security threats and risks over the past decades 

In particular, the aim of WP3 (Design of SCP V&V methods for automated systems) is to create a set of 

reference methods for V&V of automated systems. The WP3 objective is reached with three subsequent 

steps: 

1. Studying the currently available state of the art V&V methods.  

2. Identifying gaps and limitations in methods found in 1. 

3. Improve, combine existing or develop completely new methods according to the limitations 

highlighted in 2. 
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All the activities of WP3 are carried out with a strong connection with the VALU3S use cases to ensure 

that all the developments respond to actual needs deriving from real world scenarios. Task 3.2 deals 

with step 2 of this process, i.e. the identification of gaps and limitations in the currently available 

methods. This deliverable reports the results of this analysis. It is worth noting that on one hand the 

analysis is general since it takes into account the methods independently from their specific application 

in the project. For this reason, the gap analysis has included also gaps and limitations that are out of the 

scope of the project because they were considered valuable information. On the other hand, the focus 

and the way the topics are presented are influenced by the specific applications considered in the 

project. So, the list of gaps should not be regarded as an exhaustive one and within the list more focus 

is given to gaps and limitations of interest for the project’s goals. 

Since the methods are extensively explained in Deliverable 3.1 (D3.1) [1], the focus here is not on the 

methods’ functionality but more on what is lacking for their wider and better employment. Therefore, 

the reader should refer to D3.1 for further details on the methods. 

This deliverable relates to other VALU3S’ deliverables that either provide input or will use its results as 

a basis for their development: 

• D1.1 (Description of use cases as well as scenarios) [2] and D1.2 (SCP requirements as well as 

identified test cases) [3] provide the use case scenarios to consider for identifying gaps of the 

V&V methods in D3.2. 

• D3.1 (V&V methods for SCP evaluation of automated systems) [1] reviews the state of the art 

that is used to identify the gaps of currently available methods. 

• D3.4 (Initial description of methods designed to improve the V&V process), D3.5 (Interim 

description of methods designed to improve the V&V process), and D3.6 (Final description of 

methods designed to improve the V&V process) will largely base their work on the insights 

provided in this deliverable. 

• D5.1 (Initial demonstration plan and a list of evaluation criteria) [4] is providing details on use 

cases and their evaluation criteria, as well as the currently used approaches to V&V. 

The following chapters introduce the background of the deliverable (Chapter 2) and present the 

identified gaps in V&V methods (Chapter 3) as well as some overview and statistics about them 

(Chapter 4). Then, the identified gaps in tools (Chapter 5) and the insights deriving from the use cases 

(Chapter 6) will be reported. Chapter 7 closes the deliverable with some conclusions. 
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Chapter 2 Background 

The identification of gaps and limitations in V&V has proceeded in two different but complementary 

directions (see Figure 2.1). On one side, gaps and limitations have been searched in the methods from a 

more theoretical point of view. This approach will be referred to as bottom up. Regarding this approach, 

the focus is both on the methods themself and on the tools supporting the methods, pointing out the 

issues related to the implementation. On the other side, the use cases are analysed to highlight 

applications that cannot be carried out with current methods and therefore require improvements or 

completely new methods. This top-down approach will allow us to ensure that developments are done 

with a proper level of generality and theoretical soundness and, at the same time, that they are oriented 

to solve real world problems.  

   

Figure 2.1: Approach followed for the analysis of gaps in V&V methods 

To better identify and group gaps, different categories have been defined: 

• Accuracy: the method has some limitations regarding its accuracy. For example, the method is 

not reliable enough for some critical application where it is employed. 

• Scalability and Computational: the method requires too many computational resources (time 

and/or memory) and therefore can be applied only to limited/simplified scenarios. 

• Deployment: the method presents some problems when deployed in real-world contexts. For 

example, there is lack of proper tools or there are issues in integrating the methods with other 

platforms. 

• Learning curve: to be properly used, the method requires high-level technical skills that are not 

easy to find. 

• Lack of automation: the method is not fully automatic, i.e., it requires heavy intervention, such 

as tuning, by human users. As a consequence, the V&V process could become long and error 

prone. 
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• Reference environment: the method works only for some reference environment, e.g., 

simulation. There are no warranties that findings are still valid for other environments. 

• Cost: using the method requires huge investments in terms of e.g., hardware, software, and 

human resources. 

All the methods presented in D3.1 have been analysed in Chapter 3 of this deliverable according to the 

criteria defined above. For ease of reading, the same groups of methods defined in D3.1 have been 

considered: 

• Injection-based V&V 

o Fault injection 

o Attack injection 

• Simulation 

• Testing 

• Runtime verification 

• Formal verification 

o Formal source code verification 

o General formal verification 

• Semi-formal analysis 

o SCP-focused semi-formal analysis 

o General semi-formal analysis 

• System-type-focused V&V 

Moreover, all the gaps have been identified by a unique label in order to allow related deliverables (in 

particular D3.4, D3.5, and D3.6) to reference the gaps that have been addressed during the project’s 

activities. Regarding this, it is worth noting that the list presented here includes more gaps than those 

that will be addressed during the project. All the identified gaps have been mentioned in this deliverable 

for reporting purposes, but it is likely that not all of them are going to be addressed either because they 

have more structural limitations or because they are out of the scope of the applications considered in 

VALU3S. Moreover, it is worth noting that the work of identifying gaps and limitations in methods will 

continue after Task 3.2 within other tasks both at a technological level (in particular in Task 3.3) and 

from a use case perspective (in particular, in WP5). 
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Chapter 3 Gaps and Limitations in V&V Methods 

This chapter reports gaps and limitations of V&V methods presented in D3.1 [1]. The presentation of 

gaps and limitations follows the same structure as the state-of-the-art review in D3.1: methods are 

divided in categories and sub-categories and for each method the different types of gaps and limitations 

are pointed out. It may happen that no gaps or limitations are present for a method and a category (for 

example Vulnerability and Attack Injection does not have any reported gaps or limitations as regards 

scalability and computational issues). In this case, usually a short explanation is reported to clarify why 

no significant gap or limitation is mentioned. All the gaps and limitations are labelled by a proper id 

and decomposed in “atomic gaps” as much as possible, so that it is easier to understand which gaps 

have been addressed in VALU3S Task 3.3. For this reason, it often happens that several gaps or 

limitations are reported in each category for a single method. Each gap or limitation is labelled with the 

prefix “GAPM-” (gap of the method) followed by a three digits-code identifying the method (e.g. “MIA” 

is the code for Model-Implemented Attack Injection) and by a sequential number. 

3.1 Injection-Based V&V 

This group of methods focuses on introducing certain characteristics in a system, providing a certain 

type of input, or triggering certain events, to confirm that the system behaves suitably under the 

corresponding conditions. Two types of injection are considered: attack injection and fault injection. 

3.1.1 Attack Injection 

3.1.1.1 Model-Implemented Attack Injection 

Name of the method: Model-Implemented Attack Injection 

Short description 

In this method, the attacks (which are special types of faults) are injected in the model of the System 

Under Test (SUT) [MIA01]. MATLAB and LabVIEW are examples of tools used to build such system 

models. This method is used to verify and validate the system’s capability to handle attacks. The 

attack handling includes mechanisms to detect and prevent intrusions [MIA02]. This type of attack 

injection method is used for the system’s evaluation at early design stages. 

 

Limitations 

Functionality 

[GAPM-MIA01] The method can be improved by adding techniques such as pre-injection analysis 

and post-injection analysis [MIA03] [MIA04] [MIA05] [MIA06] to reduce the number of the tests and 

still get the same or improved results in terms of time, cost and effort. 

[GAPM-MIA02] Although there are many generic attack models, attack models often have to be 

adapted for the target system. 

 

Accuracy 
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[GAPM-MIA03] The accuracy of the method depends on the accuracy of the modelled attacks and 

systems. 

 

Scalability and computational  

[GAPM-MIA04] Exhaustive attack injection or full system monitoring may require intense 

computational resources depending on the complexity of the target system and its environment. 

 

Deployment  

[GAPM-MIA05] The model-implemented attack injection method is not feasible for final 

implementations of systems. 

[GAPM-MIA06] The method must be adapted for the simulation tool environment used, e.g., 

MATLAB toolboxes and MATLAB versions used. 

 

Learning curve 

[GAPM-MIA07] The method requires knowledge and skills regarding the simulation tool 

environment, e.g., MATLAB/SIMULINK skills. 

 

Lack of automation 

[GAPM-MIA08] The configuration and result analysis are done manually. 

  
 
Reference environment  

[GAPM-MIA09] This method is only applicable for the simulation environment. 

 
 
Costs 

The cost of implementing this method is minimal because there is no hardware needed to execute the 

tests by using this method.  

[GAPM-MIA10] Software such as MATLAB/SIMULINK is not opensource and needs investments. 

[GAPM-MIA11] Test cost increases when new attack models are implemented.  

[GAPM-MIA12] There is also some cost involved in terms of time when conducting the test. For 

example, exhaustive attack injection or full system monitoring increases the cost of verification and 

validation.  

 

Standards 

The requirements of the standards which this method fulfils are ISO-TC22-SC32-

WG11_N0613_ISO_SAE_DIS_21434_(E), NIST 800, IEC 62443, SAE J3061, IEC TR 63069, IEC TR 

63074, ISO TR 22100-4, ISO 24089 
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Manifestation as a Function of Workload.” IEEE Trans. Computers 41 (1992): 559-566. 
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3.1.1.2 Simulation-Based Attack Injection at System-level 

Name of the method: Simulation-Based Attack Injection at System-level 

Short description 

Simulation-based Attack Injection at System-level provides an opportunity of injecting attacks on the 

system level. Different parts of the system and their interconnections can be verified and validated 

by using this technique. The complete system behaviour can be analysed when a certain sub-system 

is under the influence of attacks. While conducting field tests could be costly and sometimes life-

threatening, simulation-based tests provide a wide range of advantages, such as lower testing costs, 

adaptation of tests to a variety of traffic scenarios, and avoiding the life-threatening situations. 

This method could span over various tools such as SUMO (Simulation of Urban Mobility) [SAI02], 

CARLA (autonomous driving simulator) [SAI03] and VEINS (VEhicles In Network Simulation) 

[SAI04] allowing different aspects of the system to be evaluated.   

 

Limitations 

Functionality  

[GAPM-SAI01] More features can be added in the method functionality such as improving the 

representativeness of both attack models and simulated systems. 

 

Accuracy  

[GAPM-SAI02] Modelling of a system in a simulation environment might not accurately represent 

the real system in a real environment. So, the final V&V activities are recommended to be performed 

on a real system.   

 

Scalability and computational  

[GAPM-SAI03] Exhaustive attack injection and full system monitoring may require intense 

computational resources. 
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[GAPM-SAI04] Selecting complex scenarios for attack injection may require high computational 

resources. 

 

Deployment 

[GAPM-SAI05] The method must be adapted for the simulation tools, such as SUMO, CARLA, and 

VEINS, and the tools versions used. 

 

Learning curve 

[GAPM-SAI06] The method requires knowledge of simulators and skills to use. 

 

Lack of automation 

[GAPM-SAI07] The test configuration and result analysis are done manually. 

 
 
Reference environment 

[GAPM-SAI08] This method is only applicable for the simulation environment. 

 
 
Costs 

[GAPM-SAI09] The cost could depend on the type of simulator required for the V&V of the specific 

system requirements, e.g., proper system test for CARLA could cost a bit in terms of hardware and 

processing.  

[GAPM-SAI10] Attack injection is time consuming which could increase the cost depending on how 

we want to do it, e.g., running exhaustive attack injection experiments.  

[GAPM-SAI11] The time could be reduced if experiments could be run in parallel on the expense of 

the hardware increase, which increases the cost factor. 

 

Standards 

No relevant gap or limitation has been identified. The requirements of the standards which this 

method fulfils are ISO 26262, IEC 62061, IEC TR 63074, ISO PAS 21448, ISO 13849, IEC 61508, ISO/IEC 

TR 24028:2020, ISO/IEC WD 23053 

 

References 
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3.1.1.3 Vulnerability and Attack Injection 

Name of the method: Vulnerability and Attack Injection 

Short description  

http://veins.car2x.org/
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The method consists of injecting realistic vulnerabilities in the target component and mounting 

attacks through the exploitation of the injected vulnerabilities. The goal is to evaluate how the system 

where the target component is inserted, including existing security components (i.e. intrusion 

detection systems, security personnel), can cope with the attacks (i.e., the target component is not 

under evaluation; the rest of the system is) [VAI1], [VAI2]. 

 

Limitations 

Functionality 

[GAPM-VAI01] The injection of the different types of vulnerabilities is complex, which makes it 

difficult to implement tools with a rich variety of vulnerability types.  

[GAPM-VAI02] The number and variety of possible attacks could be limited. 

[GAPM-VAI03] Heavily dependent on the programming language of the target application. 

[GAPM-VAI04] Needs to access the source code of the application or system. 

 

Accuracy 

[GAPM-VAI05] Limitations in accuracy are inherent to the coverage limitations of vulnerability 

injection.   

 

Scalability and computational 

[GAPM-VAI06] The number of vulnerabilities and the time needed to perform an injection campaign 

depends on the target component. In any case, even when the target component is large and complex 

the method generally scales well [VAI3]. 

 

Deployment 

[GAPM-VAI07] Lack of mature tools outside academia.  

 

Learning curve 

[GAPM-VAI08] The learning curve is relatively steep if the practitioner is not knowledgeable in 

cybersecurity.   

 

Lack of automation 

[GAPM-VAI09] Concerning the injection of vulnerabilities, the degree of automation is similar to 

software fault injection approaches. The attack step is fully automatic. 

 
 
Reference environment 

[GAPM-VAI10] Requires a prototype or a real system. 

[GAPM-VAI11] Target components must be exposed to possible attacks, typically target components 

should be accessible through the Internet. 

    

Costs  
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No relevant gap or limitations has been identified.  The number of vulnerabilities and the time needed 

to perform an injection campaign depends on the target component. In any case, this is generally not 

a problem and does not represent a significant cost in time needed to perform a campaign.  

 

Standards 

No relevant gap or limitations has been identified. The method can be used in the context of the 

following standards: IEC TR 63074, ISO/IEC TR 24028:2020, ISO/IEC 27001 

 

References 

• [VAI1] J. Fonseca, N. Seixas, M. Vieira, and H. Madeira, "Analysis of Field Data on Web 

Security Vulnerabilities", IEEE Transactions on Dependable and Secure Computing, accepted 

for publication in 2014. 

• [VAI2] J. Fonseca, M. Vieira, and H. Madeira, "Evaluation of Web Security Mechanisms using 

Vulnerability & Attack Injection", IEEE Transactions on Dependable and Secure Computing, 

accepted for publication in 2014. 

• [VAI3] Elia, I., Fonseca, J., Vieira, M., “Comparing SQL Injection Detection Tools Using 

Attack Injection: An Experimental Study”, The 21st annual International Symposium on 

Software Reliability Engineering (ISSRE 2010), November, 2010. 

3.1.2 Fault Injection 

3.1.2.1 Fault Injection in FPGAs   

Name of the method: Fault injection in FPGAs 

Short description  

The objective is the evaluation of possible results of fault injection and their propagation in an FPGA-

based Hardware Platform. 

 

Limitations 

Functionality 

[GAPM-FIF01] This technique is based on Healing Core approach which is subject to errors as well. 

Some of encountered errors may not be healed by simply resetting and/or rebooting the entire FPGA.  

Thus, it is not clear that this method has an important advantage considering the time and cost 

dedicated to it. 

 

Accuracy 

[GAPM-FIF02] It is up to test design to achieve a high‑level accuracy in these tests. By modifying data 

residing in the configuration bits of an FPGA, the result of this fault injection can be observed. 

However, there are many possible combinations of flipping configuration bits. Thus, overall accuracy 

of this test is directly related to coverage of all possible scenarios. 

 

Scalability and computational 
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No relevant gap or limitation has been identified since this technique can easily be scaled to any 

FPGA so that there is not any expected scalability issue. Required computational resources to carry 

out this test are considerably limited. Hence, it can be performed easily using a PC or Workstation, 

but it is less certain that it can be carried out by processor cores embedded in the FPGA. 

 

Deployment 

[GAP-FIF03] The implementation of this test can be carried out mostly during the development 

phase. Soft-Error Mitigation (SEM)-cores to detect errors and uses Run-Time Reconfiguration (RTR) 

techniques to correct Single- and Multiple-Event Upsets (bit-flips) in the FPGA’s configuration 

memory. Further, it has a classification system that can report and initiate appropriate 

countermeasures for some faults. Thus, it can be used to implement self-repairing functionality in an 

FPGA system. 

 

Learning curve 

[GAPM-FIF04] The test approach used requires some solid background in FPGAs. Thus, it requires 

high-level skills for implementation. 

 

Lack of automation 

No relevant gap or limitation has been identified since the tests can be executed either manually or 

in an automatic fashion once required test software is developed. 

 
 
Reference environment 

No relevant gap or limitation has been identified since the tests can be implemented in prototype 

stage and at the operation environment (TRL-7). However, the software for using the method in the 

operating environment is not currently developed. 

 
 
Costs 

No relevant gap or limitation has been identified since the tests currently require a workstation, 

related software and human labor dedicated to this test. 

 

Standards 

[GAP-FIF05] Current Safety standards is not in favour of using FPGAs in the design because of the 

risk for bit-flips and changed functionality. 

 

References 
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using an EDAC SDRAM Controller”, In Proc. of 2017 IEEE Nordic Circuits and Systems 

Conference (NorCAS-2017), Linköping, Sweden, Oct 24-25, 2017. 

• [FIF2] E. Kyriakakis, K. Ngo, J. Öberg, “Implementation of a Fault-Tolerant, Globally-
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Proc. of 2017 IEEE Nordic Circuits and Systems Conference (NorCAS-2017), Linköping, 

Sweden, Oct 24-25, 2017. 
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3.1.2.2 Interface Fault Injection 

Name of the method: Interface fault injection 

Short description 

Injection of invalid inputs at the interface of software components (OS calls, APIs, services or any 

type of interface defined in the component) in order to evaluate the behaviour of the target 

component in the presence of such faulty inputs [IFI01], [IFI02], [IFI04]. Current tool (bBOXRT -  

https://git.dei.uc.pt/cnl/bBOXRT) is available to inject fault in web services [IFI03], [IFI04]. 

 

Limitations 

Functionality 

[GAPM-IFI01] The classification of results is highly dependent on the detailed knowledge of the 

system under testing and the target component (i.e., the component in which the faults are injected 

at interface level).  

[GAPM-IFI01] The quality of generated workloads often limits the disclosure of robustness problems. 

 

Accuracy 

[GAPM-IFI03] The method is accurate in the sense that it injects invalid parameters that allow 

accurate assessment of the target component robustness (i.e., behaviour of the target component in 

the presence of invalid inputs). In any case, the domain of invalid parameters could be quite large, 

which means that only a sample of invalid parameters is tested (coverage problem). 

 

Scalability and computational 

Does not present limitations since the faults are determined by the interface of the target 

component(s) and the method is not affected by the scale of the system under test. 

 

Deployment 

No relevant gap or limitation has been identified since the method is fully dynamic and can only be 

used when a prototype or a deployed version of the system under test is available.  

 

Learning curve 

[GAPM-IFI05] The method is easy to use since the tool (bBOXRT) is fully automatic, but the method 

requires the knowledge of the software architecture of the system under test and the interface of the 

target component to allow correct result analysis and interpretation. 
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Lack of automation  

No relevant gap or limitation has been identified since the method is fully automatic. 

 
 
Reference environment 

[GAPM-IFI06] Requires a prototype or a real system. 

 
 
Costs 

[GAPM-IFI07] The number of faults and the time needed to perform an injection campaign depends 

on the number of parameters and the domains of the parameters of the interface of the target 

component. In any case, this is generally not a problem and does not represent a significant cost.  

 

Standards 

No relevant gap or limitation has been identified since the method is fully automatic. As a specific 

type of fault injection, the method can be used in the context of the standards ISO 26262, IEC 62061, 

IEC TR 63074, ISO PAS 21448, ISO 13849, IEC 61508, ISO/IEC TR 24028:2020, ISO/IEC WD 23053. 
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Dependable and Secure Computing, vol. 14, no. 1, pp. 50-64, 1 Jan.-Feb. 2017, doi: 

10.1109/TDSC.2015.2429128. 
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Services," in IEEE Transactions on Services Computing, vol. 7, no. 1, pp. 68-81, Jan.-March 

2014, doi: 10.1109/TSC.2012.39. 

 

3.1.2.3 Model-Based Fault Injection for Safety Analysis 

Name of the method: Model-Based Fault Injection for Safety Analysis 

Short description 

In model-based fault injection, user-specified faults may be (automatically) injected into a system 

model to generate an extended model that specifies the behavior of the system in presence of faults. 

Fault injection can be performed manually or using a library of predefined failure modes. The 

extended model can be used to perform safety analysis activities, such as FTA and FMEA. 

 

Limitations 

Functionality  
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[GAPM-MBI01] Tool support usability can be improved, e.g., editing and customization of fault 

libraries. 

 

Accuracy  

[GAPM-MBI02] The method is accurate, as long as the system model and the fault specifications are 

accurate. It is recommended to perform V&V activities to verify that the system model and the 

extended system model accurately represent the intended behaviour. 

 

Scalability and computational 

[GAPM-MBI03] The automated analysis, in presence of a high number of faults, may be subject to the 

state-explosion problem, impacting the effectiveness of verification. 

 

Deployment 

[GAPM-MBI04] The method is well supported by tools such as xSAP and COMPASS However, these 

tools cover the phase of architectural design and the highest levels of behavior specifications; they 

are not suitable for deployment to the target HW. 

 

Learning curve 

[GAPM-MBI05] The method requires model-based design skills, as well as safety expertise. 

 

Lack of automation 

No relevant gap or limitation has been identified, since the model extension is fully automated. The 

method requires the user to specify a set of faults, taken from the fault library, to be injected into the 

system model. The library of faults is fully general; if needed, additional user-defined faults can be 

added. 

 
 
Reference environment 

No gap is envisaged since the method may be applied at development level in TRL6-7 environments 

and prototypes. 

 
 
Costs 

The xSAP [MBI1] and OCRA [MBI2] tools are freely available for non-commercial applications. The 

COMPASS tool [MBI3, MBI4] is freely available for ESA member states. 

