Measuring lead times for failure prediction
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Abstract—Failure prediction anticipates system failures before
they occur so that preemptive action can be taken, thus improving
the dependability of the system. For effective failure prediction,
the lead time, i.e., the time between the occurrence of a fault and
the appearance of a system failure, must accommodate both the
prediction step and the preemptive action that is triggered after
it. Lead time is intrinsically related to complex error propagation
phenomena, which depends on the software architecture of the
target system (i.e., the system where failures are predicted) and on
the dynamics of such software. For this reason, lead time is highly
dependent on the specific nature and intrinsic details of the target
system, which means that determining the distribution of lead
time for a particular target system should be the very first step in
developing failure prediction models. Furthermore, this step is of
utmost importance, as it may decide whether failure prediction
is viable for a given target system or not. For example, if lead
time in a given target system is very short, it means that failure
prediction is not viable in such system and classic (and expensive)
fault tolerance should be applied. This paper proposes a method
for obtaining the lead time distribution of a system using fault
injection and presents a practical experiment illustrating such
method for a virtualized system. The results suggest that the
lead times of failures caused by software faults are usually much
larger than those of failures caused by hardware faults.

Index Terms—Failure prediction, Fault injection, Dependabil-

ity
I. INTRODUCTION

Failure prediction in computer systems, especially in com-
plex systems such as high performance computing systems or
systems that support the Cloud, has been a long quest of many
decades. Unfortunately, practical solutions are still scarce and
recent surveys/reflections on the topic still identify many gaps
in the current state of the practice (e.g., see [1f], [2]]).

The intensive use of artificial intelligence (AI) techniques
for failure prediction has brought great expectations, especially
in the last decade. But Al needs large quantities of failure data
to provide effective results and real and meaningful failure
data in computer systems is very hard to get. The use of fault
injection techniques to produce realistic failure data for the
development and evaluation of failure prediction models was
first proposed in [3]. Since then, a large number of works have
been published exploring this idea (e.g., see [4]], [5]).

However, one aspect that has been largely ignored in the
fault injection studies used to collect failure data is the
assessment of the failure behavior of the target system (i.e.,
the system where failures are predicted) in the time domain.
In particular, the assessment of failure lead time (i.e., the time
between the occurrence of a fault and the failure manifestation
at system level) is essential to evaluate the feasibility of
failure prediction in a given computer system. If the lead time

is usually very short in that particular system, it could be
impossible to predict failures and perform preventive actions
in time to avoid system failures.

Lead time is highly dependent on the target system archi-
tecture and intrinsic details such as the software installed and
its configurations, since lead time results from the series of
complex error propagation events generated as consequence
of a fault. Thus, it is of utmost importance to understand not
only the general lead time distribution in the target system,
but also to understand how lead time depends on the actual
component of the target system affected by the fault or the
type of faults.

In this paper, we propose the use of fault injection to
assess the distribution of lead time of the target system as a
mandatory first step in developing failure prediction solutions.
Knowing the lead time distribution and, particularly, the way
such distribution changes with the target system component
affected by the fault, the type of faults, or even system
configuration, is essential to evaluate the feasibility of failure
prediction in the target system, to assess the percentage of
failures that are impossible to predict (e.g., failures with lead
time of a few milliseconds are hard to predict in practice),
and to identify critical system components that are related to
failures showing very short lead time in a consistent way.

The paper is organized in the following way: Section II
presents the proposed approach, Section III describes the
methodology used in our experiments, Section IV presents and
discusses the results, Section V discusses the limitations of the
method and Section VI concludes the paper.

II. PROPOSED APPROACH

The idea consists of defining specific fault injection cam-
paigns with the goal of evaluating the lead time distribution of
the target system. Fault injection is a mature technology that
has been used in many contexts [6], [7].

The proposed method is straightforward: it consists basi-
cally of three steps:

« 1) Definition of specific fault injection campaigns.

o 1) Injection of faults and collection of failure timing data.

o 11%) Analysis and conclusions for failure prediction strat-

egy optimization.