 

Standards 

[GAPM-MBI06] The method is conceived to fulfil safety standards (e.g., ECSS, EN 50129, SAE-ARP-

4754, SAE-ARP-476). It has to be verified in VALU3S if the method is suitable for the specific medical 

and agriculture domains (e.g., CEI EN 62304, ISO 14971, IEC 61508, ISO 26262). 

 

References 
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3.1.2.4 Model-Implemented Fault Injection 

Name of the method: Model-implemented Fault Injection 

Short description  

In this method, the faults are injected in the model of the system under test (SUT) [MIF01]. MATLAB 

and LabVIEW are examples of tools used to build such system models. This method is used to verify 

and validate the system’s capability to handle faults. The fault handling includes attributes such as 

fault detection, correction, or fallback with or without the fault handling mechanisms implemented. 

This type of fault injection method is used for the system’s evaluation at early design stages [MIF02]. 

 

Limitations 

Functionality 

[GAPM-MIF01] The method can be improved by adding techniques such as pre-injection analysis 

and post-injection analysis [MIF03] [MIF04] [MIF05] [MIF06] to reduce the number of the tests and 

still get the same or improved results in terms of time, cost and effort. Pre-injection analysis is done 

before any fault injection experiments are performed while post-injection uses the results of previous 

fault injection experiments.   

[GAPM-MIF02] Adding more fault models will increase the functionality of the method.  

 

Accuracy 

[GAPM-MIF03] The accuracy of the method depends on the accuracy of the modelled faults and 

systems. 

Since the model of the system might not accurately represent the real system in a real environment, 

V&V activities (acceptance tests) are recommended to be performed in a later development stage. 

 

Scalability and computational 

[GAPM-MIF04] Exhaustive fault injection or full system monitoring may require a lot of 

computational resources depending on the complexity of the target system and its environment. 
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Deployment 

[GAPM-MIF05] The model-implemented fault injection method is not feasible for final 

implementations of systems. 

[GAPM-MIF06] The method must be adapted for the simulation tool environment used, e.g., 

MATLAB toolboxes and MATLAB versions used. 

 

Learning curve 

[GAPM-MIF07] The method requires knowledge and skills regarding the simulation tool 

environment, e.g., MATLAB/SIMULINK skills. 

 

Lack of automation 

[GAPM-MIF08] The configuration of fault injection campaigns and result analysis are done manually. 

   

Reference environment 

[GAPM-MIF09] This method is only applicable for the simulation environment. 

 
 
Costs 

[GAPM-MIF10] Software such as MATLAB/SIMULINK is not opensource and needs investments. 

[GAPM-MIF11] There is also some cost involved in terms of time when conducting model 

implemented fault injection. For example, exhaustive fault injection or full system monitoring 

increases the cost of verification and validation. 

 

Standards 

No relevant gap or limitation has been identified. The requirements of the standards which this 

method fulfils are ISO 2626, IEC 62061, IEC TR 63074, ISO PAS 21448, ISO 13849, IEC 61508, ISO/IEC 

TR 24028:2020, ISO/IEC WD 23053. 
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3.1.2.5 Simulation-Based Fault Injection at System-level 

Name of the method: Simulation-Based Fault Injection at System-level 

Short description 

Simulation-based Fault Injection at System-level provides an opportunity of injecting faults on the 

system level [SFI01]. The complete system behaviour can be analysed when a certain sub-system is 

under the influence of faults. This method could span over various tools such as SUMO (Simulation 

of Urban Mobility) [SFI02], CARLA (autonomous driving simulator) [SFI03], and VEINS (vehicular 

network simulator) [SFI04], allowing different aspects of the system to be evaluated.  

 

Limitations 

Functionality 

[GAPM-SFI01] More features can be added in the method functionality such as improving the 

representativeness of both fault models and simulated systems.  

[GAPM-SFI02] Moreover, pre-injection and post-injection techniques [SFI05] [SFI06] [SFI07] can also 

be used to improve the functionality. 

 

Accuracy 

[GAPM-SFI03] Modelling of a system in a simulation environment might not accurately represent 

the real system in a real environment. So, the V&V activities are also recommended to be performed 

on a real system.   

 

Scalability and computational 

[GAPM-SFI04] Exhaustive fault injection, full system monitoring may require a lot of computational 

resources. 

[GAPM-SFI05] Selecting complex and more realistic scenarios for fault injection may also require 

high computational resources. 

[GAPM-SFI06] The simulation tools with intensive 3D simulations (which is in line with this 

method implementation) often requires 3D rendering and that cannot be accomplished without 

GPUs and increased processing power. This poses challenges on scalability and computational 

power. 

 

Deployment 

[GAPM-SFI07] The method must be adapted for the simulation tools, such as SUMO, CARLA, and 

VEINS, and the tools versions used. 
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Learning curve 

[GAPM-SFI08] The method requires knowledge of traffic simulators and skills to use. 

 

Lack of automation 

[GAPM-SFI09] The test configuration and result analysis are done manually. 

 
 
Reference environment 

[GAPM-SFI10] This method is only applicable for the simulation environment. 

 
 
Costs 

[GAPM-SFI11] That could depend on the type of simulator required for the V&V of the specific 

system requirements, e.g., proper system test for CARLA could costs a bit in terms of hardware and 

processing.  

[GAPM-SFI12] Fault injection is also time consuming which could increase the cost depending on 

how we want to do it, e.g., running exhaustive fault injection experiments.  

[GAPM-SFI13] The time could be reduced if experiments could be run in parallel on the expense of 

the hardware increase which increases the cost factor. 

 

Standards 

No relevant gap or limitation has been identified. The requirements of the standards which this 

method fulfils are ISO 26262, IEC 62061, IEC TR 63074, ISO PAS 21448, ISO 13849, IEC 61508, ISO/IEC 

TR 24028:2020, ISO/IEC WD 23053 

 

References 

• [SFI01] M.-C. Hsueh, T.K. Tsai, and R.K. Iyer, “Fault Injection Techniques and Tools,” Computer, 

vol. 40, no. 4, pp. 75-82, Apr. 1997. 

• [SFI02] S. Jha et al., “AVFI: Fault Injection for Autonomous Vehicles,” in Proc. 2018 48th Annual 

IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-

W), pp. 55–56. 

• [SFI03] Michael Behrisch, Laura Bieker et al., “SUMO – Simulation of Urban Mobility, An 

Overview”, Institute of Transportation Systems, German Aerospace Center, Rutherfordstr. 2, 

12489 Berlin, Germany. 

• [SFI04] Veins - Vehicles in Network Simulation, http://veins.car2x.org 

• [SFI05] B. Sangchoolie, F. Ayatolahi, R. Johansson and J. Karlsson, "A Comparison of Inject-on-

Read and Inject-on-Write in ISA-Level Fault Injection," 2015 11th European Dependable 

Computing Conference (EDCC), Paris, 2015, pp. 178-189. 

• [SFI06] Czeck, Edward W. and Daniel P. Siewiorek. “Observations on the Effects of Fault 

Manifestation as a Function of Workload.” IEEE Trans. Computers 41 (1992): 559-566. 

• [SFI07] Folkesson P., Karlsson J. (1999) Considering Workload Input Variations in Error Coverage 

Estimation. In: Hlavička J., Maehle E., Pataricza A. (eds) Dependable Computing — EDCC-3. 

EDCC 1999. Lecture Notes in Computer Science, vol 1667. Springer, Berlin, Heidelberg. 
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3.1.2.6 Software-Implemented Fault Injection 

Name of the method: Software-Implemented Fault Injection 

Short description  

The method [FIN1] emulates representative faults through the insertion of errors in computer 

systems and/or components using software means. The errors inserted must reproduce similar 

conditions observed in the field when real faults of different types occur. Existing tools (e.g., 

ucXception [FIN2]) basically emulate two types of faults: hardware transient faults (bit flips) and 

software faults (most frequent types of bugs found in field studies [FIN3]). 

 

Limitations 

Functionality 

[GAPM-FIN01] As it often happens in injection approaches, fault coverage is a limitation. It may 

happen that the injected faults are not a representative sample of all possible faults. 

[GAPM-FIN02] The used fault models should be realistic and represent faults that the system may 

experience. It could be difficult to prove that is the case. 

[GAPM-FIN03] Inherent intrusiveness of the tool as the fault injection tool may skew the results. 

 

Accuracy 

[GAPM-FIN04] The accuracy of the method is dependent on the realism of the fault models. The fault 

types injected must be representative of real faults. 

 

Scalability and computational 

No relevant gap or limitation has been identified. 

 

Deployment  

[GAPM-FIN05] Tools always require some customization to be used in a given target system. 

 

Learning curve 

[GAPM-FIN06] Requires specific knowledge on fault injection and a good knowledge and a detailed 

knowledge on the target system details. 

 

Lack of automation 

The method is largely automatic. 

 
 
Reference environment 

[GAPM-FIN07] It requires a prototype or a real system. 

 
 
Costs 

[GAPM-FIN08] They could be moderate/high due to specialized knowledge required. 
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Standards 

No relevant gap or limitation has been identified. The method can be used in the context of the 

following standards: ISO 26262, IEC 62061, IEC TR 63074, ISO PAS 21448, ISO 13849, IEC 61508, 

ISO/IEC TR 24028:2020, ISO/IEC WD 23053 

 

References 

• [FIN1] R. Natella, D. Cotroneo, and H. Madeira, “Assessing Dependability with Software 

Fault Injection: A Survey”, ACM Computing Surveys, Volume 48 Issue 3, February 2016. 

• [FIN2] F. Cerveira, R. Barbosa, H. Madeira and F. Araújo, "The Effects of Soft Errors and 

Mitigation Strategies for Virtualization Servers," in IEEE Transactions on Cloud Computing, 

doi: 10.1109/TCC.2020.2973146 

• [FIN3] João A. Durães and Henrique S. Madeira “Emulation of Software Faults: A Field Data 

Study and a Practical Approach”, IEEE Transactions on Software Engineering, vol. 32, no. 11, 

pp. 849-867, November 2006. 

 

3.2 Simulation 

This sub-group of methods describes the simulation-based V&V of selected properties. By the 

systematic development and exploitation of models, simulation-based approaches enable the 

automated execution of validation scenarios at early design phases of a project. Simulation focuses on 

the use of models that behave or operate like a given system to predict how the system would respond 

to defined inputs. 

3.2.1 Simulation-Based Robot Verification 

Name of the method: Simulation-Based Robot Verification 

Short description  

Simulation-Based Robot Verification is proposed to assure a robots’ safety. This method aims to 

decrease the cost of failures of robots before implementing them in real-world applications. At the 

same time, the method aims to prevent possible accidents and to avoid possible loss of life and 

properties by verifying the safety of systems.  

  

Limitations 

Functionality 

[GAPM-SBV01] Simulation based robot verification method only accepts files in STL and DAE 

formats as CAD data. In this case, many features of CAD data cannot be used in Simulation 

environments such as colouring, etc. 

 

Accuracy 

[GAPM-SBV02] When a robot tested in a simulation environment is implemented in the real world, 

there may be some situations where simulation does not give the same results. The reason is that the 

physics engines of the simulations cannot meet the real world at 100 %. For this reason, when the 
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weights of the real-world model are entered, the error rate in the robot's controls increases and 

accuracy decreases. This situation may pose a risk for robotic applications which are critical for 

human life such as surgical robots. 

 

Scalability and computational 

[GAPM-SBV03] High processor power and RAM are needed to run complex models in Simulation-

based Fault injection. Since the processing load on the CPUs may increase in various simulation 

applications, a large amount of processing power may be needed to implement this method in 

complex simulation applications. This situation creates a limit in terms of computational and 

scalability. For instance, due to the complex simulation of body-in white system of OTOKAR’s use 

case, this kind of problem might occur. 

 

Deployment 

No relevant gap or limitation has been identified. 

 

Learning curve 

[GAPM-SBV04] Method implementation requires the base knowledge about ROS, Gazebo, Python 

language. 

 

Lack of automation 

No relevant gap or limitation has been identified. 

 
 
Reference environment 

[GAPM-SBV07] The method is applied in simulation. It may require an adaptation to apply it in other 

environments. 

 
 
Costs 

[GAPM-SBV05] When using this method, a large amount of hardware resources might be required 

depending on the number of tests to be performed. 

 

Standards 

No relevant gap or limitation has been identified. 

 

References 

• [SBV1] Timperley, C. S., Afzal, A., Katz, D. S., Hernandez, J. M., & Le Goues, C. (2018, April). 

Crashing simulated planes is cheap: Can simulation detect robotics bugs early? In 2018 IEEE 

11th International Conference on Software Testing, Verification and Validation (ICST) (pp. 

331-342). IEEE. 

 

3.2.2 Simulation-Based Testing for Human-Robot Collaboration 

Name of the method: Simulation-Based Testing for Human-Robot Collaboration 
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 Short description  

Test-based simulation for human-robot collaboration provides the opportunity to evaluate the 

feasibility and performance of the system. Simulation allows evaluating particularly the layout or 

workplace planning, production reliability and, especially, the safety and efficiency of human-robot 

collaboration. 

 

Limitations 

Functionality 

[GAPM-SBT01] The method is missing an oracle of the Human-Robot Collaboration part that will 

provide real time diagnosis for the interaction between human and robots. This is especially 

important in the UC7: Human-Robot Collaboration in a Disassembly Process with Workers with 

Disabilities, where a diagnosis is required for the interaction between disabled humans and robots in 

a manufacturing and disassembly domain. 

 

Accuracy 

[GAPM-SBT02] The accuracy of the simulation is a limitation as it can varies compared to real 

behaviour. 

 

Scalability and computational  

[GAPM-SBT03] Simulation tools that use constraint-based modelling for assertion require much 

computational power and limit real-time applications. 

 

Deployment 

No relevant gap or limitation has been identified. 

 

Learning curve 

No relevant gap or limitation has been identified. 

 

Lack of automation 

No relevant gap or limitation has been identified. 

 

Reference environment 

[GAPM-SBT04] This method is applied in simulation. 
 
Costs 

No relevant gap or limitation has been identified. 

 

Standards 

No relevant gap or limitation has been identified. 

 

References 
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3.2.3 Test Optimization for Simulation-Based Testing of Automated Systems 

Name of the method: Test Optimization for Simulation-Based Testing of Automated Systems 

Short description 

The objective of test optimization is to cost-effectively test a system, i.e., reduce the cost of testing a 

system while the overall test quality is maintained. Test optimization could include test case selection, 

test case minimization, test case prioritization, etc. Test optimization could be also obtained using 

automatic test case generation: the process of generating test suites for a particular system.  

 

Limitations 

Functionality 

No relevant gap or limitation has been identified. 

 

Accuracy 

No relevant gap or limitation has been identified. 

  

Scalability and computational 

[GAPM_TOS01] In order to apply the method to a new domain or scenario, empirical evaluation may 

be required.  

[GAPM_TOS02] In order to apply the method to a new domain or scenario, to gather enough 

historical data may be required.  

 

Deployment 

[GAPM_TOS03] The method works mainly in Simulation environments. It may require an adaptation 

when the simulation tool used is changed.   

 

Learning curve 

No relevant gap or limitation has been identified. 

 

Lack of automation 

No relevant gap or limitation has been identified. 

 

Reference environment 

[GAPM_TOS04] The method is applied in Simulation. It may require an adaptation to apply it in 

other environments, for example using the real robot. 

 

Costs 

No relevant gap or limitation has been identified. 

 

Standards 

No relevant gap or limitation has been identified. 

 

References 
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• [TOS1] A. Arrieta, S. Wang, G. Sagardui, L. Etxeberria. “Search-Based Test Case Prioritization 

for Simulation-Based Testing of Cyber-Physical System Product Lines” in Journal of Systems 

and Software. Volume 149, 2019, Pages 1-34, ISSN 0164-1212, 

https://doi.org/10.1016/j.jss.2018.09.055. 

• [TOS2] A. Arrieta, S. Wang, U. Markiegi, G. Sagardui, L. Etxeberria. “Employing Multi-

Objective Search to Enhance Reactive Test Case Generation and Prioritization for Testing 

Industrial Cyber-Physical Systems” in IEEE Transactions on Industrial Informatics, vol. 14, 

no. 3, pp. 1055-1066, March 2018, doi: 10.1109/TII.2017.2788019. 

• [TOS3] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Ainhoa Arruabarrena, Leire Etxeberria, 

Goiuria Sagardui, Pareto efficient multi-objective black-box test case selection for simulation-

based testing, Information and Software Technology, Volume 114, 2019, Pages 137-154, ISSN 

0950-5849, https://doi.org/10.1016/j.infsof.2019.06.009. 

• [TOS4] A. Arrieta, S. Wang, U. Markiegi, G. Sagardui and L. Etxeberria, "Search-based test 

case generation for Cyber-Physical Systems," 2017 IEEE Congress on Evolutionary 

Computation (CEC), San Sebastian, 2017, pp. 688-697, doi: 10.1109/CEC.2017.7969377. 

• [TOS5] Arrieta, A., Shuai Wang, Ainhoa Arruabarrena, Urtzi Markiegi, G. Mendieta and L. 

Etxeberria. “Multi-objective black-box test case selection for cost-effectively testing 

simulation models.” Proceedings of the Genetic and Evolutionary Computation Conference 

(2018). 

 

3.2.4 Virtual Architecture Development and Simulated Evaluation of Software 

Concepts 

Name of the method: Virtual Architecture Development and Simulated Evaluation of Software 

Concepts 

Short description 

The method deals with the efficient and reliable prototyping of complex systems involving cross-

domain aspects by integrating heterogeneous components within holistic testing scenarios subject 

to goal-specific model fidelity and by systematically evaluating properties of interest in self-

contained virtual runtime environments. It enables the automated generation, deployment, 

execution, and evaluation of test scenarios and test cases for early design verification and 

simulation of cross-domain systems with heterogeneous simulation models and network models.  

 

Limitations 

Functionality  

[GAPM-VAD01] For the application of the method in new use cases, connectors for additional 

communication protocols and simulation component types might need to be added. 

[GAPM-VAD02] For the design of virtual validation scenarios system-level model architecture has to 

be defined in detail prior to the implementation and adoption. 

 

Accuracy 

https://doi.org/10.1016/j.jss.2018.09.055
https://doi.org/10.1016/j.infsof.2019.06.009


Identified gaps and limitations of the V&V methods listed in D3.1 

ECSEL JU, grant agreement No 876852.  43 

[GAPM-VAD03] The accuracy of virtual validation and simulation scenarios depends on the accuracy 

of the underlying simulation and behaviour model. There is a trade-off between accuracy on the one 

hand and simulation speed, resource consumption, and effort for constructing simulation models on 

the other hand. 

 

Scalability and computational 

[GAPM-VAD04] The scalability of the validation approach is related to the maximum available time 

for executing simulation scenarios and single simulation steps. When real time components are 

connected, the real time represent the upper boundary for the execution of the simulation scenarios, 

method is scalable considering the trade-off between accuracy and performance of the simulation. 

[GAPM-VAD05] The simulation scenario can be deployed to multiple hosts to enable a distributed 

execution. The number of hosts is limited to 1000. The performance of the validation framework is 

influenced by the number of hosts due to the communication and synchronization overhead. 

 

Deployment 

[GAPM-VAD06] The deployment of simulation components to host nodes requires the development 

or adaptation of platform-specific connectors, which depend on component type, communication 

protocols, and operating system.  FERAL comprises a library of existing and available platform-

specific connectors, which is continuously updated and extended. 

[GAPM-VAD07] Host node shall run Windows or Linux operating systems, preferably in 64-bit 

mode. 

[GAPM-VAD08] Host node must support Java version 11 or higher. 

 

Learning curve 

[GAPM-VAD09] The learning curve depends on the concrete activities. The actual use and execution 

of simulation scenario is trivial and easy to learn. The construction of new simulation scenarios and 

the extension of existing scenarios is rather complex and requires some learning. The design of new 

simulation models and components requires the understanding of detailed method and tool insights, 

especially of the FERAL kernel and messaging paradigm.  

 

Lack of automation 

[GAPM-VAD10] The implementation of the method in the FERAL tool framework is partially 

automated. Currently, the execution of simulation scenarios and the recording of data flows through 

the interfaces are fully automated. Further steps involved manual activities, such as the construction 

of simulation models, the definition and configuration of simulation scenarios, and the deployment 

of simulation components to host nodes. The evaluation of use-case specific properties can be 

automated by developing corresponding data processing and reporting engines. 

 
 
Reference environment 

[GAPM-VAD11] Simulation is supported on pure model level, the called Model-in-the-Loop Test 

(MiL), on software level, the so-called Software-in-the-Loop Test (SiL), and for virtual hardware 

platforms, i.e. processor and network models to which the software components can be deployed in 

a virtual Hardware-in-the Loop (vHil) simulation. 
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Costs  

[GAPM-VAD12] For academic use and evaluation purposes, dedicated evaluation licenses are 

provided. For commercial use, customer-specific commercial licenses have to be purchased.  

 

Standards 

[GAPM-VAD13] FERAL is applied in development projects for technical applications from different 

domains that consider specific process standards, such as IEC 61508 or ISO 26262. Nevertheless, 

FERAL is not qualified or operationally proven to be used in official release processes and audits 

with certification authorities. 

 

References 

• [MVV1] T. Kuhn, T. Forster, T. Braun, R. Gotzhein: Feral - framework for simulator coupling 

on requirements and architecture level. In: ACM/IEEE MEMOCODE, pp. 11–22, 2013 

• [MVV2] P. Oliveira Antonino, J. Jahic, B. Kallweit, A. Morgenstern, T. Kuhn: Bridging the 

Gap between Architecture Specifications and Simulation Models. International Conference 

on Software Architecture (ICSA) Companion: 77-80, 2018 doi: 

http://dx.doi.org/10.1109/ICSA-C.2018.00029 

• [MVV3] A. Bachorek, F. Schulte-Langforth, A. Witton, T. Kuhn, P. Oliveira Antonino: 

Towards a Virtual Continuous Integration Platform for Advanced Driving Assistance 

Systems. International Conference on Software Architecture (ICSA) Companion, 61-64 

(2019),  doi: http://dx.doi.org/10.1109/ICSA-C.2019.00018 

 

3.2.5 Virtual & Augmented Reality-Based User Interaction V&V and Technology 

Acceptance 

Name of the method: Virtual & Augmented Reality-Based User Interaction V&V and Technology 

Acceptance 

Short description 

This is a method aimed at involving the end-user early in the validation process. Human factors, 

technology acceptance, and trust can be tested even before the system/robot is fully implemented by 

using virtual/augmented reality simulation and robot simulator [VUR1] [VUR2]. 

 

Limitations 

Functionality 

[GAPM-VUR01] The simulation of the interaction between the end-user and the system/robot may 

be difficult to implement depending on the tasks to be performed and the level or realism desired.  

 

Accuracy 

[GAPM-VUR02] This method relies on the accuracy of the system/robot simulation with which the 

end-user interacts and the realism of the human-robot interaction. 

 

http://dx.doi.org/10.1109/ICSA-C.2019.00018
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Scalability and computational 

[GAPM-VUR03] The method is designed to be used in a distributed environment in which each 

component can run in dedicated hardware. Different simulators can be combined in the same 

distributed simulation, so scalability will depend on the individual simulators used. 

 

Deployment 

[GAPM-VUR04] Deployment can be complex if the method is planned to be used in the end-user 

facilities using augmented reality. Using virtual reality to recreate the facilities can also be complex 

and time consuming due to the need for creating realistic 3D of the facility. 

 

Learning curve 

[GAPM-VUR05] It requires specific knowledge about networking and virtual reality/augmented 

reality development. In the application of the method used as reference, it requires knowledge about 

Unity3D and MQTT. 

 

Lack of automation 

[GAPM-VUR06] This type of method requires participation of the end-users in order to obtain useful 

data. 

 
 
Reference environment 

[GAPM-VUR07] This method is applied in a simulation environment, with the corresponding 

limitations (real-world representativeness, etc.) 

 
 
Costs 

[GAPM-VUR08] The virtual/augmented reality simulator has to be implemented from scratch. Thus, 

cost may be high depending on the requirements. 

 

Standards 

No relevant gap or limitation has been identified. 

 

References 

• [VUR1] Belmonte, L.; Garcia, A.S.; Segura, E.; Novais, P.J.; Morales, R.; Fernandez-Caballero, 

A.  Virtual Reality Simulation of a Quadrotor to Monitor Dependent People at Home. IEEE 

Transactions on Emerging Topics in Computing, 2020. doi:10.1109/TETC.2020.30003. 

• [VUR2] Belmonte, L.M.; García, A.S.; Morales, R.; de la Vara, J.L.; López de la Rosa, F.; 

Fernández-Caballero, A. Feeling of Safety and Comfort towards a Socially Assistive 

Unmanned Aerial Vehicle That Monitors People in a Virtual Home. Sensors 2021, 21, 908. 

doi: 10.3390/s21030908. 

 

3.2.6 V&V of Machine Learning-Based Systems Using Simulators 

Name of the method: V&V of Machine Learning-Based Systems Using Simulators 
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Short description 

The traditional methods for V&V of a rule-based system are not effective for testing fuzzy machine 

learning-based models. Hence, for safety reasons these models are initially tested in simulators where 

the gap between the simulated environments and the real-world environments are being minimized. 

 

Limitations 

Functionality 

[GAPM-VVM01] Uncertainty in behaviour of machine learning-based systems. 

[GAPM-VVM02] Traditional rule-based methods not being efficient in testing Machine Learning 

(ML) systems. 

 

Accuracy 

[GAPM-VVM03] ML algorithm’s correct behaviour cannot be guaranteed by traditional software 

engineering approaches. Using simulators in V&V for ML will enable generation of annotated INFOR 

datasets. However, the accuracy limitations exist since data generated from sensor models in 

simulator does not represent data from real sensors. [VVM1] 

[GAPM-VVM04] Gap between test methods and evaluation criteria in real world and simulator and 

the test coverage of scenarios. 

 

Scalability and computational 

[GAPM-VVM05] Coverage of scenario. Only few tests can be done on a real-world track. Using a 

simulator, we can test several instances of a model at the same time. 

 

Deployment 

[GAPM-VVM06] Lack of industrial standard or systematic approach to integrate simulation into 

CI/CD pipeline. 

 

Learning curve  

[GAPM-VVM07] Lack of knowledge about corner cases for test purposes. As Some preliminary 

knowledge is required to properly use a simulator 

[GAPM-VVM08] Lack of mature process for V&V of ML models. As Some preliminary knowledge is 

required of how to perform V&V for ML-based systems. 

 

Lack of automation 

[GAPM-VVM09] Lack of automated tools for generating test cases and data of realistic sensor 

responses of real-world environment. 

 
 
Reference environment 

No relevant gap or limitation has been identified. 

 
 
Costs 
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[GAPM-VVM10] Modelling the real world in simulators requires manual intervention and is 

therefore time-consuming and expensive. 

[GAPM-VVM12] Real-world testing raises safety and ethical issues for test participants. 

[GAPM-VVM13] Open-source community working with these methods is limited and the quality of 

the software is not comparable with the commercial alternatives. 

 

Standards 

[GAPM-VVM11] ISO26262 (functional safety) does not take ML into account while SOTIF (ISO 21448) 

is still in the development that comes with argumentations of ML based system to meet the safety 

requirements for critical applications. 

 

References  

• [VVM1] A. Ngo, M. P. Bauer, and M. Resch, “A Sensitivity Analysis Approach for Evaluating a 

Radar Simulation for Virtual Testing of Autonomous Driving Functions,” arXiv:2008.02725 [cs, 

eess], Oct. 2020, Accessed: Mar. 10, 2021. [Online]. Available: http://arxiv.org/abs/2008.02725. 

 

3.3 Testing 

This group of methods focuses on validating a system by executing it in the frame of so-called test cases. 

At least, a test case contains two fundamental sets of information: input data to be provided to the 

System Under Test (SUT), and a description of the expected output or behaviour. In order to execute a 

test case, an environment is used that allows to feed the SUT with the input data in a controlled manner, 

as well as to monitor its reactions. 

3.3.1 Behaviour-Driven Model Development and Test-Driven Model Review 

Name of the method: Behaviour-Driven Model Development and Test-Driven Model Review 

Short description  

Uses automated model testing, test case generation and scenario review to ensure the correctness of 

behaviour models.  

 

Limitations 

Functionality 

No relevant gap or limitation has been identified. 

 

Accuracy 

[GAPM-MBT03] (Inherited from the used part-method Model-Based Testing, see section 3.3.6)  

The quality of the generated tests depends not only on the model and the tool, but also on the 

coverage criterion used to drive the generation of the tests. Tests generated to achieve control flow 

coverage reach a location in the system code where a problem could happen, but do not follow 

http://arxiv.org/abs/2008.02725
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through to a point where the problem would become observable on the outside interface. For this, 

data flow coverage or mutation coverage would be needed. 

For the integration in this method, this might lead to model behaviour that is not reviewed. 

 

Scalability and computational  

[GAPM-MBT04] (Inherited from Model-Based Testing, see section 3.3.6)   

Conceptually, MBT uses enumerative or symbolic search over a state space. More complex systems 

have exponentially growing state spaces. Compared to, e.g., Model Checking, it does not necessarily 

need to cover the complete state space. Instead, it is sufficient to reach the requested coverage of the 

given model, but in the worst case, searching for this can take as long as full state space coverage. 

Various heuristics exist when to end the search but are rarely compared in detail. Method support to 

select a fitting heuristic based on the given model could mitigate this problem.  

 

Deployment  

[GAPM-BHM01] Only limited and no integrated tool support for Behaviour-Driven Model 

Development and Test-Driven Model Review is available yet. 

 

Learning curve  

If the tests used for model review shall also be used to test the implementation: 

[GAPM-MBT08] (Inherited from Model-Based Testing, see section 3.3.6) 

Behaviour models usable for MBT need to be (semi-)executable to generate tests. But to generate tests 

that reflect the requirements (what shall be done), there should be as little as possible how it is done 

– otherwise the generated tests would be more specific than the requirements and implementations 

under test might not pass the tests despite being perfectly in line with the requirements. This is hard 

to learn and get right. A method/guideline and/or tool support to find a reasonable balance of 

executability and abstraction might help. 

[GAPM-MBT09] (Inherited from Model-Based Testing, see section 3.3.6) 

 Building behaviour models usable for MBT requires some additional knowledge and experience to 

correctly capture the test interface. A method/guideline and/or tool supporting the test interface 

definition might help. 

For the integration in this method, this is also important for the communication between modelling 

expert and domain expert. 

 

Lack of automation  

[GAPM-BHM02] As of now, no recommender support for the modelling expert to better fit the given 

behaviours to be model is available. 

 
 
Reference environment  

No relevant gap or limitation have been identified. 

 
 
Costs 

[GAPM- BHM03] (Related to GAPM-MBT11 from the used part-method Model-Based Testing, see 

section 3.3.6): 
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Hardware Costs: Adding test case generation to modelling might need investment in dedicated test 

case generation equipment.  

[GAPM- BHM04] If the used test case generation approach produces more tests than necessary to 

cover all the functionality, review efforts might become infeasibly high. 

[GAPM- BHM05] Process change – investment: Replacing an established process is a considerable 

effort. 

 

Standards  

The used base method Model-Based Testing is highly recommended for SIL3/4 by IEC 61508. 

No gaps related to standards known. 

 

References  

 

3.3.2 Assessment of Cybersecurity-Informed Safety 

Name of the method: Assessment of Cybersecurity-Informed Safety 

Short description: 

Black-box testing for security-informed safety of automated driving systems [ACS1]. To support 

black-box testing (that is testing without knowing the internal workings of the test object, see e.g. 

[ACS2]) as part of an independent evaluation, with the aim of producing an understanding of the 

interplay between safety and security, enabling a comparison of how well different ADSs can 

withstand safety-relevant security threats. 

 

Limitations 

Functionality  

[GAPM-ACS1] Development of an appropriate test suite for test facilities to assess cybersecurity, 

matching the feature class and sensor setup.  

[GAPM-ACS2] Develop and evaluating a coverage measure for a cybersecurity teste suite. 

[GAPM-ACS3] Capturing of post-attack behaviour and co-simulation with critical traffic scenarios to 

evaluate safety criteria need to be developed. 

 

Accuracy  

[GAPM-ACS4] Validity, and a measure thereof, for co-simulation of post-attack behaviour with 

critical traffic scenarios to evaluate safety criteria need to be investigated.  

 

Scalability and computational  

[GAPM-ACS5] This is an aspect that needs further investigation for the method that depends on the 

needed validity and successfulness of limiting the combinatorial state explosion in scenario-based 

testing.  

 

Deployment  
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The goal of the investigation is limited to a small assessment test where a small test batch that can be 

shown to be representative for a whole class of ADS features, mainly to show feasibility and efficacy 

gains.  

[GAPM-ACS6] Integration with test track infrastructure is needed.  

 

Learning curve  

[GAPM-ACS7] Requires high-level multi-disciplinary skill, the slope in the learning curve could be 

lowered by standardized information exchange formats and a more mature product under test. 

 

Lack of automation  

[GAPM-ACS8] Potentially high level of automation but that also puts high requirements on the 

testing infrastructure, not present at this time. 

 
 
Reference environment 

[GAPM-ACS9] The reference environment is real traffic where the vehicle is meant to operate, where 

the validity is hopefully preserved to proving grounds and by extension simulation. It is initially the 

proving ground vs simulation validity that is investigated here. 

 
 
Costs  

No relevant gap or limitation has been identified. 

 

Standards  

No relevant gap or limitation has been identified. Relevant standards are fulfilled: ISO26262, 

ISO21434 and ISO21448. 

 

References 

• [ACS1] Skoglund, M. et al.: Black-Box Testing for Security-Informed Safety of Automated 

Driving Systems, VTS 2021-spring (to appear) 

• [ACS2] Forgács, István; Kovács, Attila (2019). Practical Test Design: Selection of Traditional 

and Automated Test Design Techniques. 

 

3.3.3 Machine Learning Model Validation 

Name of the method: Machine Learning Model Validation 

Short description  

Model validation in machine learning automated systems serves to evaluate how a system performs 

and how safe it is when applied to input data other than the data used to train it. 

 

Limitations 

Functionality 

No relevant gap or limitation has been identified. 
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Accuracy 

[GAPM-MLV01] Machine learning is intrinsically a statistical approach. Therefore, the goal of 

machine learning techniques is generalizing well in most of the cases, accuracy on infrequent 

configurations could be limited. 

[GAPM-MLV02] Machine learning validation works well if the data are representative of the real 

situations that may happen in a real-world situation. If the available are limited or if they are not fully 

describing the reality, the accuracy will be lower. 

 

Scalability and computational  

[GAPM-MLV03] If machine learning models are complex, also their application for validation 

purposes could require high computational resources. 

 

Deployment 

No relevant gap or limitation has been identified. 

 

Learning curve  

[GAPM-MLV04] Some knowledge about machine learning is required to properly interpret and 

improve the results. 

 

Lack of automation 

Most validation or cross-validation approaches as well as the tuning of ML model parameters could 

be automated, so automation is usually not an issue. 

 
 
Reference environment 

No relevant gap or limitation has been identified. 

 
 
Costs  

No relevant gap or limitation has been identified since most machine learning tools are freely 

available. 

 

Standards 

No relevant gap or limitation has been identified. 

 

References 

 

3.3.4 Model-Based Mutation Testing 

Name of the method: Model-Based Mutation Testing 

Short description  

Model-based mutation testing is a form of model-based testing. As coverage criterion to drive the test 

case generation, it uses mutations – artificial faults injected into the test model that the generated tests 

must be able to expose. The method shares the limitations of Model-Based Testing. 
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Limitations 

Functionality 

No relevant gap or limitation has been identified. 

 

Accuracy 

[GAPM-MBT01] (Inherited from Model-Based Testing, see section 3.3.6) 

Level of model detail: as a black-box testing method, the method does not use any internal knowledge 

about the implementation, only its requirements and specification as inputs. Thereby, it can only 

systematically test what has been explicitly specified. It might therefore benefit from combinations 

with methods supporting model quality assurance or methods that learn models from operations 

data. 

[GAPM-MBT02] (Inherited from Model-Based Testing, see section 3.3.6)  

Factoring: Well-designed models strive to have each piece of information just in one place. The same 

cannot be guaranteed for an implementation, where bad habits like re-use by copy and paste as well 

as fundamental technical reasons can lead to having the same information in multiple locations. This 

might allow something to go wrong in one location and not in the other. Tests generated from a well-

factored model might assume that having one test reaching a specific state (and potential fault) in the 

system under test is enough. In the implementation, this would then only help finding a problem at 

one of the locations, but not the other. 

[GAPM-MMT01] (Related to [GAPM-MBT03] from Model-Based Testing, see section 3.3.6)  

The quality of the generated tests depends not only on the model and the tool, but also on the 

coverage criterion used to drive the generation of the tests. In case of mutation testing, a badly 

selected set of mutation operators can limit the quality of the generated tests – both by stopping too 

early with a sub-optimal test suite and by not finding all interesting situations because the available 

effort is spent on less interesting situations provoked by too many mutants. 

 

Scalability and computational 

[GAPM-MBT04] (Inherited from Model-Based Testing, see section 3.3.6)  

Conceptually, MBT uses enumerative or symbolic search over a state space. More complex systems 

have exponentially growing state spaces. Compared to, e.g., Model Checking, it does not necessarily 

need to cover the complete state space. Instead, it is sufficient to reach the requested coverage of the 

given model, but in the worst case, searching for this can take as long as full state space coverage. 

Various heuristics exist when to end the search but are rarely compared in detail. Method support to 

select a fitting heuristic based on the given model could mitigate this problem. 

 

Deployment 

This method inherits the typical issues for integrating all Model-Based Testing approaches (See 

section 3.3.6) into a validation workflow: 

[GAPM-MBT05] Without an automated test execution environment, some benefits are limited. E.g. 

re-running multiple tests automatically to generate a failing short test that can be easily analysed, 

does not help if the of the originally failing long test needs to be stepped through manually anyway. 
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[GAPM-MBT06] Existing test execution environments might not fit the needs of tests from MBT (e.g. 

some things might not be observable in the test environment) 

 

Learning curve 

[GAPM-MBT07] (Inherited from Model-Based Testing, see section 3.3.6)  

Building good test models needs a somewhat different skill set than building good tests. Not all good 

testers become also good test modelers. Interpretation of test results is not the same as with manual 

tests. The learning curve can be steep. 

[GAPM-MBT08] (Inherited from Model-Based Testing, see section 3.3.6) 

Behaviour models usable for MBT need to be (semi-)executable to generate tests. But to generate tests 

that reflect the requirements (what shall be done), there should be as little as possible how it is done 

– otherwise the generated tests would be more specific than the requirements and implementations 

under test might not pass the tests despite being perfectly in line with the requirements. This is hard 

to learn and get right. A method/guideline and/or tool support to find a reasonable balance of 

executability and abstraction might help. 

[GAPM-MBT09] (Inherited from Model-Based Testing, see section 3.3.6) 

Building behaviour models usable for MBT requires some additional knowledge and experience to 

correctly capture the test interface. A method/guideline and/or tool supporting the test interface 

definition might help. 

 

Lack of automation  

GAPM-MBT10] (Inherited from Model-Based Testing, see section 3.3.6) 

Building the test model is not easily automatable. 

 
 
Reference environment 

No relevant gap or limitation have been identified. 

 
 
Costs 

[GAPM-MBT11] (Inherited from Model-Based Testing, see section 3.3.6)  

Hardware Costs: Shifting from personnel efforts to automation for test design for complex systems 

might need investment in dedicated test case generation and/or execution hardware equipment.  

[GAPM-MBT12] (Inherited from Model-Based Testing, see section 3.3.6) 

Human Resources: The effort of creating a test model is often seen as an otherwise unnecessary effort. 

It can be balanced with reduced test design efforts, but in situations where the benefits of repeated 

test case generation cannot be reaped for some reason, overall efforts might go up. Combining with 

methods for “model play-in” could reduce the problem. 

[GAPM-MBT13] (Inherited from Model-Based Testing, see section 3.3.6)  

Process change – investment: Replacing an established testing process with MBT is a considerable 

effort for a development/testing team. 

 

Standards 

The base method Model-Based Testing is highly recommended for SIL3/4 by IEC 61508. 

No gaps related to standards known. 
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Potential gaps regarding certification, depending on tool implementations: 

[GAPM-MBT14] (Inherited from Model-Based Testing, see section 3.3.6)  

For certification, it is usually necessary to demonstrate why the test cases are there – therefore, an 

implementation of the method should provide sufficient traceability to link successful tests as 

evidence to the fulfilment of requirements. 

[GAPM-MBT15] (Inherited from Model-Based Testing, see section 3.3.6)  

For re-certification of new releases of a software, as little tests as possible should be changed, since 

all changed (new, modified and removed) tests would need to be re-evaluated in a review. 

 

References 

 

3.3.5 Model-Based Robustness Testing 

Name of the method: Model-Based Robustness Testing 

Short description 

This method uses a behaviour model of the system under test to derive unexpected inputs that can 

be used to check the implementation of the functionality for robustness. 

 

Limitations 

Functionality 

No general gaps known – different tools e.g. smart fuzzing tools have very diverse feature sets. 

 

Accuracy 

No general gaps known – it depends on the exploration algorithms used by a specific 

implementation. 

 

Scalability and computational  

[GAPM-MRT01] For complex systems, it is often just not feasible to run a robustness test suite of the 

size objectively needed. 

 

Deployment 

No relevant gap or limitation has been identified. 

 

Learning curve 

No relevant gap or limitation has been identified. 

 

Lack of automation 

[GAPM-MRT02] Model-Based Robustness Testing feeds the system under test with unexpected input 

stimuli. There are almost endless possibilities to do so. A selection needs to be made which parts shall 

be tested for which unexpected inputs. If the selection is too big, the test will not terminate within a 

reasonable amount of time. The selection needs to be made manually, can get very detailed and needs 

sufficient experience. 
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Reference environment 

No relevant gap or limitation has been identified. 

 
 
Costs 

[GAPM-MRT03] The method depends on the availability of a behaviour model - if this needs to be 

built, personnel effort and costs go up.  

 

Standards 

No relevant gap or limitation has been identified. 

 

References 

 

3.3.6 Model-Based Testing 

Name of the method: Model-Based Testing (MBT) 

Short description  

Model-Based Testing allows the derivation of tests from specification models and thereby automated 

test design. Specification models usually are behaviour models, but for some variants of the method 

can also be models of test scenarios, models of input and output interface and models of invariants. 

 

Limitations 

Functionality  

No relevant gap or limitation has been identified. 

 

Accuracy 

[GAPM-MBT01] Level of model detail: as a black-box testing method, the method does not use any 

internal knowledge about the implementation, only its requirements and specification as inputs. 

Thereby, it can only systematically test what has been explicitly specified. It might therefore benefit 

from combinations with methods supporting model quality assurance or methods that learn models 

from operations data. 

[GAPM-MBT02] Factoring: Well-designed models strive to have each piece of information just in one 

place. The same cannot be guaranteed for an implementation, where bad habits like re-use by copy 

and paste as well as fundamental technical reasons can lead to having the same information in 

multiple locations. This might allow something to go wrong in one location and not in the other. Tests 

generated from a well-factored model might assume that having one test reaching a specific state 

(and potential fault) in the system under test is enough. In the implementation, this would then only 

help finding a problem at one of the locations, but not the other. 

[GAPM-MBT03] The quality of the generated tests depends not only on the model and the tool, but 

also on the coverage criterion used to drive the generation of the tests. Tests generated to achieve 

control flow coverage reach a location in the system code where a problem could happen, but do not 
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follow through to a point where the problem would become observable on the outside interface. For 

this, data flow coverage or mutation coverage would be needed. 

 

Scalability and computational 

[GAPM-MBT04] Conceptually, MBT uses enumerative or symbolic search over a state space. More 

complex systems have exponentially growing state spaces. Compared to, e.g., Model Checking, it 

does not necessarily need to cover the complete state space. Instead, it is sufficient to reach the 

requested coverage of the given model, but in the worst case, searching for this can take as long as 

full state space coverage. Various heuristics exist when to end the search but are rarely compared in 

detail. Method support to select a fitting heuristic based on the given model could mitigate this 

problem. 

 

Deployment  

Typical issues for integrating MBT into a validation workflow are: 

[GAPM-MBT05] Without an automated test execution environment, some benefits are limited. E.g. 

re-running multiple tests automatically to generate a failing short test that can be easily analysed, 

does not help if the of the originally failing long test needs to be stepped through manually anyway. 