Although the method is straightforward, the definition of
the fault injection campaigns must meet the following criteria
to assure accurate assessment of lead time:

e Representativeness - Include both representative hardware

and software faults to assure realistic error propagation
phenomenon and assess lead time accurately.



e Reachability - Inject faults in the relevant components of
the target system to assure representative failure coverage.

o Instrumentation - Collect timestamps of key events with
minimal timing disturbance in the target system.

e Failure detection - Detect failure occurrence using a
method that is independent (i.e., external) from the target
system to assure reliable failure detection.

These criteria are achievable with current fault injection
technology. The practical example of the instantiation of the
proposed method presented in the rest of the paper illustrates
how the approach can be used to evaluate the lead time
distribution in a virtualized system.

III. EXPERIMENT METHODOLOGY

The study was carried out using an existing fault injection
setup. Although this experimental setup has been originally
designed for the more general goal of studying the impact of
faults in virtualized systems, the injection campaigns already
prepared for this setup are considered adequate to illustrate the
proposed approach, as they meet the criteria mentioned above
for accurate characterization of lead time distributions.

A. Physical setup

The setup includes two different physical systems, as de-
picted in Fig. |1} One of the systems manages the experiments
and monitors and collects the results, while the other system
provides the environment and computing resources where
the failure prediction experiments take place. The controller
system is equipped with a Intel Xeon E5620, 12 Gb of RAM
and a 1 GbE network card. The target system includes two
Intel Xeon Silver 4114, 32 Gb of RAM and a matching 1
GbE network card. The disk images used by the VMs were
made accessible through Network File System (NFS).
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Fig. 1. Experimental setup used for the experiments.
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A nested virtualization configuration was used with two
layers of hypervisors (LO and L1) and one layer of VMs (L2).
Xen 4.11.1 was used for the LO and L1 hypervisors, along
with CentOS7 and Linux 4.14.89 for the LO VM, Debian and
Linux 4.19.0-6-amd64 for the L1 VM and CentOS 7 with
Linux 5.5.11 for the L2 VMs. The L1 VM was configured
with 2, 4 or 6 vCPUs and 12 Gb of RAM. The L2 VMs were
configured with 1 vCPU and 900 Mb RAM.

B. Workload

The workload emulates a Solr server that provides access
to a part (10GiB) of Wikipedia’s index. It includes only
search operations and exercises the CPU, memory and 1/O
subsystems. The workload configuration was adapted to the
resources assigned to the VMs and consisted of one client
performing a new request each second.

C. Fault injection

Fault injection was used to emulate realistic transient hard-
ware faults in CPU registers during the execution of hypervisor
code, as well as software faults (bugs) in hypervisor code, such
as those faults that are inserted during software development
and escape testing. The focus on the hypervisor as target of
the faults is justified, as the hypervisor is a critical element
in typical virtualized systems. The ucXception fault injection
frameworkﬂ was used for both the injection of hardware and
software faults. Fault injection in CPU registers followed the
single bit-flip fault model [8]] and targeted 15 registers, namely,
RIP, RSP, RBP, RAX, RBX, RCX, RDX and R8 through
R15. Software fault injection followed an extended fault model
based on [9]], which included the 12 operators listed in Table

TABLE I
SOFTWARE FAULT MODEL OPERATORS
Operators ~ Description

MFC Missing function call

MIA Missing 1 f construct around statements

MIEB Missing if construct + statements + e1se before statements
MIFS Missing 1f construct and surrounded statements
MLAC Missing and in logical expression used in branch condition
MVAE Missing variable assignment with an expression

MVAV Missing variable assignment with a value

WAEP Wrong arithmetic expression in parameters of function call
WPFV Wrong variable used in parameter of function call
WVAV Wrong value assigned to a variable
WALR Wrong algorithm — code was misplaced
WLEC Wrong logical expression used as branch condition

Each fault operator was applied over the source code of
four different files of Xen, including files responsible for
managing memory and virtualization functions. The injected
fault remains dormant until an explicit go-ahead is given,
which is accomplished by encompassing the faulty code inside
an if clause that depends on a Boolean variable. This variable
is modified during runtime when the fault injection operation
is ordered. Similar approaches have been used in past studies
with the same purpose [6]], [7].