[GAPM-MBT06] Existing test execution environments might not fit the needs of tests from MBT (e.g. 

some things might not be observable in the test environment) 

 

Learning curve 

[GAPM-MBT07] Building good test models needs a somewhat different skill set than building good 

tests. Not all good testers become also good test modelers. Interpretation of test results is not the same 

as with manual tests. The learning curve can be steep. 

[GAPM-MBT08] Behaviour models usable for MBT need to be (semi-)executable to generate tests. But 

to generate tests that reflect the requirements (what shall be done), there should be as little as possible 

how it is done – otherwise the generated tests would be more specific than the requirements and 

implementations under test might not pass the tests despite being perfectly in line with the 

requirements. This is hard to learn and get right. A method/guideline and/or tool support to find a 

reasonable balance of executability and abstraction might help. 

[GAPM-MBT09] Building behaviour models usable for MBT requires some additional knowledge 

and experience to correctly capture the test interface. A method/guideline and/or tool supporting the 

test interface definition might help. 

 

Lack of automation 

[GAPM-MBT10] Building the test model is not easily automatable. 

 
 
Reference environment  

No relevant gap or limitation have been identified. 

 
 
Costs 
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[GAPM-MBT11] Hardware Costs: Shifting from personnel efforts to automation for test design for 

complex systems might need investment in dedicated test case generation and/or execution hardware 

equipment.  

[GAPM-MBT12] Human Resources: The effort of creating a test model is often seen as an otherwise 

unnecessary effort. It can be balanced with reduced test design efforts, but in situations where the 

benefits of repeated test case generation cannot be reaped for some reason, overall efforts might go 

up. Combining with methods for “model play-in” could reduce the problem. 

[GAPM-MBT13] Process change – investment: Replacing an established testing process with MBT is 

a considerable effort for a development/testing team. 

 

Standards 

MBT is highly recommended for SIL3/4 by IEC 61508. 

No gaps related to standards known. 

Potential gaps regarding certification, depending on tool implementations: 

[GAPM-MBT14] For certification, it is usually necessary to demonstrate why the test cases are there 

– therefore, an implementation of the method should provide sufficient traceability to link successful 

tests as evidence to the fulfilment of requirements. 

[GAPM-MBT15] For re-certification of new releases of a software, as little tests as possible should be 

changed, since all changed (new, modified and removed) tests would need to be re-evaluated in a 

review. 

 

References 

 

3.3.7 Risk-Based Testing 

Name of the method: Risk-Based Testing 

Short description  

Risk-based testing uses identified risks in a system to prioritize and/or select test execution and 

sometimes even test development/generation. 

 

Limitations 

Functionality 

[GAPM-RBT01] Risk assessment artefacts and results need description in a format and approach that 

allows their usage by automated testing tools. 

 

Accuracy 

[GAPM-RBT02] Prioritization by risk can reduce the remaining risk if test efforts need to be limited, 

but it cannot address the inherent incompleteness of testing. 

[GAPM-RBT03] Risk assessment artefacts and results need to be described on a technical / near 

implementation level in order to be usable for risk-based testing. Current concept level / preliminary 

architecture level assessments are difficult to utilize in testing. 
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Scalability and computational  

No relevant gap or limitation has been identified. 

 

Deployment 

No relevant gap or limitation has been identified. 

 

Learning curve 

No relevant gap or limitation has been identified. 

 

Lack of automation  

[GAPM-RBT04] For security testing, risk-based testing is currently a manual activity, e.g. risk 

assessments results are considered for test planning, but there is no automated linkage from risk 

assessment to testing. 

 
 
Reference environment 

No relevant gap or limitation have been identified. 

 
 
Costs 

No relevant gap or limitation has been identified. Costs highly depend on concrete risk assessment 

and testing approaches. 

 

Standards 

In certification of safety-critical systems, risk-based testing can usually not be used to reduce the sub-

set of tests that is run. It can be used to prioritize test execution for regression tests. 

 

References 

 

3.3.8 Signal Analysis and Probing 

Name of the method: Signal Analysis and Probing 

Short description 

A method to validate signals on an IC based on using a tester setup that probes the IC to measure the 

signals on the chip. These signals are post-processed on the tester by means of complex signal analysis 

in order to assess the SoC’s performance. 

 

Limitations  

Functionality 

[GAPM-SAP01] Without probing, the IC is a black box and intermediate processing stages cannot be 

evaluated. Errors are difficult to track down to the faulty subsystem in the IC. 

 

Accuracy  

[GAPM-SAP02] Insufficient accuracy in testing due to missing intermediate test parameters. 
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Scalability and computational 

No relevant gap or limitation has been identified. 

 

Deployment 

No relevant gap or limitation has been identified. 

 

Learning curve 

[GAPM-SAP03] Interpretation of results at the end of the processing chain is more complex and 

requires a high level of skill to interpret them compared to analysis of intermediate results. 

 

Lack of automation 

No relevant gap or limitation has been identified. 

 
 
Reference environment 

No relevant gap or limitation have been identified. 

 
 
Costs 

[GAPM-SAP04] Error tracking is slow because multiple test runs are required with different 

stimulation patterns to track down a problem. 

 

Standards 

No relevant gap or limitation have been identified. 

 

References 

 

3.3.9 Software Component Testing 

Name of the method: Software Component Testing 

Short description  

Software Component Testing relies on tests on each SW component of the system under test in order 

to find poor and potentially incorrect program structures or failures. It is done at SW unit test and at 

SW units integration stages, which are iterations of tests involving the interfaces of each component 

to be put in the same system. 

 

Limitations 

Functionality 

[GAPM-SCT01] Current tool support is good but not prone to automation. 

 

Accuracy 

No relevant gap or limitation has been identified. 
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Scalability and computational 

No relevant gap or limitation has been identified. 

 

Deployment 

No relevant gap or limitation has been identified. 

 

Learning curve 

[GAPM-SCT02] The method requires good software design and development skills. 

 

Lack of automation 

[GAPM-SCT03] The method requires slight system design, and safety expertise, but the analysis 

results can be mostly automated and can be solidly gathered. 

 
 
Reference environment 

[GAPM-SCT04] The method can be applied in any environment provided that the level of 

development of the component is completed. 

 
 
Costs 

[GAPM-SCT05] Some tools are freely available as open-source software, some other requires quite 

an investment (thousands of euro) to be acquired. 

 

Standards 

No relevant gap or limitations has been identified. 

 

References 

 

3.3.10 Test Parallelization and Automation  

Name of the method: Test Parallelization and Automation 

Short description:  

Complex systems require testing of a huge number of use cases and varieties of parameters. 

Expensive test equipment and time to market requirements demand efficient use of test resources 

and reliable result tracking. 

 

Limitations 

Functionality 

No relevant gap or limitation has been identified. 

 

Accuracy 

[GAPM-TPL01] With thousands of test cases, manual test execution can lead to forgotten tests. 

Computational test administration and scheduling ensures full coverage of defined test plans. 
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[GAPM-TPL02] Visual evaluation of test results makes it difficult to compare large number of test 

results and find correlations or corner cases between test parameters. 

 

Scalability and computational  

[GAPM-TPL03] Manual administration of test resources does not optimize the utilization of the 

available test equipment like computational administration can do. 

 

Deployment 

No relevant gap or limitation has been identified. 

 

Learning curve 

No relevant gap or limitation has been identified. 

 

Lack of automation  

[GAPM-TPL04] Manual administration of test resources (planning, execution, and result evaluation) 

is time consuming, error prone and leads to increased wear of the equipment. 

 
 
Reference environment  

No relevant gap or limitation has been identified. 

 
 
Costs 

[GAPM-TPL05] Manual administration of test resources is time consuming and therefore more costly. 

[GAPM-TPL06] Expensive equipment is required for this method even if it is not used continuously 

24h per day, causing waste of resources. 

[GAPM-TPL07] Time to market is increased cause by long test cycles. 

 

Standards 

No relevant gap or limitation has been identified. 

 

References 

 

3.4 Runtime Verification 

This group of methods focuses on verifying a system during execution. Today's automated systems are 

continuously growing in complexity, notably in what respects to the nature of their distributed 

architectures, the size and number of software components, and the amount of concurrency associated 

with these components. This makes most state-of-the art static verification techniques unscalable and 

impracticable. Runtime verification techniques are lightweight alternatives that make use of monitors, 

build based on formal specifications, that observe the target system and verify at execution time whether 

a set of specifications are met. 
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3.4.1 Dynamic Analysis of Concurrent Programs 

Name of the method: Dynamic Analysis of Concurrent Programs 

Short description  

Dynamic analysis of concurrent programs aims at coping with the inherent non-determinism in 

scheduling concurrent threads (processes or other units of computation) due to which it is difficult 

to catch rarely occurring but often critical bugs in synchronisation. To counter the problem, 

approaches such as extrapolating checkers, systematic exploration of all schedules up to some bound, 

and/or noise injection are used. 

 

Limitations 

Functionality 

[GAPM-DAC01] Approaches based on systematic exploration of schedules have problems with 

operations such as input/output, network communication, etc., which should be repeatedly executed 

with the same effect. Extrapolating checkers do not support all classes of bugs and programming 

constructions. Noise injection is often also optimised for specific classes of bugs and programming 

idioms. In general, there is much less support for multi-process programs than for multi-threaded 

ones. Approaches based on noise injection may be unusable for real-time systems. 

 

Accuracy 

[GAPM-DAC02] Methods of dynamic analysis cannot offer formal guarantees that no bug of the 

given kind is missed. They can be used in less critical applications, during development phases, or in 

scenarios where more accurate approaches fail to scale enough or fail to cover all the needed 

programming constructions. Methods based on extrapolation may produce false alarms. 

 

Scalability and computational 

[GAPM-DAC03] Approaches based on systematic exploration of schedules are in principle less 

scalable than extrapolation or noise injection, and they may fail to scale to truly large systems (though 

they may still be more scalable than heavy-weight formal verification approaches). Monitoring and 

analysing the run of the program under extrapolation-based analysis may also slow down the 

monitored program significantly (the base time can be multiplied from several times to even several 

thousand times). Noise-based injection may slow down the run of the monitored program 

comparably to extrapolation or even more. Despite that, successful applications have been reported 

even for programs of sizes up even millions of lines of code (though tens or hundreds of KLOCs are 

more common) [DAC1, DAC2]. 

 

Deployment 

[GAPM-DAC04] There exist solid tools for systematic exploration of schedules, extrapolation-based 

analysis, as well as noise injection. However, there are not too many of them, and quite some come 

from academia. 

 

Learning curve 
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[GAPM-DAC05] The learning curve is not too steep: to start using techniques of dynamic analysis of 

concurrent programs, no truly special skills are needed. To master the techniques and to achieve the 

maximum possible efficiency, some experience in using them is, however, needed. 

 

Lack of automation 

[GAPM-DAC06] The methods may often be used fully automatically though to ensure the highest 

possible efficiency, they may require the user to suitably set their various parameters (e.g., type and 

strength of noise, etc.). 

 
 
Reference environment 

[GAPM-DAC07] The methods can be applied once some runnable version of the system to be 

analysed is available. A test harness is needed for full automation. 

 
 
Costs 

No relevant gap or limitation has been identified since the approach comes with moderate costs only. 

 

Standards 

[GAPM-DAC08] Not covered by standards. 

 

References 

• [DAC1] Rhodes, D., Flanagan, C., Freund, S.N.: BigFoot: Static Check Placement for Dynamic 

Race Detection. Proc. of PLDI’17, ACM, 2017. 

• [DAC2] Fiedor, J., Muzikovska, M., Smrcka, A., Vasicek, O., Vojnar, T.: Advances in the 

ANaConDA Framework for Dynamic Analysis and Testing of Concurrent C/C++ Programs. Proc. 

of ISSTA’18, ACM, 2018. 

 

3.4.2 Runtime Verification Based on Formal Specification 

Name of the method: Runtime Verification Based on Formal Specification 

Short description  

This method consists in verifying the properties of a system by employing monitors that run 

alongside it. Such properties are usually impractical to verify offline (static formal verification) due 

to either complexity or to the very nature of the information to be verified (e.g., some data that is only 

known during runtime). Such monitors are to be generated automatically by being derived from 

formal specifications provided by the system developer. 

 

Limitations 

Functionality  

[GAPM-RVF01] The correct functional behaviour of monitors is highly dependent on two mains 

aspects: 1) the quality of the data collected for monitors to consume and make decisions; 2) that 

monitors respect the scheduling policy defined for the system they are bound to observe and analyse. 

Moreover, both 1) and 2) are dependent on each other, in the sense that monitors not respecting 



Identified gaps and limitations of the V&V methods listed in D3.1 

64  ECSEL JU, grant agreement No 876852. 

scheduling policies are not guaranteed to reason over the correct set of events, whereas processing 

wrong set of events may cause the monitors to take more time than expected to compute and thus 

break the pre-defined scheduling policy.  

 

Accuracy 

[GAPM-RVF02] The accuracy of the verdicts given by the monitors is heavily dependent on user-

defined specifications. Automating the generation of such monitors could drastically reduce human 

errors by abstracting the use of formal methods to verify a given user-defined specification's 

correctness. 

[GAPM-RVF03] The expressiveness of formal specification languages is notoriously limited. 

Combining multiple languages could partially mitigate the problem, but the accuracy of what needs 

to be specified could be compromised. An important point related to expressiveness is related to the 

limitation of specifying properties only on the observable part of the system or the ability to specify 

assumptions on the system behaviour. Current approaches to assumption-based runtime verification 

[RVF1] are limited to propositional models of the system. 

 

Scalability and computational 

[GAPM-RVF04] Monitoring architectures imply an inevitable overhead on the target system. The 

monitoring architecture's actual impact on the target system’s performance will depend on its 

complexity. The system's scalability could also be limited depending on the coupled monitors' 

complexity and the nature of the data they verify.  

[GAPM-RVF05] Local and distributed monitoring architectures will, most likely, have very different 

impacts on scalability and computational resources. 

[GAPM-RVF06] Monitors synthesized through hardware specification languages could be an option 

to mitigate the computational impact caused by software-based monitors. However, such an 

approach also entails additional expenses like, for instance, space, cost, power consumption, and 

weight. 

 

Deployment 

[GAPM-RVF07] Guaranteeing that monitors do not affect the safety non-functional properties or, 

unintendedly, the target system's functional properties, is a serious concern for monitor architectures 

deployment. Formal methods could be applied to guarantee the compliance of the coupled 

monitoring architecture and the target system's safety aspects. 

[GAPM-RVF08] Deployment of monitors in systems not originally designed to be 

monitored/instrumented could require additional cost and effort because the designed system 

architecture is potentially not suitable to work alongside monitors at runtime. This is mainly due to 

the fact that no formal specifications of properties to be monitored were defined during the initial 

design stage. As a result, the definition of such formal specifications at later verification stages might 

require difficult rework at system's architectural level to accommodate the system instrumentation 

required by the monitors. 

 

Learning curve  
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[GAPM-RVF09] In general, formal methods have a steep learning curve. However, the creation or the 

use of existing tools that can abstract part of the formalism could make the formal specification of the 

monitors a much easier task. 

 

Lack of automation 

[GAPM-RVF10] Although monitors do not need any human intervention once deployed, the 

instrumentation process itself is heavily human-dependent as there is not much research on 

automated system instrumentation. 

 
 
Reference environment 

No relevant gap or limitation have been identified. 

 
 
Costs 

[GAPM-RVF11] Costs of software-based monitors are mainly associated with research efforts, 

technology transfer from the academy to the industry, and software licensing. In the case of 

hardware-based monitors, there is an additional cost associated to the hardware itself and its 

instrumentation on the target system. 

 

Standards 

Standards are not a limitation, there are many standards that require the verification of safety 

conditions. For example, DO-178C, DO-278A, ISO26262 and ISO21448. The following forthcoming 

standards may also be of interest: IEEE P2846 and IEEE P7009. 

 

References 

• [RVF1] Cimatti, A., Tian, C., Tonetta, S.: “Assumption-Based Runtime Verification with 

Partial Observability and Resets.” In Runtime Verification (RV 2019), pp. 165–184. Springer. 

doi: 10.1007/978-3-030-32079-9_10 

 

3.4.3 Test Oracle Observation at Runtime 

Name of the method: Test Oracle Observation at Runtime 

Short description  

Uses Runtime verification based on formal specifications to evaluate if and with which safety-margin the 

behaviour of a tested system is within the specification. 

 

Limitations 

Functionality  

[GAPM-TOO01] The method only performs analyses on an individual behaviour, it is not exhaustive. 

[GAPM-TOO02] Specification languages have certain expressiveness limits. 

 

Accuracy  
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[GAPM-TOO03] The method needs to be combined with a manual or automated method to provide 

test stimuli, since it is only passively observing the behaviour. 

 

Scalability and computational  

No relevant gap or limitation has been identified. 

 

Deployment  

[GAPM-TOO04] To apply the method, the observed outputs need to be technically accessible in the 

test environment with the needed accuracy. 

 

Learning curve 

[GAPM-TOO05] While less complex than other formal modelling notations, identifying what correct 

expected behaviour is and expressing it formally takes training. 

 

Lack of automation 

[GAPM-TOO06] Formalisation of the specification could be supported. 

 
 
Reference environment 

No relevant gap or limitation has been identified. 

 
 
Costs  

No relevant gap or limitation has been identified since costs of the method are benign. 

 

Standards 

No relevant gap or limitation has been identified.  

 

References 

 

3.5 Formal Verification 

This group of methods aims to mathematically prove properties of a system or of information about it. 

We distinguish between formal verification for source code and formal verification in general. 

3.5.1 Formal Source Code Verification 

3.5.1.1 Deductive Verification 

Name of the method: Deductive Verification 

Short description 

Deductive verification is a method for verifying properties about a software system. Properties are 

usually expressed in some formal logic and then a series of mathematical rules/techniques are used 

to reason about these properties [DEV1, DEV2, DEV3, DEV4, DEV5, DEV6]. 
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Limitations 

Functionality 

[GAPM-DEV01] The functionality of deductive verification is dependent on the tools that implement 

this method. This typically involves the definition of a property called a pre-condition and another 

property called a post-condition. A series of deduction rules/steps are then applied to demonstrate 

that the postcondition can be derived from the precondition based on some intermediate steps that 

are specific to the program/system being modelled. 

 

Accuracy 

[GAPM-DEV02] This method provides a proof of correctness, so the results are accurate and all 

possible valuations of the state space are reasoned about. However, the user usually reasons over an 

abstraction of the system, reasoning that a concrete implementation satisfies its abstract specification, 

so there can be a "reality gap" between the final, implemented system and the model that the proofs 

were carried out with respect to. 

 

Scalability and computational 

[GAPM-DEV03] Deductive verification involves carrying out a series of proofs about a system. As 

systems increase in complexity, so does the associated proof effort which can present scalability 

issues depending on the prover used. Techniques such as formal refinement help to improve the 

scalability of this method but do not solve the problem completely.  

 

Deployment 

[GAPM-DEV04] Some deductive verification approaches have been integrated well with existing 

programming paradigms such as VCC, OpenJML, and Why, which integrate well with programming 

languages like C and Java. However, some are standalone, such as Dafny, and offer little integration 

with other tools/formalisms. 

 

Learning curve 

[GAPM-DEV05] Deductive verification usually requires expert knowledge of both the system to be 

verified as well as the tools to be used. Many of them offer a programmer-friendly environment with 

a mixture of automated and interactive theorem proving working in the background. However, the 

specification notation and the generated proofs are generally not familiar to software engineers and 

there is therefore a learning curve associated with both using the tools and interpreting the proof 

results. For example, some tools output a full proof derivation which can be difficult to parse for non-

expert users. 

 

Lack of automation 

[GAPM-DEV06] This approach has a high degree of automation as used by SMT solvers. However, 

some other tools facilitate both automatic and interactive proof (e.g., Event-B [DEV7]). This has the 

advantage of the user being able to contribute to a proof that the tool is struggling with but, in 

practice, interactive proofs can be quite time consuming. 
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Reference environment 

No relevant gap or limitation have been identified. 

 
 
Costs 

[GAPM-DEV06] High costs associated with training expert users. 

 

Standards 

No relevant gap or limitation has been identified since there are many standards that require the 

verification of safety conditions. For example, DO-178C, DO-278A, ISO26262 and ISO21448. The 

following forthcoming standards may also be of interest: IEEE P2846 and IEEE P7009. 

 

References 

• [DEV1] Filliâtre, J. Deductive software verification. Int J Software Tools Technology Transfer 

13, 397 (2011). https://doi.org/10.1007/s10009-011-0211-0 

• [DEV2] Hähnle R., Huisman M. (2019) Deductive Software Verification: From Pen-and-Paper 

Proofs to Industrial Tools. In: Computing and Software Science. LNCS, vol 10000. Springer, 

Cham. https://doi.org/10.1007/978-3-319-91908-9_1 

• [DEV3] Towards deductive verification of control algorithms for autonomous marine 

vehicles S Foster, M Gleirscher, R Calinescu- arXiv preprint arXiv:2006.09233, 2020 - arxiv.org 

• [DEV4] Luo Z., Siegel S.F. (2018) Symbolic Execution and Deductive Verification Approaches 

to VerifyThis 2017 Challenges. In: ISoLA 2018. LNCS, vol 11245. Springer, Cham. 

https://doi.org/10.1007/978-3-030-03421-4_12 

• [DEV5] Oortwijn W., Huisman M. (2019) Formal Verification of an Industrial Safety-Critical 

Traffic Tunnel Control System. In: Integrated Formal Methods. IFM 2019. Lecture Notes in 

Computer Science, vol 11918. Springer, Cham. https://doi.org/10.1007/978-3-030-34968-4_23 

• [DEV6] Marieke Huisman, Rosemary Monahan, Peter Müller, Andrei Paskevich, Gidon 

Ernst. VerifyThis 2018: A Program Verification Competition. [Research Report] Université 

Paris-Saclay. 2019 

• [DEV7] Abrial, Jean-Raymond. Modeling in Event-B: system and software engineering. 

Cambridge University Press, 2010. 

 

3.5.1.2 Source Code Static Analysis 

Name of the method: Source Code Static Analysis 

Short description  

Static code analysis strives to analyse programs without executing them at all (i.e., purely on the 

syntactic level) or at least without executing them under the original semantics, meaning that some 

abstract semantics is used. There exist many different forms of static analysis based, e.g., on syntactic 

error patterns, data-flow analysis, extended type and effect analysis, abstract interpretation, or 

symbolic execution [SAN1, SAN2]. 
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Limitations 

Functionality 

Static analyses, when used for verification purposes, are often designed to look for a specific class of 

defects in a specific class of programs.  

[GAPM-SAN01] While there are many different analyses and tools for some classes of errors and 

programming constructions, there are classes of errors and programs for which not many (or no) 

analyses and tools are available or those that exist are of limited precision or scalability. Specific 

classes of errors and programming constructions not so well supported include dealing with low-

level memory operations especially when dynamic linked data structures are used, dealing with 

concurrent programs, looking for defects related to non-functional properties such as performance, 

dealing with complex operations on arrays or strings, or dealing with various combinations of 

different data types (e.g., hash tables of linked lists of numeric values).  

[GAPM-SAN02] Even if some analysis exists for a given class of errors and programs, it often needs 

some fine-tuning for a given industrial setting so that its accuracy and scalability are appropriate. 

 

Accuracy 

For different static analyses, the accuracy may vary very significantly. While there are sound static 

analyses guaranteeing conservative results (i.e., no error of a given kind is missed) implemented in 

certified tools, there are also analyses that are neither sound nor complete. 

[GAPM-SAN03] A significant risk of many of the sound approaches and tools is then that they may 

produce quite many false alarms, requiring manual checking, further fine-tuning of the analysis for 

the given code, and/or changing the code such that it passes the analysis.  

[GAPM-SAN04] Analyses not striving to be sound are typically designed such that they scale to huge 

code bases where they should be able to find at least some real errors while not reporting too many 

false alarms, but, of course, they may miss real errors. 

 

Scalability and computational 

The scalability of static analyses does vary a lot: lightweight static analyses not required to be sound 

nor complete are capable of handling code bases having billions of lines of code while still producing 

useful results).  

[GAPM-SAN05] However, the more precise and conservative the analysis is required to be, the 

scalability typically decreases (though there are conservative analyses implemented in commercial 

certified tools such as AbsInt or Polyspace that are in routine use for checking specific classes of 

properties of real-life critical industrial code, e.g., in the area of automotive or aerospace industries). 

 

Deployment 

A basic application of a static analyser supporting some classes of errors and programs may be easy 

when not insisting too much on accuracy and scalability.  

[GAPM-SAN06] Otherwise, much more effort is needed in the deployment: Fine-tuning existing 

analysers for a given industrial setting requires significant expertise and ideally a dedicated 

verification engineer (or verification group, depending on the extent of the verification tasks). It may 

also be needed to change the coding style used by the developers in order to facilitate scalability and 

accuracy of static analyses on the produced code. Developing a new static analysis in case an 



Identified gaps and limitations of the V&V methods listed in D3.1 

70  ECSEL JU, grant agreement No 876852. 

appropriate one is missing will typically require a very high level of expertise. Moreover, while some 

static analysers may easily integrate with the development tools used, others may require dedicated 

code be developed to facilitate the integration. 

 

Learning curve 

[GAPM-SAN07] As indicated already above, basic usage of existing static analysers does not require 

any special skills. However, fine-tuning the analysers to be efficient and accurate in a given setting 

requires significant expertise (and typically a specialised verification engineer). If a suitable analysis 

is missing completely, a very high level of specialist education may be required. 

 

Lack of automation 

[GAPM-SAN08] While a basic application of a static analyser may be fully automated, serious usage 

in a larger industrial setting will typically require some fine-tuning. 

 
 
Reference environment 

[GAPM-SAN09] Some static analyses may be applicable on code fragments that are not even runnable 

(the fact they pass syntax analysis may be sufficient). However, other static analyses may require 

code that is runnable and some even code with a test harness. 

 
 
Costs 

Basic usage of static analysis may come with rather moderate costs.  

[GAPM-SAN10] However, more serious applications may incur significant costs. Indeed, while some 

static analysis tools may come for free (including some commercial tools when used in the open-

source domain), the costs of using some of the current, commercially available tools may reach high 

tens of thousands of EUR per year when certification, customisation, and support are needed. Further 

costs may then be associated with a need to have a dedicated verification engineer (or engineers), 

which can, however, replace some number of testers. 

 

Standards 

[GAPM-SAN11] Some static analysers support standards such as MISRA C/C++, ISO 26262, DO-

178B/C, IEC 61508, but many of them do not address any standards. 

 

References 

• [SAN1] Krena, B., Vojnar, T.: Automated Formal Analysis and Verification: An Overview. 

International Journal of General Systems, 42(4), 2013. 

• [SAN2] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, Springer-Verlag, 

2005. 
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3.5.2 General Formal Verification 

3.5.2.1 Behaviour-Driven Formal Model Development 

Name of the method: Behaviour-Driven Formal Model Development 

Short description 

This approach uses scenarios to specify example use cases of the system in question. Based on a 

predefined set of requirements and these scenarios, a formal model of the system is devised along 

with the desired verification conditions. 

 

Limitations 

Functionality 

[GAPM-BFM01] This is usually more suitable to discrete than it is to continuous systems. 

 

Accuracy 

[GAPM-BFM02] This method requires input from both formal methods and domain experts, so its 

accuracy depends on the quality of the communication and understanding between them.  

 

Scalability and computational 

[GAPM-BFM03] The limitations of this method are those which are present in the tool support that 

is used to develop the formal model and the expressivity of the formalism chosen to define the 

verification conditions. 

 

Deployment  

No relevant gap or limitation has been identified since many tools can facilitate the development of 

formal models. 

 

Learning curve 

No relevant gap or limitation has been identified. This approach has the advantage of splitting the 

verification task between different experts so that one does not need to be fully trained on the other's 

topic. It thereby addresses a gap of classical formal methods e.g. Model Checking (see [GAPM-

MCH05])  

 

Lack of automation 

[GAPM-BFM04] This is an iterative process that requires frequent communication between 

individuals. 

 
 
Reference environment 

No relevant gap or limitation have been identified. 

 
 
Costs  

No relevant gap or limitation has been identified. 
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Standards 

No relevant gap or limitation has been identified since standards are not a limitation, there are many 

standards that that require the verification of safety conditions. For example, DO-178C, DO-278A, 

ISO26262 and ISO21448. The following forthcoming standards may also be of interest: IEEE P2846 

and IEEE P7009. 

 

References 

 

3.5.2.2 Formal Requirements Validation  

Name of the method: Formal Requirements Validation 

Short description 

Requirements are formalized in a formal language, typically a temporal logic, and analysed to find 

defects in the specification such as inconsistencies, incompleteness, errors, or unrealizability. 

 

Limitations 

Functionality 

[GAPM-FRV01] Since the requirements specification is validated against the intentions of the 

requirements engineer and the needs of the stakeholders, the quest for new checks to perform to find 

new issues is always open. 

 

Accuracy 

[GAPM-FRV02] There is always a gap between the natural language text and its formal counterpart. 

This limits the accuracy of the formal analysis with respect to the informal specification. It often 

happens that issues found in the formal properties are due to missing assumption or wrong choice 

in the formalization step. 

 

Scalability and computational 

[GAPM-FRV03] Since the underlying formal problem is usually a problem of satisfiability or 

realizability for temporal logics such as LTL, one of the main issues is the scalability of the procedures. 

In some cases, considering for example first-order logic, the problem may be even undecidable. 

 

Deployment 

[GAPM-FRV04] Some formal requirements tools, such as NASA's Formal Requirements Elicitation 

Tool (FRET) [FRV9], support the generation of verification conditions (in CoCoSim) based on the 

formalised requirements [FRV10]. However, there is often a gap between the requirements 

themselves and their associated verification conditions due to the requirements being expressed at a 

higher level of abstraction than the implementation. 

 

Learning curve 

[GAPM-FRV05] The formalization of requirements is still a manual process and requires that the 

domain engineer, expert in the domain of the requirements, learns the formal language. 
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Lack of automation 

[GAPM-FRV06] The formalization of natural language requirements remains largely a manual step. 

 
 
Reference environment 

No relevant gap or limitation have been identified. 

 
 
Costs 

[GAPM-FRV07] The human effort in the formalization of requirements and in the analysis of the 

formal results is a limitation for a more widespread industrial adoption. 

 

Standards 

No relevant gap or limitation has been identified since there are many standards that require the 

verification of safety conditions. For example, DO-178C, DO-278A, ISO26262 and ISO21448. The 

following forthcoming standards may also be of interest: IEEE P2846 and IEEE P7009. 

 

References 

• [FRV1] Ingo Pill, Simone Semprini, Roberto Cavada, Marco Roveri, Roderick Bloem, 
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• [FRV2] Roderick Bloem, Roberto Cavada, Ingo Pill, Marco Roveri, Andrei Tchaltsev: RAT: A 

Tool for the Formal Analysis of Requirements. CAV 2007: 263-267 

• [FRV3] Alessandro Cimatti, Marco Roveri, Stefano Tonetta: Requirements Validation for 

Hybrid Systems. CAV 2009: 188-203 Requirements Validation for Hybrid Systems. CAV 2009: 

188-203 

• [FRV4] Alessandro Cimatti, Marco Roveri, Angelo Susi, Stefano Tonetta: Validation of 

requirements for hybrid systems: A formal approach. ACM Trans. Softw. Eng. Methodol. 

21(4): 22:1-22:34 (2012) 

• [FRV5] Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri, Stefano 

Tonetta: SMT-based satisfiability of first-order LTL with event freezing functions and metric 

operators. Inf. Comput. 272: 104502 (2020) 

• [FRV6] Amir Pnueli, Roni Rosner: On the Synthesis of a Reactive Module. POPL 1989: 179-
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3.5.2.3 Model Checking 

Name of the method: Model Checking 

Short description  

Given a formal model of the system and a formal specification of the properties, model checking 

provides automated procedures to prove or disprove that the system satisfies the property. This is 

achieved via an exhaustive examination of the state space. 

 

Limitations 

Functionality 

[GAPM-MCH01] When the property is satisfied, most model checkers do not provide any further 

information. Certifying model checking [MCH1] is an approach that provides also a deductive proof 

extracted from the model checker internals. Only few cases extended the approach beyond invariant 

properties [MCH2]. 

 

Accuracy 

[GAPM-MCH02] The results are accurate because every system state is explored in the process. 

However, model checkers usually require an abstract model of the system that is written in a different 

language to the final implementation. As a result, there can be a slight mismatch between the model 

that has been checked and the final, implemented solution.  

 

Scalability and computational 

[GAPM-MCH03] The method exhaustively explores the state space of the system, which is often 

exponential in the number of variables and the number of system components executing in parallel. 

This problem is known as the state space explosion, which can make the application of model 

checking to industrial use cases impractical. In order to tackle this problem one has to choose suitable 

reduction and abstraction techniques, which basically consist in reducing the number of state 

transition paths to be explored by avoiding visiting those unnecessary paths that will not affect the 

verification outcome and limiting the number of system variables to a minimum by abstracting away 

those details that are not relevant to the system properties to be verified. 

[GAPM-MCH04] In case of hybrid systems or software systems, the model checking problem is 

usually undecidable. Although automated incomplete procedures exist, they may not scale up to the 

complexity required in an industrial context. 

 

Deployment 

No relevant gap or limitation has been identified. 

 

Learning curve 

[GAPM-MCH05] System and properties must be formalized into a formal language. Thus, it is 

required to have some background in formal methods such as temporal logic and associated proof 

strategies. 

 

Lack of automation  
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No relevant gap or limitation has been identified since once the model and properties to be checked 

are formalized, then the process of checking the model against the properties is automatic. 

 
 
Reference environment 

No relevant gap or limitation have been identified. 

 
 
Costs 

No relevant gap or limitation has been identified. 

 

Standards 

No relevant gap or limitation has been identified. 

  

References 

• [MCH1] Kedar S. Namjoshi: Certifying Model Checkers. CAV 2001: 2-13 

• [MCH2], Marco Roveri, Stefano Tonetta: Certifying Proofs for LTL Model Checking. FMCAD 

2018: 1-9, https://dblp.org/pid/19/3686.html 

 

3.5.2.4 Reachability-Analysis-Based Verification for Safety-Critical Hybrid Systems  

Name of the method: Reachability-analysis-based verification for safety-critical hybrid systems 

Short description: 

Reachability analysis constitutes a powerful –yet not mature enough– verification method for 

validating safety and robustness of safety-critical cyber-physical systems. It is based on a combination 

of formal methods and applied mathematics using techniques such as zonotopes, in order to co-

analyse the continuous dynamics of (linear or non-linear) physical processes controlled by a discrete 

controller and verify that the control logic will reside only in acceptable states.  

 

Limitations  

Functionality  

[GAPM-RAV01] A major limitation with regard to functionality is that (by itself) this approach can 

only typically provide results for a finite time horizon of evolution of system behaviour. Invariant 

extraction and satisfaction checking can be used to alleviate this situation, but this is not always 

possible and even when it is, identification of the invariant itself can be quite computationally 

expensive.  

 

Accuracy  

[GAPM-RAV02] The verification of safety and robustness of safety-critical systems has to fulfil 

several accuracy requirements especially in cases when random faults are present during the 

controller’s operation. Reachability analysis in cases of those control perturbations require an over 

approximation of reachable (numerical) states that lead to state space explosion problems, setting the 

analysis incomplete. 

 

https://dblp.org/db/conf/cav/cav2001.html#Namjoshi01
https://dblp.org/pid/83/563.html
https://dblp.org/db/conf/fmcad/fmcad2018.html#GriggioRT18
https://dblp.org/db/conf/fmcad/fmcad2018.html#GriggioRT18
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Scalability and computational   

[GAPM-RAV03] Especially for non-linear dynamical and stiff systems, V&V methods have to cope 

with large system complexity, which usually form a hard problem to solve. Reachability analysis is 

not scalable enough in its current state as more efficient and approximation-sound techniques should 

be developed to tackle the problem. 

 

Deployment  

[GAPM-RAV04] Reachability analysis for hybrid system verification usually requires an advanced 

expertise from the system engineer to be deployed (knowledge of hybrid automata, linearization and 

system hybridization). Currently it lacks fully automated and integrated characteristics as the 

engineer needs to specify its system in different representation semantics bounded by each 

reachability analysis solution. 

 

Learning curve  

[GAPM-RAV05] Engineers need to have multidisciplinary capabilities in applied mathematics, 

control design and formal verification (reachability analysis principles). 

 

Lack of automation  

[GAPM-RAV06] Semi-automated method lacking full integration with current model-based design 

frameworks. 

 
 
Reference environment  

[GAPM-RAV07] Currently reachability analysis is at TRL3-4 and is being used in an ad-hoc manner 

during control system design and validation phases. 

 
 
Costs  

[GAPM-RAV08] Large human resources demand cost 

 

Standards  

[GAPM-RAV09] No standard currently addressed. 

 

References 

 

3.5.2.5 Theorem Proving and SMT Solving 

Name of the method: Theorem proving and SMT solving 

Short description  

Usually, theorem provers and SMT solvers are used as back-end proof support in deductive 

verification systems and model checkers where the user describes properties to be verified using a 

formal logic. Typically, these properties focus on safety and liveness aspects of the system. This 

method produces a proof of correctness for a system that it obeys the specified properties [TPS5, 

TPS6].  
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Limitations 

Functionality 

[GAPM-TPS01] Tools for theorem proving and SMT solving usually focus on using a single logic to 

represent formal properties [TPS1, TPS2, TPS3, TPS4]. Incorporating multiple logical representations 

could potentially be beneficial.   

  

Accuracy 

[GAPM-TPS02] This method provides a proof of correctness, so the results are accurate and all 

possible valuations of the state space are reasoned about. However, the user usually reasons over an 

abstraction of the system so there can be a "reality gap". 

 

Scalability and computational 

[GAPM-TPS03] This technique involves carrying out a series of proofs about a system. As systems 

increase in complexity, so does the associated proof effort which can present scalability issues 

depending on the prover used. 

Techniques such as formal refinement help to improve the scalability of this method but do not solve 

the problem completely. 

 

Deployment 

No relevant gap or limitation has been identified. 

 

Learning curve 

[GAPM-TPS04] The supporting tools can be either automatic or interactive. In either case, the 

properties/system must be specified in a given logic and this can often require expert knowledge of 

the tools.  

[GAPM-TPS05] In the interactive case, since the user must contribute to the proof itself, the user must 

have a deep understanding of how the tools work. 

 

Lack of automation 

[GAPM-TPS06] These tools tend to have a high degree of automation but when a proof attempt fails 

then the user may need to rewrite parts of their system specification and properties in order for the 

proof to be discharged. 

 
 
Reference environment 

No relevant gap or limitation have been identified. 

 
 
Costs 

[GAPM-TPS07] High costs associated with training expert users. 

 

Standards 
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Standards are not a limitation, there are many standards that that require the verification of safety 

conditions. For example, DO-178C, DO-278A, ISO26262 and ISO21448. The following forthcoming 

standards may also be of interest: IEEE P2846 and IEEE P7009. 
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3.6 Semi-Formal Analysis 

This group of methods deals with system evaluation by using structured means whose application does 

not result in a mathematical proof. The methods have been divided into two sub-groups: one for SCP-

focused semi-formal analysis and another for general semi-formal analysis. 

3.6.1 SCP-Focused Semi-Formal Analysis 

3.6.1.1 Human Interaction Safety Analysis 

Name of the method: Human interaction safety analysis (HISA) 

Short description 

Safety analysis method for human interaction with automated systems. The aim is to reduce 

interaction risks and provide evidence to a safety case [HIS1]. 

 

Limitations 

Functionality 

[GAPM-HIS01] The method is a process for systematic analysis of interactions between a human and 

automated system. Lacking functionality is that the process currently only considers a specific type 

of interactions and need to be elaborated to become more generic.  

[GAPM-HIS02] It also does not currently take the impact of cybersecurity into account. 

 

Accuracy 

https://arxiv.org/pdf/1912.03028.pdf
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[GAPM-HIS03] Risk assessment is based on qualitative expert judgment. Quantitative metrics could 

be added where applicable. 

 

Scalability and computational 

[GAPM-HIS04] V&V of analysis results require real-world user tests which can be resource heavy 

and lack scalability, and potentially be dangerous as humans need to be involved. An open question 

is if simulation can be used to lower V&V time and costs. 

 

Deployment 

[GAPM-HIS05] Current lack of tool support for efficient use of the method. [GAPM-HIS06] Also lack 

integration of verification tools (e.g. simulation) to back up claims from expert judgment. 

 

Learning curve 

[GAPM-HIS07] Requires highly skilled personnel as it relies on both human factors and functional 

safety expertise. 

 

Lack of automation 

[GAPM-HIS08] Currently there is no custom tool for this method. 

 
 
Reference environment 

No relevant gap or limitation has been identified. 

 
 
Costs 

No relevant gap or limitation has been identified. 

 

Standards 

No standard specifically references this method as it is not an established method, however, it could 

become useful as part of an argumentation for fulfilling ISO PAS 21448, and potentially functional 

safety standards such as ISO 26262. 

 

References  

• [HIS1] Warg, F., Ursing, S., Kaalhus, M. and Wiik, R., 2020, January. Towards Safety Analysis 

of Interactions Between Human Users and Automated Driving Systems. In 10th European 

Congress on Embedded Real Time Software and Systems (ERTS 2020). 

 

3.6.1.2 Intrusion Detection for WSN based on WPM State Estimation 

Name: Intrusion detection for wireless sensor networks based on WPM state estimation 

Short description  

Intrusion detection system which targets WSN hardware platforms and help identify incoming 

attacks by means of (node) state estimation via the Weak Process Modelling of the attacks. 

 

Limitations 
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Functionality 

[GAPM-IDS01] The method helps identifying attacks but does not offer support to WSN operators 

for performing forms of active self-defence (i.e., there is no active reactions to attacks) 

 

Accuracy  

Accuracy is not a limitation of the method itself, but it depends only on how the attack is modelled. 

 

Scalability and computational 

No relevant gap or limitation has been identified. 

 

Deployment 

No relevant gap or limitation has been identified. 

 

Learning curve  

No relevant gap or limitation has been identified. 

 

Lack of automation  

[GAPM-IDS02] Attack families have to be modelled in a WPM to allow the IDS to detect them. The 

automation of WPM creation is possible but unfeasible in most situations since it requires separate 

WPMs for each combination of attack vs. application running on the node. 

 
 
Reference environment 

[GAPM-IDS03] It can be applied to in-lab experiments; not yet tested in a real-world scenario. 

 
 
Costs 

No relevant gap or limitation has been identified. 

 

Standards 

No relevant gap or limitation has been identified. 

 

References 

 

3.6.1.3 Kalman Filter-Based Fault Detector 

Name: Kalman filter-based fault detector 

Short description: Use of historical data collected from a system via sensors to build mathematical 

models to be used to detect system’s faults with respect to its nominal operation. 

 

Limitations 

Functionality 

[GAPM-KFB01] For model-based approaches, conditions for Identification with respect to detection 

are much more conservative. 

[GAPM-KFB02] Lack of rigorous mathematical guarantees about whether a fault can be detected. 
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Accuracy 

[GAPM-KFB03] The method provides good accuracy in the context of systems that exhibit a linear 

behaviour. Model accuracy can be limited if the system’s dynamics are more complex. 

 

Scalability and computational 

[GAPM-KFB04] Although the method itself is theoretically scalable, there are scalability and 

computational issues when applications to complex systems are considered. The main issue is related 

to the coding part due to the lack of powerful tools. 

 

Deployment 

[GAPM-KFB05] There is lack of tools that can be directly used for the real-world applications. 

 

Learning curve 

[GAPM-KFB06] Due to lack of tools, theoretical and programming skills are required. 

 

Lack of automation 

[GAPM-KFB07] The code needs to be adapted case by case. 

 
 
Reference environment 

No relevant gap or limitation has been identified. 

 
 
Costs 

No relevant gap or limitation has been identified. 

 

Standards 

No relevant gap or limitation have been identified. 

 

References 

 

3.6.1.4 Model-Based Safety Analysis 

Name: Model-Based Safety Analysis 

Short description 

Model-Based Safety Analysis (MBSA) is an approach in which the system and safety engineers share 

a common system model created using a model-based development process. By extending the system 

model with a fault model as well as relevant portions of the physical system to be controlled, 

automated support can be provided for safety analysis, in particular for FMEA and FT generation. 