D. Failure detection

Failures were detected by analyzing two different sources of
data: 7) a stream of pings to the various VMs; i) the stream
of request and responses of the Solr workload. A failure is
detected whenever a ping request to any VM fails, when a
Solr request is unanswered or when its response is incorrect.

This failure detection approach detects failures from the
end user (i.e.f, the client) point of view, which is the relevant

ISee https:/github.com/ucx-code/ucXception



definition of failure for a failure prediction study (because the
goal is to predict when the end user will experience a system
failure). Possible (unlikely) internal component failures that
do not propagate further to the workload are not considered,
since they do not affect the service provided to the user.

E. Collected and derived metrics

During each experiment run, various metrics were collected
for posterior analysis, which are used in this paper to infer the
lead times of the studied system. These measurements were
obtained with minimal instrumentation of the target system to
limit intrusiveness and avoid impact on the accuracy of the
obtained results, and include:

o Moment when the fault injection was ordered - For all
the experiment runs, a timestamp value with the moment
when the operation was issued is recorded.

o Moment when the software fault is activated - For SW
fault injection, the moment when the software fault is first
executed was recorded as a TSC value (i.e., the number
of CPU cycles since the system has booted).

o Timestamps of steps in the experiment run - Important
goals during the experiment run had their timestamps
stored. For example, the start and end of the run, moment
when the VMs finished booting up, moments when the
workload was started and stopped, efc.

o Timestamp of first failed ping - If a ping request fails, its
timestamp is logged.

o Timestamp of first failed workload request - If a Solr
request is not answered within the expected interval, or
if its answer is incorrect, its timestamp is logged.

Lead time, which in this paper can be equated to the
maximum hypothetical lead time obtainable by a perfect
failure prediction classifier that relies on error symptoms, had
to be calculated (see Figure [2)) differently depending on the
type of injected fault, due to constraints of instrumentation.
For hardware faults, the lead time (LTgw ) is calculated
by subtracting the moment when fault injection was ordered
(t1) to the moment of the first detected failure (¢4), as in
Equation

LTrw =t4 — 14 (D

Whereas for software faults, the moment when the fault is
activated (¢3) is subtracted from the moment when a failure
is first detected, as shown in Equation E} In this case, the
moment of fault activation has to be converted from its native
format, which is CPU cycles, to a timestamp. That conversion
is obtained by combining information about the fixed TSC
rate (i.e., the amount of CPU cycles elapsed in 1 second),
the average number of CPU cycles that it takes for the VM
to boot up (obtained through a separate experiment) and the
timestamp representing when the L1 VM was launched.

LTgw =ty — tg )

Due to the gap between t; and t3, the lead times for
hardware faults will be slightly overestimated. However, past

experience tells us that, for hardware faults, this gap is very
small and its impact on the results will be negligible.
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Fig. 2. Timeline of a fault injection run

IV. EXPERIMENT RESULTS AND DISCUSSION

The analysis of the lead time distributions (i.e., the main
goal of the proposed method) is presented and discussed by
answering the following two questions:

A Do failures caused by hardware and software faults show
similar lead time distributions?

B For the failures caused by each type of fault, are there
factors that affect lead time?

From the 1705 hardware faults injected, a total of 689 faults
caused failures (i.e., 40.4% of the HW faults caused failures),
while the 1135 software faults led to 584 failures (i.e., 51.4%
of the SW faults caused failuresﬂ This relatively low ef-
fectiveness of fault injection is well-known and many fault
injection experiments reported in the literature have shown
similar percentages of faults that caused failures. It is worth
noting that we injected realistic faults in order to guarantee
realistic data propagation conditions and assure correct lead
time assessment (non-realistic faults causing high impact on
the target system to artificially increase the percentage of
failures would lead to incorrect lead time assessment).

A. Do failures caused by hardware and software faults show
similar lead time distributions?

Figure [3] compares the lead times of failures that were
caused by hardware (HW) and software (SW) faults. It shows
that hardware faults tend to cause failures with lower lead
times than those caused by software faults.