Failure Logic Analysis (FLA) and Model-Based Fault Injection (MBFI) for safety analysis are building blocks 

for Model-Based Safety Analysis that can be applied for V&V at different levels across the project life 

cycle. 

 

Limitations 
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Functionality 

[GAPM-MSA01] Use of results in relation with other V&V methodologies may be explored (e.g. 

optimization of failure injection tests).  

[GAPM-MSA02] The FLA and MBFI building blocks may be connected, for their application in the 

same scenarios at different levels consistently. 

[GAPM-MSA03] Extensions in support of cybersecurity for FLA may be explored in real scenarios. 

 

Accuracy 

[GAPM-MSA04] A potential gap between the conceptual level analysis and the real system could 

arise due to the fact that analysis requires to abstract away the critical aspects about both the system 

under development and the external environment. 

 

Scalability and computational 

[GAPM-MSA05] The Failure propagation algorithm for FLA may be improved for large systems, 

impacting FMEA and FT generation.  

[GAPM-MSA06] The automated analysis for MBFI may be subject to the state-explosion problem, 

impacting the effectiveness of verification. 

 

Deployment 

The method is well-supported by tools (e.g. CHESS, CHESS-FLA, xSAP, ocra, COMPASS).  

[GAPM-MSA07] Deployment for the use cases has to be experimented. 

 

Learning curve 

[GAPM-MSA08] The method requires model-based design skills, as well as safety expertise. 

 

Lack of automation 

The method requires system design and some safety expertise for failure definition; however, the 

analysis results are mostly automated.  

[GAPM-MSA09] Improvements for FMEA and FT generation for FLA are required. 

 
 
Reference environment 

No relevant gap or limitation has been identified. The method may be applied at development level 

in TRL6-7 environments and prototypes. 

 
 
Costs 

No relevant gap or limitation has been identified. No hardware and software specific costs, as the 

building blocks are available with the CHESS open-source tool. In particular, the xSAP and OCRA 

tools are freely available for non-commercial applications. The COMPASS tool is freely available for 

ESA member states. 

 

Standards 
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No relevant gap or limitation has been identified. The method is conceived to fulfil safety standards 

(e.g. ECSS, EN 50129, SAE-ARP-4754, SAE-ARP-476), and may be applied in VALU3S for the medical 

and agriculture domains (e.g. by applying the CEI EN 62304, ISO 14971, IEC 61508, ISO 26262 

standards). 
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3.6.1.5 Model-Based Threat Analysis 

Name: Model-Based Threat Analysis 

Short description 

Automated threat analysis based on  

a. a system model, enhanced with security properties and security related information. 

b. a threat model, containing formalized vulnerabilities, attacks and weaknesses. 

Results are potential risks. 

 

Limitations  

Functionality  

[GAPM-MTA01] The method itself is complete, but better integration into model-based engineering 

could enhance functionality and work is ongoing regarding an interconnection with SysML. 

 

Accuracy  

[GAPM-MTA06] The accuracy of the approach is not limited by the method itself, but limited by the 

level of detail available in the system model and the completeness of the threat model. 

 

Scalability and computational  

[GAPM-MTA02] System models can be created on different granularities, but threat and risk results 

from different granularities are not connected. We aim towards an integration of threats from “lower 

level” models into “higher level” models. 

 

Deployment  

[GAPM-MTA03] The tool support is integrated in Enterprise Architect but integration with other 

related tools could enhance usability and offer features like access control, versioning and auditing. 

 

Learning curve 

[GAPM-MTA04] Application of tools is easy, but creation and maintenance of threat models requires 

security expert knowledge. 

 

Lack of automation  

[GAPM-MTA05] Currently the impact (risk = impact * likelihood) can be automatically identified 

based on assets. Likelihood needs expert judgment. In the future the likelihood should be also 

automatically identified based on attack potential. 

 
 
Reference environment  

No relevant gap or limitation has been identified. 

 
 
Costs  

No relevant gap or limitation has been identified. 

 

Standards 
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[GAPM-MTA07] Tool (ThreatGet) was originally developed for the automotive domain and fully 

supports ISO/SAE 21434. We aim to enhance support to other domains and their respective security 

standards (IoT, industrial with IEC 62443). 

 

References 

 

3.6.1.6 Risk Analysis 

Name: Risk Analysis 

Short description 

Quantitative deterministic Risk Analysis methodology to evaluate the risk level of a system 

considering a wide set of threat scenarios (attacks and incidents), as well as the effectiveness of proper 

countermeasures. This methodology can be tailored on the specific features of a system, such as 

different components or different threats to be examined within the risk analysis process. In fact, 

starting from the modelling of the system and of the threat landscape, a set of algorithms is in charge 

of generating all the possible threat scenarios, simulating their outcomes evaluating the effect of 

countermeasures, and finally evaluating the likelihood and the potential impact of each outcome. In 

the end, the risk is calculated as a combination between likelihood and impact. 

 

Limitations 

Functionality 

[GAPM-RAS01] The proposed Risk Analysis methodology does not take into account cascading effect 

properly. This heavily limits the number of scenarios generated, as well as the level of detail of the 

impact simulation for each scenario. 

[GAPM-RAS02] The proposed Risk Analysis methodology does not allow to perform a cost-benefit 

analysis between costs related to protection (e.g. implementation of countermeasures) and reduction 

of risk. 

 

Accuracy 

[GAPM-RAS03] If no wide dataset concerning threats is available, estimation of likelihood of threats 

can be inaccurate and, as a consequence, also outputs of Risk Analysis are not reliable. 

[GAPM-RAS04] Neglecting cascading effect could lead to a low level of accuracy of Risk Analysis 

outputs. 

 

Scalability and computational 

[GAPM-RAS05] The methodology is scalable, but the computational time grows proportionally with 

the complexity of the system. 

 

Deployment 

[GAPM-RAS06] The proposed Risk Analysis methodology needs a detailed modelling of the system 

under examination and a fine breakdown of the system into different components. 

[GAPM-RAS07] Wide datasets about past threats and incidents are needed to make the proposed 

Risk Analysis methodology work properly. 



Identified gaps and limitations of the V&V methods listed in D3.1 

86  ECSEL JU, grant agreement No 876852. 

 

Learning curve 

No relevant gap or limitation has been identified. 

 

Lack of automation 

[GAPM-RAS08] Modelling of the system under examination should be done manually by the user. 

 
 
Reference environment 

[GAPM-RAS09] The proposed Risk Analysis methodology has TRL 6 and it can be implemented in 

prototypal application. 

 
 
Costs 

[GAPM-RAS10] The proposed Risk Analysis methodology has a computational time proportional to 

the size of the system under examination, therefore in case of complex systems, costs of computation 

could be high. 

 

Standards 

[GAPM-RAS11] Risk Analysis proposed methodology does not fulfil any standard. 

 

References 

 

3.6.1.7 Vulnerability Analysis of Cryptographic Modules Against Hardware-Based Attacks 

Name: Vulnerability analysis of cryptographic modules against hardware-based attacks 

Short description 

According to Kerckhoff's hypothesis [VAC1], it is assumed that the overall security of any 

cryptographic system depends entirely on the security of the key and all other parameters of the 

crypto system are public. According to this hypothesis, encryption algorithms are assumed to be open 

as long as the key generation scheme is not secure. Vulnerability analysis is complementary to 

cryptography. The strength of a cryptosystem depends on the key used, or in other words, the 

attacker's ability to predict the key. In this method, a 4-step key security evaluation method is 

proposed.  

 

Limitations 

Functionality 

[GAPM-VAC01] Only chaotic and ring oscillatory-based RNGs can be analysed for vulnerability. 

 

Accuracy 

[GAPM-VAC02] The probability that the bits of ring oscillator RNGs can be predicted as a result of 

vulnerability analysis is 50 % and above. This ratio is 100 % for chaotic oscillator-based RNGs. 

 

Scalability and computational  
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[GAPM-VAC03] Vulnerability analysis of ring oscillator-based RNGs can only be made at the FPGA 

design stage.  

 

Deployment  

[GAPM-VAC04] For vulnerability analysis of ring oscillator-based RNGs, FPGA design IDEs and 

many numerical analysis tools can be used. Also, numerical analysis tools are required for analysis 

of chaotic oscillator-based RNGs (DynamicSolver, Matlab etc.). 

 

Learning curve  

[GAPM-VAC05] Lack of standardised interoperability scheme in deployment of the proposed 

method) Since the provided method has many different interpretations in different contexts, the 

viewpoint taken in Valu3S is that an interoperable and generic model is needed to incorporate the 

interoperability of the presented V&V method with all systems at deployment phase. There is still a 

lack of a standardised interoperability scheme to deploy both hardware and software components of 

the proposed V&V method. This gap can be mitigated by context-specific analysis of integration and 

deployment requirement particular for the operational goals of the use case. 

 

Lack of automation  

[GAPM-VAC06] The method requires effective and qualified human intervention. It is not applicable 

on systems operating in the field. 

 

Reference environment  

[GAPM-VAC07] This method can only be applied in simulation environment for ring oscillator-based 

RNGs. For chaotic oscillator-based RNGs, analyses can be made on the prototype in lab environment. 

 

Costs  

No relevant gap or limitation has been identified. 

 

Standards  

No relevant gap or limitation has been identified.   

 

References  

• [VAC1] K. Martin, Everyday Cryptography: Fundamental Principles and Applications, 2nd 

Edition, Oxford University Press,2017. 

 

3.6.1.8 Wireless interface network security assessment  

Name: Wireless interface network security assessment 

Short description 

Both radio link and Wi-Fi interfaces, which are normally used by the authorized teleoperator to send 

commands and other instructions to the Robotic Control Unit, can be also exploited for malicious 

purposes thanks to its direct connectivity with the CANBUS. 

The aim of this method is twofold: 
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1. Radio link interface: the radio link communications can be based on proprietary protocols, 

making its security level evaluation difficult. Software-Defined Radio (SDR)-based solutions 

can be used to this aim, monitoring the activity on the teleoperation radio link, capturing and 

replying commands, and even acting as fake controllers. 

2. Wi-Fi interface: other CANBUS-related attacks can exploit the Wi-Fi interface. This method 

aims to focus on the possible harms due to this kind of attacks considering the rightful use of 

this interface. For example, the consequences of injection of packets containing modified 

maps directly on the CANBUS through the Wi-Fi interface. 

 

Limitations 

Functionality 

[GAPM-WIN01] There could be possible limitations depending on the frequency bands used for the 

radio link communications and on the hardware and CANBUS network segmentation. 

 

Accuracy 

[GAPM-WIN02] Different factors could limit the accuracy, such as the power and the signal to noise 

ratio of the signal received by the radio link interface and how close to the attacker system the 

malicious user can stay and how long. 

 

Scalability and computational 

No particular restrictions for scalability. No need for particular computational resources. 

 

Deployment 

No limitations that could hinder the method’s employment in a real-world context. 

 

Learning curve 

No relevant gap or limitation has been identified. 

 

Lack of automation  

[GAPM-WIN03] The method requires human intervention to iterate the method, at least at the first 

stage. Different attacks can be employed and each of them could need a “tuning” phase to better 

adapt and be effective to the attacked system. 

 
 
Reference environment  

[GAPM-WIN04] The method can be applied in simulation, emulation, and prototype environments. 

Its possible application in TRL6-7 environment could not be straightforward and require a further 

integration effort. 

 
 
Costs:  

No relevant gap or limitation has been identified since no huge investments are required. 

 

Standards  
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No relevant gap or limitation has been identified. 

 

References 

 

3.6.2 General Semi-Formal Analysis 

3.6.2.1 Code design and coding standard compliance checking 

Name: Code design and coding standard compliance checking 

Short description  

Coding standards and coding rules, agreed at design stages and employed both at design and 

development phases, facilitate the verifiability of produced code. 

Design of the code based on modularization: a method to organize large programs in smaller parts, 

i.e., the modules. Every module has a well-defined interface toward client modules that specifies how 

provided functionalities are made available. Moreover, every module has an implementation part 

that hides the code and any other private implementation detail the client modules should not care 

of with private data protection and interface. 

 

Limitations 

Functionality 

[GAPM-CDC01] Automation in this method is not applicable, as the method itself relies on the coding 

skills of the programmers. However, the application of standard coding rules and design patterns 

leads to a fast and proven development of the code by different programmers. 

 

Accuracy 

[GAPM-CDC02] The accuracy of the method is related on the knowledge and continuous application 

of the rules by the software designers and developers. 

 

Scalability and computational 

No relevant gap or limitation has been identified. 

 

Deployment 

[GAPM-CDC03] Style-specific rules may not be covered by tools 

 

Learning 

[GAPM-CDC04] Depending on the code design and code rules, the curve can be gentle (i.e. takes a 

slightly large amount of time) but it may not need high-level skills for coding; in fact to some extent, 

the lower the coding skill, the better to comply to the coding rules. 

 

Lack of automation 

[GAPM-CDC05] Little automations are feasible. 

 
 
Reference environment 
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No relevant gap or limitation has been identified. 

 
 
Costs 

[GAPM-CDC04] Costs related are the training of the employees and the practice related. Other costs 

may be estimated by the time spent in the execution of walkthrough verification of the code. 

 

Standards 

No relevant gap or limitation has been identified. 

 

References 

 

3.6.2.2 Knowledge-centric system artefact quality analysis 

Name: Knowledge-centric system artefact quality analysis 

Short description 

Method to assess the quality of systems artefacts (e.g. textual requirements specifications and system 

models) by exploiting knowledge bases, e.g. an ontology [KCQ1]. The assessment is quantitative 

according to different artefact characteristics (correctness, consistency, and completeness) and to 

different metrics (e.g. based on the number of elements with a given property in an artefact, such as 

the number of vague words in a requirement). 

 

Limitations 

Functionality 

[GAPM-KCQ01] The amount of model-specific quality analysis means is currently limited. Most of 

the available support focuses on textual requirements. 

 

Accuracy 

[GAPM-KCQ02] A detailed study of quality analysis accuracy has not been conducted. Nonetheless, 

the practical experience and the feedback from the users suggest that the accuracy is suitable. 

 

Scalability and computational 

[GAPM-KCQ03] Issues can arise with large and complex system artefacts. Tool solutions have 

nonetheless been developed to mitigate it. 

 

Deployment 

[GAPM-KCQ04] Connectors with the system artefact sources are required. 

 

Learning curve 

[GAPM-KCQ05] There is a barrier in the need for knowing how to create and manage ontologies. 

 

Lack of automation 

[GAPM-KCQ06] Creation and management of ontologies is mostly a manual effort that can require 

significant time. 
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Reference environment 

No relevant gap or limitation has been identified. 

 
 
Costs 

[GAPM-KCQ07] Creation and management of ontologies is mostly a manual effort that can require 

significant time. 

 

Standards 

[GAPM-KCQ08] No explicit and direct link with compliance has been established for most 

assurance/engineering standards. Nonetheless, the method (1) has been applied for many systems 

under regulatory requirements and (2) supports INCOSE rules for writing for writing requirements, 

among other reference documents. 

 

References 

• [KCQ1] Parra, E., Alonso, L., Mendieta, R., de la Vara, J.L.: Advances in Artefact Quality 

Analysis for Safety-Critical Systems. 30th International Symposium on Software Reliability 

Engineering (ISSRE 2019) 

 

3.6.2.3 Knowledge-Centric Traceability Management 

Name:     Knowledge-Centric Traceability Management 

Short description 

V&V method to manage the relationships between system artefacts, and thus how the system 

lifecycle has evolved and whether it has been adequate, that exploits knowledge representations in 

the form of ontologies for trace creation, management, and discovery, among other tasks. 

 

Limitations 

Functionality 

[GAPM-KCT01] Several activities of the traceability management process [KCT1] are not supported. 

 

Accuracy 

[GAPM-KCT02] Accuracy has not been formally assessed. 

 

Scalability and computational 

[GAPM-KCT03] Issues can arise with large and complex system artefacts. Tool solutions have 

nonetheless been developed to mitigate it. 

 

Deployment 

[GAPM-KCT04] Connectors with the system artefact sources are required. 

 

Learning curve 

[GAPM-KCT05] There is a barrier in the need for knowing how to create and manage ontologies. 
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Lack of automation 

No relevant gap or limitation has been identified. 

 
 
Reference environment 

No relevant gap or limitation has been identified. 

 
 
Costs 

[GAPM-KCT06] Creation and management of ontologies is mostly a manual effort that can require 

significant time. 

 

Standards 

[GAPM-KCT07] No explicit and direct link with compliance has been established for most 

assurance/engineering standards. Nonetheless, the method has been applied for systems under 

regulatory requirements. 

 

References 

• [KCT1] Cleland-Huang, J., Gotel, O. and Zisman, A. (eds.): Software and systems traceability. 

Heidelberg, Springer. 2012 

 

3.6.2.4 Model-based assurance and certification 

Name: Model-based assurance and certification 

Short description  

Method that supports activities explicitly and directly targeted at system assurance and certification, 

e.g. management of compliance with standards, of assurance cases, and of assurance evidence. The 

method uses model-based technologies to facilitate the activities and ensure their suitability, such as 

correct and complete collection of assurance information. 

 

Limitations 

Functionality 

[GAPM-MAC01] The method could be further integrated with others for further assurance 

information analysis and collection. 

 

Accuracy 

No relevant gap or limitation has been identified. 

 

Scalability and computational 

[GAPM-MAC02] Depending on how the method is enacted, issues can arise with the management of 

large models. 

 

Deployment 
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[GAPM-MAC03] The method most often requires tailoring (selection of activities needed) to specific 

companies and projects. 

[GAPM-MAC04] Integration with further methods and tools can be needed in practice, e.g. with 

further means for model-based systems engineering. 

[GAPM-MAC05] The support for workflow configuration is limited. 

[GAPM-MAC06] Tool support usability can be improved. 

 

Learning curve 

No relevant gap or limitation has been identified. 

 

Lack of automation 

[GAPM-MAC07] The level of automation in assurance information management could be higher for 

certain tasks, e.g. for assurance information traceability management and verification. 

 
 
Reference environment 

[GAPM-MAC08] The application in real projects is limited for several elements of the method. 

[GAPM-MAC09] The method has not been used in some domains, e.g. healthcare. 

 
 
Costs 

No relevant gap or limitation has been identified. 

 

Standards 

[GAPM-MAC10] The method explicitly supports compliance with standards. However, compliance 

management for some domains and standards has not been conducted yet. 

 

References 

• [MAC1] de la Vara, J.L., Ruiz, A., Gallina, B., Blondelle, G., Alaña, E., Herrero, J., Warg, F., 

Skoglund, M., Bramberger, R.: The AMASS Approach for Assurance and Certification of 

Critical Systems. embedded world Conference 2019 

 

3.6.2.5 Model-based Design Verification 

Name:     Model-based Design Verification 

Short description  

Model-Based Design (MBD) provides a basis for machine-assisted verification of the system under 

development by the definition of models, supporting initial design decisions as well as enabling early 

discovery of errors. Models are typically described in high-level languages, either standardized or 

proprietary, and can be analysed with different MBD Verification methods. When the models are 

defined with formal semantics, formal methods can be applied for a rigorous automatic analysis of 

system properties. 

 

Limitations 

Functionality 
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[GAPM-MBD01] Existing methodologies and tools may need to be extended depending on the 

specific domain of the system under development. 

 

Accuracy 

[GAPM-MBD02] A potential gap between the system-level analysis and the real system could arise 

due to the fact that formal analysis may require to abstract away some critical aspects about both the 

system under development and the external environment it will operate in. 

 

Scalability and computational 

[GAPM-MBD03] The automated exhaustive analysis is subject to the state-explosion problem, which 

can prevent verification activities from scaling up to the complexity required in an industrial context. 

 

Deployment 

[GAPM-MBD04] In some contexts, the methods may focus on high-level system views and are not 

integrated with the deployment to real-world contexts or are limited to few target platforms. 

 

Learning curve 

[GAPM-MBD05] The method requires MBD skills, as well as expertise in the formalization of 

requirements. Formal methods have a steep learning curve, however the use of existing tools in a 

specific domain can make the formal specification process a much easier task. 

 

Lack of automation 

[GAPM-MBD06] MBD Verification requires the formalization of natural language requirements, 

which is largely a manual step. However, the verification results are mostly automated. 

 
 
Reference environment 

No relevant gap or limitation has been identified. 

 
 
Costs 

[GAPM-MBD07] Some MBD methods have only proprietary tool support with expensive licenses. 

 

Standards 

No relevant gap or limitation has been identified. 

 

References 

 

3.6.2.6 Traceability Management for Safety Software 

Name:          Traceability Management for Safety Software 

Short description 

Methodological method, that aims to formalize and make traceable the decisions taken during all the 

stages of the V-cycle process. 

 



Identified gaps and limitations of the V&V methods listed in D3.1 

ECSEL JU, grant agreement No 876852.  95 

Limitations 

Functionality 

No relevant gap or limitation has been identified. 

 

Accuracy 

No relevant gap or limitation has been identified. 

 

Scalability and computational 

No relevant gap or limitation has been identified. 

 

Deployment 

[GAPM-TMS01] Proper tools may need docker or server instances available. 

 

Learning curve  

[GAPM-TMS02] The curve is quite steep but needs constant application throughout the process. 

 

Lack of automation 

[GAPM-TMS03] Some automations are feasible. 

 
 
Reference environment 

No relevant gap or limitation has been identified. 

 
 
Costs 

[GAPM-TMS04] Proper tools may be expensive in terms of license costs and at a lower extent for the 

hardware required. 

 

Standards 

No relevant gap or limitation has been identified. 

 

References 

 

3.7 System-Type-Focused V&V 

This group of methods tackles general or several V&V needs specific to certain system types, typically 

covering different V&V areas, e.g., formal verification and testing, that can be combined for system V&V 

as a whole. Therefore, this group complements the previous ones by presenting wider V&V needs for 

specific situations, e.g. in the scope of some VALU3S use case. In this sense, the methods below can 

correspond to larger aspects of V&V processes that need to be reviewed in the project to set their current 

status, including their strengths and limitations. 
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3.7.1 CPU Verification 

Name:          Central Processing Unit (CPU) verification 

Short description 

CPU verification ensures that a CPU delivers services as intended. Several verification approaches 

and activities must be applied to reach this goal. The focus lies on open-source and free CPU 

verification methods. 

 

Limitations 

Functionality 

[GAPM-CPU01] A limitation is that a CPU cannot be verified for every possible software – state space 

is too large. 

[GAPM-CPU02] Free open-source tools for industry-grade CPU verification are currently under 

development (e.g. Open HW group RISC-V verification: https://github.com/openhwgroup/core-v-

verif) 

[GAPM-CPU03] Some verification standards such as UVM are limited to block-level verification and 

are not easily extendable to the software layer. 

 

Accuracy  

[GAPM-CPU14] Precise power consumption (for Differential Power Analysis Attacks mitigation) 

hardly verifiable on CPU models (e.g. RTL simulation). 

[GAPM-CPU04] Signal-integrity analysis has limited accuracy (e.g. maximum frequency for stable 

operation might differ for each produced CPU). 

[GAPM-CPU05] Simulation-based methods do not provide a proof of correct behaviour if not 

exhaustively exercised. For safety-critical applications, a combination with formal methods should 

be applied. 

 

Scalability and computational  

[GAPM-CPU06] Higher accuracy (cycle-accurate verification and below, e.g. gate-level simulation) 

demands high computation power and limits the testing capacity for software. 

 

Deployment 

[GAPM-CPU07] Industry-grade open-source tools not available yet. 

[GAPM-CPU08] Open-source tools do not provide a production verification environment. At 

integration, verification test programs have to be defined to test the desired functionality. 

 

Learning curve 

[GAPM-CPU09] CPU verification demands highly skilled verification engineers (testing, simulation, 

formal verification, etc.) 

 

Lack of automation 

[GAPM-CPU10] Traceability of requirements to design and implementation artifacts. Requirements 

and artifacts should be linked with tool support. 

https://github.com/openhwgroup/core-v-verif
https://github.com/openhwgroup/core-v-verif


Identified gaps and limitations of the V&V methods listed in D3.1 

ECSEL JU, grant agreement No 876852.  97 

[GAPM-CPU11] Tool-assisted generation of formal statements (assertions, properties) from a 

textual/graphical specification. 

 
 

Reference environment 

No relevant gap or limitation has been identified. 

 
 
Costs 

[GAPM-CPU15] CPU verification is very expensive (lots of hardware resources needed since CPUs 

have a high state space – lots of testcases necessary, tools might be expensive, lots of human resources 

needed) 

[GAPM-CPU12] Tool licenses become a dominating cost factor. 

[GAPM-CPU13] Modern SoC emulators are expensive on purchase and operation. 

 

Standards 

No relevant gap or limitation has been identified. 

 

References 

 

3.7.2 Penetration Testing 

Name: Penetration Testing 

Short description 

Analysis of data corruption in communication between server, PLC and sensors. 

 

Limitations 

Functionality 

[GAPM-DMD01] Cybersecurity approaches have a fundamental weakness which is that some 

security vulnerabilities cannot be detected like “Zero Day Attacks”. But there is no alternative healthy 

solution for penetration testing. Penetration testing must be applied by someone, who is outside the 

company, in order to get information from a different point of view in security. 

 

Accuracy 

[GAPM-DMD02] The method does not provide a perfect security level. But it is enough for not being 

the weakest link in the chain. Sometimes false positive and false negative results can be achieved, 

thus it is required to double check the test and system. Additionally, a full-force attack may have 

some damage risk so that the penetration tests may be executed in lighter fashion. 

 

Scalability and computational 

[GAPM-DMD03] Penetration test services need to access some base system at the implementation 

area (i.e. physical and virtual access). For a large wide area network, some regional administrators 

may not allow access to their domains so there might be some scalability issues not originating from 

the method itself but because of operational decisions. From a computational point of view no gaps 



Identified gaps and limitations of the V&V methods listed in D3.1 

98  ECSEL JU, grant agreement No 876852. 

or limitations have been identified since the resources to perform penetration testing is considerably 

neglectable and a powerful PC will be enough to carry out the test appropriately. 

 

Deployment 

No relevant gap or limitation has been identified: deployment of the method is not complicated since 

only network access is needed to perform the test. Base of penetration testing tools and methods are 

usually well-known. 

 

Learning curve 

[GAPM-DMD05] The testing approach used requires some solid background knowledge. Actually, 

since the cyber-attacks evolve by the time, it is important to be up to date by continuously following 

state-of-the-art attacks. Hence, proper implementation of this attack requires high-level skills. 

 

Lack of automation 

[GAPM-DMD06] Performance of penetration testing always depends on performance of penetration 

tester. We standardize the system using appropriate methods. However, it is not possible to fully 

automate these tests. 

 
 
Reference environment 

No relevant gap or limitation has been identified. The tests will be carried out in the operational 

environment (TRL-7). 

 
 
Costs 

No relevant gap or limitation has been identified since open-source software could be used. The main 

cost is originating from human resources. 

 

Standards 

No relevant gap or limitation has been identified. The method fulfils ISO/IEC 27002:2013, which gives 

guidelines about organizational information security standards and information security 

management practices including the selection, implementation and management of controls taking 

into consideration the organization's information security risk environment(s). 

 

References 

 

3.7.3 Failure Detection and Diagnosis (FDD) in Robotic Systems 

Name: Failure Detection and Diagnosis (FDD) in Robotic Systems 

Short description 

Failure Detection and Diagnosis is a data-driven process monitoring method for testing and 

minimising downtimes, increasing the safety of operations, and reducing manufacturing costs. FDD 

comprises different approaches that can be distinguished into data-based, model-based, and 

knowledge-based approaches. 
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Limitations 

Functionality 

[GAPM-FDD01] Data-based resp. data-driven approaches rely on the gained data in order to be able 

to extract useful information for failure detection and diagnosis. Thus, quantity and quality of the 

data is of utmost importance. Model-based approaches are totally dependent on the knowledge about 

the system in advance. The related diagnostic process relies on an explicit model of the normal system 

behaviour, its structure, and/or its known faults.  

[GAPM-FDD02] Knowledge-based approaches typically mimic the behaviour of a human expert and 

can combine model-based and data-driven approaches in a hybrid FDD approach, i.e., the failure can 

be detected through data analytics which is associated to a diagnosis afterwards by the model-based 

approach. The challenge with knowledge-based approach is the detection of unknown faults. 

 

Accuracy 

[GAPM-FDD03] Robotic systems are typically highly dynamic and, if not completely covered, act in 

an uncertain physical environment. They may interact with objects, other robots, and humans and 

consequently carry a high degree of uncertainty, where unexpected outcomes might lead to unknown 

faults and failed interactions. An FDD technique is supposed to detect failures and to distinguish 

between failed interactions that resulted from internal faults and failed interactions that resulted from 

exogenous events. Regarding Human-Robot Interaction (HRI) in UC4, FDD is mainly concerned with 

safety such as safety protocols and standards, risk assessment techniques and collision avoidance. 

The usage of FDD in this kind of scenarios is still new and cover some uncertainties and inaccuracies 

which must be tackled. 

 

Scalability and computational  

[GAPM-FDD04] Regarding and depending on data-driven model testing, the data volume will affect 

the scalability and computational performance.  In fact, the number of, e.g., sensors that are used for 

process monitoring and data gathering will affect the required computational resources. 

 

Deployment 

[GAPM-FDD05] FDD in HRI context is a relatively new field of application, thus it will have to cope 

with early adoption challenges, adaptations, connectivity, accessibility, etc. 

 

Learning curve  

[GAPM-FDD06] FDD requires high-level skills as it can comprise and apply a variety respectively a 

combination of approaches at the same time for monitoring and testing. In case of e.g. applying data-

driven machine learning, expert knowledge is required to identify and select the most accurate 

technique based on the available data (data volume, velocity, variety, veracity). 

 

Lack of automation  

[GAPM-FDD07] The method requires some intervention and effort, e.g., for modelling involved 

devices and/or humans to a required detail for simulating real world behaviour for testing. 
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Reference environment 

[GAPM-FDD08] FDD can be applied in various environments and is not limited to a single or small 

group of it. However, it has to be adapted to the particularities of the scenario.   

 
 
Costs 

[GAPM-FDD09] As there will be always effort for e.g., adaptation, modelling, data collection, etc., 

carried out by an expert or group of experts, a mid to high investment need to be considered. 

 

Standards 

[GAPM-FDD10] Some gaps have been pointed out in all the identified FDD-related standards as the 

applicability of the method in robotics is not yet broadly validated. 

ISO TS 15066 defines safety requirements for collaborative industrial robot systems and working 

environment. In order to fulfil these, FDD has to define and use specific test scenarios taking into 

account the specific safety requirements which is a relatively new field of application. The standard 

supplements the requirements and instructions for the operation of collaborative industrial robots 

and robot systems listed in ISO 10218-1 and ISO 10218-2.  

Same applies for the related methods mentioned in D3.1 and which FDD does not directly / namely 

consider: 

- EN ISO 13849 Safety of machines - safety-related parts of control systems 

- EN ISO 12100 Safety of machinery - General principles for design - Risk assessment and risk 

reduction  

- EN 61508-1 Functional safety of electrical/electronic/programmable electronic safety-related 

systems 

 

References 

 

3.7.4 Model-Based Formal Specification and Verification of Robotic Systems 

Name: Model-Based Formal Specification and Verification of Robotic Systems 

Short description  

The software of autonomous robot systems is generally complex and safety critical. Model-checking, 

which is a powerful technique for software verification, can verify the safety requirements of robotic 

systems in the early design stages. With the combination of runtime verification, the verification 

coverage can be improved by ensuring the safety of the robotic system during execution. 

 

Limitations 

Functionality 

[GAPM-MBF01] Creating a model is very difficult and time-consuming. It needs to be facilitated. 

[GAPM-MBF02]  The method requires some components to verify robotic systems, such as checking 

compliance with safety standards and checking collisions. 
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Accuracy 

The method is accurate if the system was modelled correctly and the system software was developed 

according to the model. 

 

Scalability and computational 

[GAPM-MBF03] When robotic system software becomes too complicated, the state space expands, 

and consequently, many computation resources and long waiting times for verification are required. 

 

Deployment 

[GAPM-MBF04] There are case studies in the literature in which this method is used in robotic 

systems, but there is no evidence for its use in industry. 

 

Learning curve 

[GAPM-MBF05] The robotic system software must be formally specified and modelled with a formal 

language to verify the system by model checking.  It requires expertise and experience gained during 

a long learning period. 

 

Lack of automation 

[GAPM-MBF06] All system models and specifications are created manually by human users. 

 
 
Reference environment 

No relevant gap or limitation has been identified. 

 
 
Costs 

[GAPM-MBF07] There are both free and paid model-checker software tools. A software tool cost can 

be incurred if a paid one is chosen.  

[GAPM-MBF08] If the state spaces of the models are too large, there may be a need for powerful 

computers to reduce the verification time, causing a hardware cost.   

[GAPM-MBF09] The creation of the models takes time and requires experience. In this case, human 

resources will also constitute a cost item. 

 

Standards 

[GAPM-MBF10] The method does not have tools that consider robot safety standards ((ISO 10218-1, 

ISO 10218-2, ISO/TS 15066) holistically. 
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Chapter 4 Gaps Overview 

In this chapter an overview of the gaps is presented, highlighting which are the most frequent category 

of gaps found in the analysed methods.  

Overall, 400 gaps have been identified as summarized in Table 4.1. Notice that some methods (namely 

Behaviour Driven Model Development and Test-Driven Model Review and Model-based Mutation Testing) are 

inheriting gaps from Model-based Testing: these gaps are counted in this table and in the following 

reports only with regard to Model-based Testing. 

Table 4.1: The number of identified gaps for each method 

Method Category # of gaps 

Model-Implemented Attack Injection Attack Injection 12 

Simulation-based Attack Injection at System-

level 

Attack Injection 11 

Vulnerability and Attack Injection Attack Injection 11 

Fault Injection in FPGAs Fault Injection 5 

Interface Fault Injection Fault Injection 6 

Model-Based Fault Injection for Safety Analysis Fault Injection 6 

Model-Implemented Fault Injection Fault Injection 11 

Simulation-based Fault Injection at System-level Fault Injection 13 

Software-Implemented Fault Injection Fault Injection 8 

Simulation-Based Robot Verification Simulation 6 

Simulation-Based Testing for Human-Robot 

Collaboration 

Simulation 4 

Test Optimization for Simulation-Based Testing 

of Automated Systems 

Simulation 3 

Virtual Architecture Development and 

Simulated Evaluation of Software Concepts 

Simulation 13 

Virtual & Augmented Reality-Based User 

Interaction V&V and Technology Acceptance 

Simulation 8 

V&V of Machine Learning-Based Systems Using 

Simulators 

Simulation 13 

Behaviour-Driven Model Development and Test-

Driven Model Review 

Testing 5 
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Method Category # of gaps 

Assessment of Cybersecurity-Informed Safety Testing 9 

Machine Learning Model Validation Testing 4 

Model-Based Mutation Testing Testing 2 

Model-Based Robustness Testing Testing 3 

Model-Based Testing Testing 15 

Risk-Based Testing Testing 4 

Signal Analysis and Probing Testing 4 

Software Component Testing Testing 5 

Test Parallelization and Automation Testing 7 

Dynamic Analysis of Concurrent Programs Runtime Verification 8 

Runtime Verification Based on Formal 

Specification 

Runtime Verification 11 

Test Oracle Observation at Runtime Runtime Verification 6 

Deductive Verification Formal Source Code 

Verification 

7 

Source Code Static Analysis Formal Source Code 

Verification 

11 

Behaviour-Driven Formal Model Development General Formal 

Verification 

4 

Formal Requirements Validation General Formal 

Verification 

7 

Model Checking General Formal 

Verification 

5 

Reachability-Analysis-Based Verification for 

Safety-Critical Hybrid Systems 

General Formal 

Verification 

9 

Theorem Proving and SMT Solving General Formal 

Verification 

7 

Human Interaction Safety Analysis SCP-Focused Semi-

Formal Analysis 

7 

Intrusion Detection for WSN based on WPM 

State Estimation 

SCP-Focused Semi-

Formal Analysis 

3 

Kalman Filter-Based Fault Detector SCP-Focused Semi-

Formal Analysis 

7 
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Method Category # of gaps 

Model-Based Safety Analysis SCP-Focused Semi-

Formal Analysis 

9 

Model-Based Threat Analysis SCP-Focused Semi-

Formal Analysis 

7 

Risk Analysis SCP-Focused Semi-

Formal Analysis 

11 

Vulnerability Analysis of Cryptographic 

Modules against Hardware-based Attacks 

SCP-Focused Semi-

Formal Analysis 

7 

Wireless Interface Network Security Assessment SCP-Focused Semi-

Formal Analysis 

4 

Code Design and Coding Standard Compliance 

Checking 

General Semi-Formal 

Analysis 

6 

Knowledge-Centric System Artefact Quality 

Analysis 

General Semi-Formal 

Analysis 

8 

Knowledge-Centric Traceability Management General Semi-Formal 

Analysis 

7 

Model-Based Assurance and Certification General Semi-Formal 

Analysis 

10 

Model-Based Design Verification General Semi-Formal 

Analysis 

7 

Traceability Management for Safety Software General Semi-Formal 

Analysis 

4 

CPU Verification System-Type-Focused 

V&V 

15 

Penetration Testing System-Type-Focused 

V&V 

5 

Failure Detection and Diagnosis (FDD) in 

Robotic Systems 

System-Type-Focused 

V&V 

10 

Model-Based Formal Specification and 

Verification of Robotic Systems 

System-Type-Focused 

V&V 

10 

Total number of gaps  400 

 

On average, 7.5 gaps or limitations have been identified for each method. The methods with the highest 

number of gaps or limitations (15) are Model-based Testing and Penetration Testing. The category with the 

highest number of highlighted gaps or limitations is Attack Injection, whose methods have 11.3 gaps or 
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limitations on average. The list of categories with the associated average number of gaps is shown in 

Table 4.2. 

Table 4.2: Average number of gaps for each category of methods 

Category # of gaps 

Attack Injection 11.3 

Fault Injection 8.1 

Simulation 7.8 

Testing 5.8 

Runtime Verification 8.3 

Formal Source Code Verification 9.0 

General Formal Verification 6.4 

SCP-Focused Semi-Formal Analysis 6.9 

General Semi-Formal Analysis 7.0 

System-Type-Focused V&V 10.0 

 

The type of gap with the highest number of occurrences is Functionality, about which 69 gaps have been 

identified. The complete list of type of gaps and the relative number of occurrences are shown in Table 

4.3. 

Table 4.3: Total number of gaps for each type of gap. 

Type of gap # of gaps 

Functionality 69 

Accuracy 56 

Scalability 49 

Deployment 47 

Learning Curve 45 

Reference Environment 25 

Costs 50 

Lack of Automation 43 

Standards 16 
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Figure 4.1: The average number of gaps per category of method and type of gap. 

Figure 4.1 reports the average number of gaps for each category of method and for each type of gap. 

For example, Attack Injection methods include about 12 gaps on average overall: about 1 regards 

Accuracy, about 2 regard Costs etc… This allows to qualitatively understand which type of gap are 

more frequent in each category. For example, Testing methods have more frequently gaps or limitations 

about Accuracy, while fewer limitations were pointed out as regards Functionality. 

Of course, these indications could be further analysed during the next activities of VALU3S (in 

particular, Task 3.3) because the detected gaps and limitations are going to drive the development of 

improved or new methods. So, understanding if some methods share the same type of limitations and 

which type of limitations are more frequent could clarify the direction where the improvements should 

be carried out. 
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Chapter 5 Tool-related Gaps and Limitations 

Besides the gaps and limitations of the methods, it is worth highlighting that many applications cannot 

be faced with state-of-the-art V&V methods due to the lack or inadequacy of tools supporting such 

methods. As a matter of fact, a tool should implement all the functionalities of a method, should achieve 

high performances also on complex problems and should allow an easy and quick deployment in 

different real-world contexts. Moreover, since tools are supposed to be used by people with different 

technological skills, the ease of use and, in general, the user experience are important topics, too. For 

this reason, this section is focused on highlighting which methods tools are currently available for the 

methods analysed in Chapter 3 and the relative limitations. The focus here is not on the limitations of 

the methods but rather on the limitations in the implementation of the methods. Also, for tools, gaps 

and limitations have been labelled using the prefix “GAPT”. Table 5.1 reports the results of this analysis. 

Notice that the table reports only the tools for which some gaps or limitations have been identified. Of 

course, other tools are available for each method but they are not reported here. A more complete report 

of available tools can be found in [1]. 

Table 5.1: List of the tools associated with different methods and the relative gaps and limitations. 

V&V method Tool Limitations / gaps 

Simulation-based Fault Injection at 

System-level. 

Fault and Attack 

insertion in 

SUMO 

(Simulation of 

Urban MObility) 

[GAPT01] The tool is limited to inject faults in 

SUMO. 

[GAPT02] Test configuration and results analysis 

are done manually.  

[GAPT03] No support for pre- and post-injection 

analysis. 

Behaviour-Driven Formal Model 

Development 

Gherkin [GAPT04] Gherkin integration to ProB is only 

prototypical. 

Behaviour-Driven Formal Model 

Development 

MoMuT::Event-B [GAPT05] MoMuT for Event-B is a prototype tool 

that does support only a subset of Event-B. 

Deductive Verification VCC [GAPT07] No integration with other 

V&V/development tools, e.g. Simulink. 

Deductive Verification Frama-C [GAPT08] No integration with other 

V&V/development tools, e.g. Simulink. 
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V&V method Tool Limitations / gaps 

Deductive Verification Verifast [GAPT09] No integration with other 

V&V/development tools, e.g. Simulink. 

Deductive Verification Dafny [GAPT10] No integration with other 

V&V/development tools e.g. Simulink. 

Dynamic Analysis of Concurrent 

Programs 

ANaConDA  [GAPT11] Missing support of some programming 

features (e.g., multi-process programs). 

[GAPT12] Some forms of properties to be checked 

not supported in sufficient generality (e.g., contracts 

of concurrency are not supported in a way 

distinguishing values of parameters of the functions 

involved in the contracts). 

Failure Detection and Diagnosis 

(FDD) in Robotic Systems 

CIROS Studio 

 

[GAPT13] The model library does not include all 

types of devices needed in the simulation of some 

applications.  

[GAPT14] Human model needs enhancements. 

Formal Requirements Validation FRET [GAPT15] It does not support first-order 

quantification. 

General Formal Verification Rodin [GAPT16] Interactive proofs can be very time 

consuming. 

Knowledge-Centric System Artefact 

Quality Analysis 

RQA - Quality 

Studio 

[GAPT17] The amount of available model-specific 

metrics is limited. 

[GAPT18] Some tools cannot be integrated. 

Knowledge-Centric Traceability 

Management 

Traceability 

Studio 

[GAPT19] Some tools cannot be integrated. 

Model Checking Kind2 [GAPT20] Limited by state space explosion. 

Model Checking CoCoSim [GAPT21] Limited integration with the other 

V&V/development tools, e.g. Simulink. Also, 

limited support for verifying detailed properties 

about arrays. 



Identified gaps and limitations of the V&V methods listed in D3.1 

ECSEL JU, grant agreement No 876852.  111 

V&V method Tool Limitations / gaps 

Model-Based Assurance and 

Certification 

OpenCert [GAPT22] There can be performance issues 

depending on how storage is configured. 

[GAPT23] Usability can be improved. 

[GAPT24] Support for workflow configuration is 

limited. 

[GAPT25] Further integration with external tools 

can be needed. 

Model-based fault injection for safety 

analysis 

xSAP [GAPT26] Tool support usability can be improved, 

e.g., editing and customization of fault libraries. 

Model-based fault injection for safety 

analysis 

COMPASS [GAPT27] Tool support usability can be improved, 

e.g., editing and customization of fault libraries. 

Model-Based Formal Specification 

and Verification of Robotic Systems 

ROS [GAPT28] Needs integration with formal 

verification models 

Model-Based Formal Specification 

and Verification of Robotic Systems 

UPPAAL [GAPT29] Creating models is difficult and requires 

expertise. 

Model-Based Formal Specification 

and Verification of Robotic Systems 

ROSRV [GAPT30] It does not use formal models. It does not 

verify formally.  

[GAPT31] There are security problems. 

Model-Based Formal Specification 

and Verification of Robotic Systems 

GAZEBO [GAPT32] It needs integration with formal 

verification methods 

Model-Based Mutation Testing Conformiq 

Designer  

[GAPT33] Very limited set of mutations is provided. 