The mean lead time of failures caused by hardware faults is
594 ms, whereas the corresponding value for failures caused
by software faults is 54 065 ms. The lowest lead time seen for
hardware faults was of 0.7 ms, while the lowest lead time for
software fault injection was also a low 25 ms. The longest lead
time when injecting hardware faults was 1200 ms, whereas
software faults had a large outlier reaching 819 601 ms. Using
CPU cycles instead of ms, failures caused by software faults
had a mean lead of 1740686 million cycles, ranging between
1473253 million cycles and 2529 090 million cycles.

Figures [] and 5] provide a fine-grained view of the lead
times for failures caused by hardware and software faults,
respectively. From the point of view of the proposed method,
these two figures represent the most important result to decide

2The dataset is available at http://eden.dei.uc.pt/~fmduarte/prdc21.zip
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Fig. 3. Lead times for failures caused by HW and SW faults.

about the feasibility of failure prediction in this particular tar-
get system. If the failure prediction model under consideration
can process the input information (i.e., symptoms) and output
a prediction in the time frame defined by the lead time distribu-
tion, then failure prediction will be viable. Furthermore, these
lead time distributions also allow estimating the percentage
of failures that can be handled by a given failure prediction
model, as the distribution can be used to show the percentage
of failures with lead time higher than a given threshold defined
according to the failure prediction model under consideration.
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Fig. 4. Histogram of lead times for failures caused by HW faults.

Failures caused by hardware faults consistently show lead
times in the range between 500 and 900 ms, with a small
percentage of failures having even lower lead times. On the
other hand, failures caused by software faults show a long tail
distribution, with the majority of failures being concentrated
in the 0 to 40000 ms range (84% of all failures) and a
considerable amount of failures having even higher lead times.

B. For the failures caused by each type of fault, are there
factors that affect lead time?

Considering hardware and software faults separately, we can
analyze different factors that may mold the failures occurrence
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Fig. 5. Histogram of lead times for failures caused by SW faults.

and affect lead times, such as the component where the fault
was injected (e.g., which CPU register, which bit, which source
code file or function) or the type of fault that was injected.

Figure [6] presents the lead times per CPU register. Since
most registers in the x86 architecture have a specific purpose,
it is possible that the lead times vary according to the affected
register. However, according to the results it is not clear
whether any specific register has an effect on lead times, as
every CPU register shows similar lead times.
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Fig. 6. Lead times per each CPU register.

A more detailed comparison uses both the CPU register that
was affected by the fault and the bit that was flipped. Figure [7]
shows a heatmap indicating the average lead time for each
CPU/bit pair. Unfilled squares mean that no failure occurred.

Some patterns can be detected, namely in registers rip, rbp,
rcx and rdx, where certain ranges of bits, such as the upper
32 bits, do not cause failures (light grey areas). However, in
terms of lead time, there is no clear pattern.

The analysis whether different software fault operators (i.e.,
different bug types) affected lead times is shown in Figure [§]
The results show that some operators cause longer lead times.
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This is the case of MIEB, which has a much higher average
lead time than the other operators. Moreover, the operators
MIA, MFC and MIFS also exhibit a significant amount of
outliers. This suggests that the type of software fault is highly
relevant for failure prediction and some bug types are much
more challenging, since the result is a much shorter lead time.
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Fig. 8. Lead times per operator for failures caused by SW faults.

Figure [9] analyses the lead time per source file where the
faults were injected and shows that the source file has a strong
impact in the lead times. This is a very important result as it
shows that some software components (in this case, different
files of Xen) are much more critical than others. The file mm.c
shows a different lead time distribution when compared to the
others. Furthermore, the fourth file where the faults where
injected is not shown in Figure |9| because none of the faults
injected in such file led to failures. This result shows that the
component affected by the fault has a dramatic effect on the
failure probability and lead time.

V. LIMITATIONS

Although the presented experimental study shows the ef-
fectiveness of the proposed approach, the experiment itself
contains several limitations that deserve discussion. These
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Fig. 9. Lead times per source file for failures caused by SW faults.

limitations result mainly from the fact that we used an existing
fault injection setup, instead of defining and implementing a
specific setup to illustrate the proposed method.