Model-Based Robustness Testing MoMuT [GAPT34] The “fuzzing" features implemented are 

up to now rudimentary compared to fuzzing tools 

for e.g. protocol testing. 

Model-Based Safety Analysis CHESS FLA [GAPT36] In presence of a large and complex 

systems, false FMEA rows may be generated and FT 

generation has to be improved. 
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V&V method Tool Limitations / gaps 

Model-Based Testing MoMuT [GAPT37] Proprietary test case format. 

Model-Implemented Attack 

Injection. 

MODIFI 

(Matlab/Simulink 

based) 

[GAPT38] Limited number and accuracy of attack 

models. 

[GAPT39] Limited support for pre- and post-

injection analysis. 

Model-Implemented Fault Injection. MODIFI 

(Matlab/Simulink 

based) 

[GAPT40] Limited number and accuracy of fault 

models. 

[GAPT41] Limited support for pre- and post-

injection analysis. 

Runtime Verification Based on 

Formal Specification 

Copilot [GAPT42] No integration with other 

V&V/development tools, e.g. Simulink. 

Runtime Verification Based on 

Formal Specification 

Spectra [GAPT43] Missing support of automatic 

instrumentation of check points. 

Signal Analysis and Probing TestStand [GAPT44] Proprietary data storage approach.  

Flexibility by e.g. SQL databases is needed 

Simulation-based Fault and Attack 

Injection at System-level. 

Fault and Attack 

insertion in 

SUMO 

(Simulation of 

Urban MObility) 

[GAPT45] The tool is limited to inject attacks in 

SUMO.  

[GAPT46] Test configuration and results analysis 

are done manually. 

[GAPT47] No support for pre- and post-injection 

analysis. 

Source Code Static Analysis Frama-C [GAPT48] Weak support of concurrency-related 

program issues. 

Source Code Static Analysis Facebook Infer [GAPT49] Weak support of concurrency-related 

program issues, especially for low-level 

synchronisation. 

Source Code Static Analysis 2LS [GAPT50] Missing support for programs using 

certain kinds of data structures, such as arrays and 

hash tables. 



Identified gaps and limitations of the V&V methods listed in D3.1 

ECSEL JU, grant agreement No 876852.  113 

V&V method Tool Limitations / gaps 

Theorem Proving and SMT Solving Z3 [GAPT51] Can time-out on complex properties. 

V&V of Machine Learning-Based 

Systems Using Simulators 

SUMO 

(Simulation of 

Urban Mobility) 

[GAPT52] Only macro level simulations, not directly 

support for V&V of ML-based perception systems 

V&V of Machine Learning-Based 

Systems Using Simulators 

TASS/Siemens 

PreScan 

[GAPT53] Limited support for diversity of 

scenarios. 

V&V of Machine Learning-Based 

Systems Using Simulators 

ESI Pro-SiVIC [GAPT54] No comprehensive digital twin library. 

V&V of Machine Learning-Based 

Systems Using Simulators 

CARLA [GAPT55] No comprehensive sensor models. 

[GAPT56] No comprehensive digital twin library  

V&V of Machine Learning-Based 

Systems Using Simulators 

Unreal Engine [GAPT57] No comprehensive library of digital twin 

[GAPT58] Limitation in sensor models 

V&V of Machine Learning-Based 

Systems Using Simulators 

Environment 

Simulator 

Minimalistic 

(ESMINI) 

 

[GAPT59] Not user friendly, written in C/C++.  

[GAPT60] Difficult to integrate it with machine 

learning software stack. 

Virtual & Augmented Reality-Based 

User Interaction V&V and 

Technology Acceptance 

Unity 3D [GAPT61] It is a closed-source software. Apart from 

that, the cost of deep customization of the user 

interaction can be high (development from scratch) 

Vulnerability analysis of 

cryptographic modules against 

hardware-based attacks 

Anadigm 

Designer2 

[GAPT62] It is used to evaluate RNG designs, but 

requires high knowledge and experience.  

[GAPT63] Only analogue-based RNGs can be 

designed and evaluated.  

[GAPT64] Cannot work at high frequencies (max 

1MHZ) 
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V&V method Tool Limitations / gaps 

Vulnerability analysis of 

cryptographic modules against 

hardware-based attacks 

Xilinx Vivado 

Design Suite 

[GAPT65] It is used to evaluate RNG designs, but 

requires high knowledge and experience.  

[GAPT66] Only digital-based RNGs can be designed 

and evaluated. 

Vulnerability analysis of 

cryptographic modules against 

hardware-based attacks 

BigCrush [GAPT67] Big Crush tests require at least 1TB of 

data. Thus, this test can only be implemented over 

strong computers 

Vulnerability analysis of 

cryptographic modules against 

hardware-based attacks 

DieHard [GAPT68] Tests can be made by collecting the RNG 

output of the system to be evaluated as at least 1 

million bits. This process takes time and requires 

extra hardware if it is not already integrated. 

Vulnerability analysis of 

cryptographic modules against 

hardware-based attacks 

NIST 800-22 [GAPT69] Tests can be made by collecting the RNG 

output of the system to be evaluated as at least 1 

million bits. This process takes time and requires 

extra hardware if it is not already integrated. 
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Chapter 6 Use Case-related Gaps and Limitations 

In this chapter, use cases are analysed to find the gaps in current V&V methods that prevent their 

application in real world scenarios. To reach this goal, the first step has been the identification of the 

state-of-the-art methods for the different use cases to understand what is currently used and which are 

the needed intervention to allow a better implementation of the scenarios. In particular, for each use 

case, the available methods have been divided into four groups: 

1. Methods that are currently used in the use case. 

2. Methods that will likely be used during the use case without any major development or 

improvement. 

3. Methods that could be used in the use case after removing some limitations. 

4. Methods that are not relevant for the use case, so they will not be used during the project for 

that use case. 

This categorization allows one to identify where the effort should be put in place in the improvement 

and development of new methods. In particular, groups 1, 2 and 4 do not need any intervention, while 

methods in group 3 deserve some further analyses to understand which are the current limitations and 

how technology providers in WP3 should work to address such limitations. 

It is worth noting that the definition of use cases is an ongoing process, so the definition of usable 

methods has been quite conservative: it is likely that not all the methods tagged as potentially usable 

will be actually used during the use case implementation. At the same time, the analysis presented in 

this chapter of the deliverable is necessarily partial, since not all the details of the demonstrators are 

known during this phase. Subsequent deliverables (in particular, all future deliverables of WP5 and 

D3.5 about new V&V methods) will address this topic more precisely. What is presented here is aimed 

only at providing some elements that could guide the work to develop new methods (Task 3.3, in 

particular).  

Section 6.1—Section 6.12  report the results of these analysis for the 12 use cases. For each method, 

already identified issues are listed: for each of them it is specified between parentheses if it is a gap (i.e. 

something missing to allow the implementation of the method) or a limitation (i.e. some intrinsic limit 

of the method for that specific application). Notice that not all the use cases have some gaps or 

limitations reported. In these cases, the implementation of the use case is in an early stage and it is not 

possible to define use case driven limitations: of course, the gaps and limitations described for methods 

in Chapter 3 still hold true. 

6.1 UC1 – Intelligent Traffic Surveillance 

Currently Used Methods: Software Component Testing, Test Parallelization and Automation. 

Methods that are planned to be used: Source Code Static Analysis. 
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Potentially usable methods: Simulation-based Attack Injection at System-level, Software-Implemented 

Fault Injection, V&V of Machine Learning-Based Systems Using Simulators, Model-Based Testing, 

Dynamic Analysis of Concurrent Programs, Penetration testing of Industrial Systems. 

6.1.1 Identified Gaps and Limitations for Use Case Application 

V&V of Machine Learning-Based Systems Using Simulators 

• Availability of UC- related digital twin in simulator (scenes, scenarios, sensor models). Recreate 

the real-world scenarios of UC1 system in the simulator. (gap) 

• V&V process that can use both real-world and simulation data. (gap) 

• V&V of ML needs novel approaches as conventional techniques such as code reviews and 

coverage testing are only partly applicable. (gap) 

 

Simulation-based Attack Injection at System-level 

• A detailed description of the system from UC owner should be provided to apply this method. 

(gap) 

• The availability of UC related digital twin in simulator (scenes, scenarios, sensor models) is 

needed for the method to work properly. (gap) 

 

Penetration testing 

• A detailed description of the system from UC owner should be provided to apply this method. 

(gap) 

• The hardware/software related to the use case should be provided. (gap) 

• Several variants of the method should be tried to improve its effectiveness, but, due to limited 

tools, time, scope, and access, not all of them will we explored. (limitation) 

 

Dynamic Analysis of Concurrent Programs 

• It requires one or more automatic tests (no assertion needed though) including execution 

environment or its test double (or the test harness). (gap) 

• In the context of the use case, the method may provide a lot of false positives. (limitation) 

• The method introduces significant overhead, so it cannot be used on SUT with real-time 

characteristic. (limitation) 

6.2 UC2 – Car Teleoperation 

Methods that are planned to be used: Software-Implemented Fault Injection, Assessment of 

Cybersecurity-Informed Safety, Dynamic Analysis of Concurrent Programs, Source Code Static 

Analysis, Penetration testing of Industrial Systems. 

Potentially usable methods: Simulation-based Attack Injection at System-level, Simulation-based Fault 

Injection at System-level, Virtual Architecture Development and Simulated Evaluation of Software 

Concepts, Model-Based Testing, Human Interaction Safety Analysis 
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6.2.1 Identified Gaps and Limitations for Use Case Application 

Simulation-based Attack Injection at System-level 

• A proper tool to be applied in the context of the use case is currently to be identified. (gap) 

Simulation-based Fault Injection at System-level 

• The configuration of the Clumsy tool, currently used in the scope of the use case, is unsatisfiable. 

The development of a network monitoring tool to cover areas out of scope of Clumsy is needed. 

(gap) 

Software-Implemented Fault Injection 

• The configuration of the Clumsy tool, currently used in the scope of the use case, is unsatisfiable. 

(gap) 

•  The development of a network monitoring tool to cover areas out of scope of Clumsy is needed. 

(gap) 

Source Code Static Analysis 

• The number of checks is not sufficient for the target of the use case. Extension of Facebook Infer 

and/or Frama-C frameworks will be needed to support more common weakness or specific-

purpose analyses (gap). 

6.3 UC3 – Radar Systems for ADAS 

Currently used methods: Fault Injection in FPGAs, Interface Fault Injection, Software-Implemented 

Fault Injection, Software Component Testing, Runtime Verification Based on Formal Specification, 

Source Code Static Analysis, Behaviour-Driven Formal Model Development, Formal Requirements 

Validation, Model Checking, Model-Based Safety Analysis, Model-Based Threat Analysis, Risk 

Analysis, Wireless Interface Network Security Assessment, Code Design and Coding Standard 

Compliance Checking, Model-Based Design Verification, Traceability Management for Safety Software 

Methods that are planned to be used: Test Parallelization and Automation, Signal Analysis and 

Probing 

Potentially usable methods: Model-Based Fault Injection for Safety Analysis, Model-Implemented 

Fault Injection, Risk-Based Testing 

6.4 UC4 – Human-Robot-Interaction in Semi-Automatic Assembly 

Processes 

Currently used methods: Model-Based Fault Injection for Safety Analysis, Simulation-Based Testing 

for Human-Robot Collaboration, Virtual Architecture Development and Simulated Evaluation of 

Software Concepts, Machine Learning Model Validation, Model-Based Testing, Model-Based Safety 

Analysis, Model-Based Threat Analysis, Failure Detection and Diagnosis (FDD) in Robotic Systems. 

Methods that are planned to be used: Virtual & Augmented Reality-Based User Interaction V&V and 

Technology Acceptance. 
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Potentially usable methods: Model-Implemented Attack Injection, Model-Implemented Fault Injection, 

Simulation-based Fault Injection at System-level, Software-Implemented Fault Injection, V&V of 

Machine Learning-Based Systems Using Simulators, Behaviour-Driven Model Development and Test-

Driven Model Review, Assessment of Cybersecurity-Informed Safety, Formal Requirements Validation, 

Reachability-Analysis-Based Verification for Safety-Critical Hybrid Systems, Human Interaction Safety 

Analysis, Kalman Filter-Based Fault Detector, Model-Based Formal Specification and Verification of 

Robotic Systems. 

6.4.1 Identified Gaps and Limitations for Use Case Application 

Behaviour-Driven Model Development and Test-Driven Model Review 

• The use case has not adopted a tool to sketch, generate and evaluate the UML diagrams. (gap) 

• The methodology and the tool proposed seem to be more intended for the software 

development field. (limitation) 

• The availability and encourage to use the referred tool have not been done properly. (limitation) 

• The method seems to strongly rely into the proposed tool framework. (gap) 

Formal Requirements Validation 

• Formal specifications and requirements have not been defined for the use case. (gap) 

• Currently no formal checkers or tools have been implemented in the use case. (gap) 

Model-Based Formal Specification and Verification of Robotic Systems 

• Property specifications has to be provided. (limitation) 

• System level model has to be provided. (gap) 

• The model checker is not clearly defined. (limitation) 

• Adoption of an extra tool to apply the method. (limitation) 

Model-Implemented Attack Injection 

• Clearly define the fault models. (gap) 

• Difficult to extend the fault injection methodology to the actual physical system. (limitation) 

Model-Implemented Fault Injection 

• Evaluate possible scenarios for application and define the attack models. (gap) 

• Difficult to extend the attack injection methodology to the actual physical system. (limitation) 

 

Simulation-based Fault Injection at System-level 

• The system level model platform is currently under development. (gap) 

• No knowledge about the proposed traffic simulators. (limitation) 

6.5 UC5 – Aircraft Engine Controller 

Currently used methods: Reachability-Analysis-Based Verification for Safety-Critical Hybrid Systems. 

Methods that are planned to be used: Model-Implemented Attack Injection, Model-Implemented Fault 

Injection, Behaviour-Driven Formal Model Development, Formal Requirements Validation, Model 

Checking, Theorem Proving and SMT Solving, Model-Based Design Verification. 
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Potentially usable methods: Interface Fault Injection, Runtime Verification Based on Formal 

Specification, Deductive Verification, Source Code Static Analysis. 

6.6 UC6 – Agricultural Robot 

Methods that are planned to be used: Interface Fault Injection, Human Interaction Safety Analysis, 

Model-Based Safety Analysis, Wireless Interface Network Security Assessment. 

Potentially usable methods: Simulation-Based Robot Verification, Assessment of Cybersecurity-

Informed Safety, Software Component Testing, Code Design and Coding Standard Compliance 

Checking, Traceability Management for Safety Software. 

6.6.1 Identified Gaps and Limitations for Use Case Application 

Model-Based Safety Analysis - Failure Logic Analysis (FLA) 

• Since the method has not been used in this context yet, the workflow and the different 

components that should be used is still to be defined. (gap) 

Risk Analysis 

• A dataset about threats and faults occurred to agricultural automated systems is currently not 

available, so gathering this information with the higher level of detail is required for applying 

the method. (gap) 

• The modelling of each system component could be difficult to be performed with high 

granularity. Moreover, also the interdependencies among them, could be very complex and not 

fully described by a model. (limitation) 

• Since it is a new application field, compliance to standard related to utilization of robots and 

automated systems in the agriculture domain should be addressed. (gap) 

6.7 UC7 – Human-Robot Collaboration in a Disassembly Process with 

Workers with Disabilities 

Methods that are planned to be used: Simulation-Based Testing for Human-Robot Collaboration, Test 

Optimization for Simulation-Based Testing of Automated Systems, Virtual & Augmented Reality-Based 

User Interaction V&V and Technology Acceptance. 

6.8 UC8 – Neuromuscular Transmission for Muscle Relaxation 

Measurements 

Methods that are planned to be used: Model-Based Safety Analysis, Risk Analysis. 

Potentially usable methods: Software-Implemented Fault Injection. 

6.8.1 Identified Gaps and Limitations for Use Case Application 

Software-Implemented Fault Injection 
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• The modelling of stochastic processes in infusion pumps and TOF measurements is currently 

not available and needs to be developed to apply the model. (gap) 

• A model for pseudo-random noise to infusion pump outputs and to TOF/PTC measurements 

need to be developed to apply the method. (gap) 

• Some adaptation is needed to apply the method in the Infusion controller for NMT regulation. 

(gap) 

6.9 UC9 – Autonomous Train Operation 

Potentially usable methods: V&V of Machine Learning-Based Systems Using Simulators, Machine 

Learning Model Validation. 

6.9.1 Identified Gaps and Limitations for Use Case Application 

V&V of Machine Learning-Based Systems Using Simulators 

• A complete dataset containing a variety of scenarios covering (almost) all possible working 

conditions should be developed to apply the method. While most simulators to generate this 

type of datasets is focused on automotive, no railway scenarios are currently achievable by 

means of them. (gap) 

• The method is statistical, so cannot ensure sufficient reliability for critical applications and 

cannot fulfil standards in the railway domain, since they are based on deterministic 

applications. (limitation) 

 

Machine Learning Model Validation 

• Since fully auto labelled data in railway domain simulators is not available, a custom semi-

automatic validation framework should be created, which requires huge investments in terms 

of budget and human resources. (gap) 

• The method is statistical, so cannot ensure sufficient reliability for critical applications and 

cannot fulfil standards in the railway domain, since they are based on deterministic 

applications. (limitation) 

6.10 UC10 – Safe Function Out-Of-Context 

Methods that are planned to be used: Fault Injection in FPGAs, Model-Based Testing, Model Checking 

Potentially usable methods: Interface Fault Injection, Model-Based Fault Injection for Safety Analysis, 

Software-Implemented Fault Injection, Software Component Testing, Runtime Verification Based on 

Formal Specification, Source Code Static Analysis, Formal Requirements Validation, Theorem Proving 

and SMT Solving, Model-Based Safety Analysis, Knowledge-Centric Traceability Management, Model-

Based Assurance and Certification, Model-Based Design Verification, Traceability Management for 

Safety Software. 
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6.11 UC11 – Automated Robot Inspection Cell for Quality Control of 

Automotive Body-In-White 

Currently Used Methods: Simulation-Based Robot Verification 

Methods that are planned to be used: Model-Based Testing, Runtime Verification Based on Formal 

Specification, Model-Based Threat Analysis, Vulnerability analysis of cryptographic modules against 

hardware-based attacks, Penetration testing of Industrial Systems, Model-Based Formal Specification 

and Verification of Robotic Systems. 

Potentially usable methods: Model-Implemented Attack Injection, Simulation-based Attack Injection 

at System-level, Vulnerability and Attack Injection, Interface Fault Injection, Model-Based Fault 

Injection for Safety Analysis, Software-Implemented Fault Injection, Software Component Testing, 

Human Interaction Safety Analysis 

6.11.1 Identified Gaps and Limitations for Use Case Application 

Virtual Architecture Development and Simulated Evaluation of Software Concepts 

 

• Since the Simulation environments cannot simulate the accelerated movements, start and 

slowdown acceleration movements of the UC11 could not be able to be simulated. (gap) 

•  Body-in white system of UC11 works with PLCs in real world and simulation world does not 

have any perfection to simulate the PLC works. (gap) 

6.12  UC13 – Industrial Drives for Motion Control 

Methods that are planned to be used: Behaviour-Driven Model Development and Test-Driven Model 

Review, Model-Based Mutation Testing, Model-Based Robustness Testing, Model-Based Testing, Test 

Oracle Observation at Runtime, Model Checking, CPU Verification. 

Potentially usable methods: Model-Based Fault Injection for Safety Analysis, Virtual Architecture 

Development and Simulated Evaluation of Software Concepts. 

6.12.1 Identified Gaps and Limitations for Use Case Application 

Virtual Architecture Development and Simulated Evaluation of Software Concepts  

• Fault injection for changing the behavior of simulation components is not directly supported 

by current tools associated with the method, which would be needed for fault-injection analysis 

of motor position sensor data. (gap) 

• The technical connection of FERAL to the simulation components of the UC (e.g., proprietary 

multi-physics simulator AMESim for motor modelling and simulation, QEMU, SystemC and 

(real-time) operating systems) needs to be implemented by means of proper connectors and 

adaptors. (gap)
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Chapter 7 Conclusions 

In this deliverable, gaps and limitations of V&V methods presented in D3.1 have been reviewed and 

analysed. Overall, 53 methods belonging to 13 groups (as defined in D3.1 [1]) have been analysed 

considering 9 categories of limitations. Considering all the categories, 400 gaps have been identified. 

The number of gaps per method ranges from 1 to 15, with an average of 7.5. The category with the 

highest average number of gaps or limitations is Attack Injection, whose methods have 11.3 gaps on 

average. The most frequent type of gap or limitation is Functionality: 69 of them have been pointed out. 

In addition, some gaps and limitations of tools have been considered, too, to highlight, besides the 

theoretical limitations, the practical issues that prevent actual deployment of V&V methods.  

At last, also inputs from use cases have been considered, identifying what is missing in the state-of-the-

art of V&V methods to allow an effective implementation of the VALU3S demonstrators. Since the 

implementation of use cases is an ongoing process, this picture is necessarily partial, but still, it is a good 

starting point to identify the direction of further developments in V&V methods. The limitations of 

methods together with the limitations derived from use cases will be the input for Task 3.3 since they 

will guide the improvements to existing methods and the development of new methods. 

The results of this deliverable are in connection with the VALU3S objectives and KPIs. In particular, the 

identification of gaps and limitations is a prerequisite for Objective 2 (To overcome the SCP gaps and 

limitations of cyber-physical systems), Objective 5 (To suggest and validate new as well as state-of-the-

art evaluation scenarios for safety, cybersecurity and privacy evaluation) and Objective 6 (To develop 

and improve V&V tools and evaluation criteria). Related to these objectives, this deliverable is 

contributing to achieve some of the project’s KPIs, namely: 

• Improve at least 14 V&V methods in order to create VALU3S repository of improved V&V 

methods (related to Objective 2). 

• Present and detail at least 13 novel evaluation scenarios (including their requirement 

specifications) for safety, security and privacy evaluation through 13 realistic use cases (related 

to Objective 5). 

• Improve and/or develop at least 24 V&V tools that aim to improve the time and cost of V&V 

processes while dealing with hardware-, software- and system-level cyber-physical risks 

(related to Objective 6). 

• Incorporate and make use of at least 13 SCP evaluation criteria as well as at least 11 evaluation 

criteria suitable for measuring the level of improvement obtained in the V&V processes (related 

to Objective 6).
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