A first limitation is related to the lack of instrumentation to
accurately trace the program execution and capture the exact
moment when the injected fault was activated. Obviously,
heavy instrumentation is highly intrusive, so the fact that we
did not use such instrumentation has the advantage of not
changing the timing behavior of the target system (due to
the execution of extra code for instrumentation). The price
to pay is to measure a lead time a bit longer than the real one.
For the hardware faults we considered the moment when the
operation was ordered, which is a bit earlier than the actual
fault activation, while for software faults we record the exact
CPU cycle when the fault was activated, but this value had to
be converted to a timestamp, which reduces its precision.

A second limitation that reduced the precision of the results
is related to the information available to detect failures, more
specifically, their update rate. Two different sources were used
(five ping streams to the VMs and Solr requests), but each of
these sources was only updated about once a second.

A third limitation is related to the fact that faults were
injected only in the hypervisor of the target system and the
results just represent a partial view of the failure domain. Since
the presented experiments have the main goal of illustrating
the proposed method, we consider that this limitation is
not particularly important. Obviously, the solution would be
to perform more fault injection campaigns to cover other
components of the target system, in addition to the hypervisor.

Despite the enumerated limitations, we believe that they do
not invalidate the extracted observations for failure prediction
in virtualized systems, especially because the focus on the key
component (the hypervisor) means that the results refer to the
weakest link in such systems, since failures in the hypervisor
may have a very strong impact on all the VMs.

VI. RELATED WORK

Some approaches have used Hidden Semi-Markov Models
to predict failures [[10], while recently machine learning ap-



proaches, such as using support vector machines or neural
networks, are being researched [11].

The idea of using fault injection to generate failure data
for failure prediction research was first presented in [3]].
Irrera et al. proposed an approach using fault injection to
accelerate data collection. To validate the data collected using
this method, the authors developed an approach for estimating
its representativeness [12]. Jodo Campos et al. have also
researched the usage of fault injection for failure prediction.
In particular, they have developed guidelines for configuring
the experimental setup as to reduce experiment run time
while maintaining representativeness of the results [[13]]. They
applied their research to a practical case study surrounding
software faults in an operating system and were able to
accurately predict failures using various machine learning
techniques [5]. Although fault injection has been used in
several works in the context of failure prediction, in all the
previous works the focus was on the generation of failure
data to train the prediction models or to evaluate the best
symptoms. The relevant issue of studying the failure behavior
of the target system in the time domain, with the goal of
assessing the failure lead time distribution, was not, to the
best of our knowledge, the focus of previous studies.

VII. CONCLUSION

We proposed the use of fault injection campaigns (following
a specific campaign definition criteria) to assess failure lead
time distributions as a first step of the development of failure
prediction solutions. The paper has a double goal: ) present
an experiment that shows the effectiveness of the proposed
method and ) present experimental results that provide an
insightful view on the failure lead time distributions in a
typical virtualized system, showing how such distributions are
highly dependent on the type of fault and on the component
of the target system affected by the fault.

Results show that the proposed method is effective and
allow detailed characterization of the failure lead time distri-
butions. This is essential to evaluate the feasibility of failure
prediction in a given target system. Knowing that some types
of faults cause failures with lead times of just a few millisec-
onds, while other types of faults show lead times of minutes
is of utmost relevance to develop failure prediction models.

The results show that failure prediction in virtualized sys-
tems is better suited to predict failures caused by software
faults than failures caused by hardware faults. The mean lead
time of failures caused by hardware faults is 594ms, whereas
the average lead time for failures caused by software faults
is 54 065 ms. Furthermore, results show that software faults
injected in some components (files) of the hypervisor show
much shorter failure lead time than faults injected in other
components. This means that the proposed method is able to
identify the most critical target system components in terms
of failure prediction lead time.

The low lead time of hardware faults may be explained by
the importance that CPU registers, caches and memory have
in terms of correct behavior of a computer. On the other hand,

software faults, particularly those faults that escape software
testing, tend to be activated only when complex conditions
are met and may slowly corrupt the state of the application,
as opposed to causing an almost instantaneous crash.
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