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Abstract—Embedded electronic systems used in vehicles are
becoming more exposed and thus vulnerable to different types
of faults and cybersecurity attacks. Examples of these systems
are advanced driver assistance systems (ADAS) used in vehicles
with different levels of automation. Failures in these systems
could have severe consequences, such as loss of lives and environ-
mental damages. Therefore, these systems should be thoroughly
evaluated during different stages of product development. An
effective way of evaluating these systems is through the injection
of faults and monitoring their impacts on these systems. In this
paper, we present SUFI, a simulation-based fault injector that
is capable of injecting faults into ADAS features simulated in
SUMO (simulation of urban mobility) and analyse the impact of
the injected faults on the entire traffic. Simulation-based fault
injection is usually used at early stages of product development,
especially when the target hardware is not yet available. Using
SUFI we target car-following and lane-changing features of ADAS
modelled in SUMO. The results of the fault injection experiments
show the effectiveness of SUFI in revealing the weaknesses of
these models when targeted by faults and attacks.

Keywords-fault injection, attack injection, advanced driver
assistance systems, SUMO;

I. INTRODUCTION

Embedded electronic systems are increasingly used in vehi-
cles with different levels of automation [1]. These vehicles are
equipped with systems such as advanced driver assistance sys-
tems (ADAS) that come with features such as lane-changing
and car-following. Enablers of these features are the different
sensors and cameras as well as the connectivity provided
by vehicle-to-vehicle and vehicle-to-infrastructure communi-
cations. The increasing use of these technology enablers also
result in ADAS to be more exposed and thus vulnerable to
different types of faults and cybersecurity attacks. As many of
the ADAS features are safety-critical, failures of these systems
could result in serious consequences, including loss of lives
and environmental damage. Therefore, these systems should
be thoroughly assessed before they are used in the traffic to
make sure they are safe and secure.

Fault injection and attack injection are well-known testing
techniques used for assessing system safety and security. Func-
tional safety standards such as ISO 26262 [2] recommends, or
highly recommends, the use of fault injection to prove that
malfunctions in electrical and/or electronic systems will not
lead to violations of safety requirements. Fault and attack
injection can be conducted either through the field tests or
simulation-based tests. While conducting field tests could be

costly and sometimes life-threatening [3], [4], [5], simulation-
based tests provide a wide range of advantages, such as lower
testing costs, adaptation of tests to a variety of traffic scenarios,
and avoiding the life-threatening situations.

Simulation-based fault injection can be performed by build-
ing injectors that could inject faults into simulators that model
vehicle systems at component and traffic simulation levels.
Examples of these simulators are SUMO [6] and CARLA
[7] that are used to simulate the urban mobility and ADAS
features. In an earlier study, Saurabh et al. [8] targeted the
decision-making algorithms and sensor units of an autonomous
vehicle in CARLA. The authors did not analyse the impact
of fault on the surrounding traffic and limited their analysis
focus on the behaviour-change of the target vehicle. Van der
Heijden et al. [9] and Singh et al. [10] used SUMO [6] and
Veins [11] to analyse the impact of the cybersecurity attacks on
cooperative driving and vehicle connectivity. The focus of the
analyses is only on the car-following behaviour of the vehicles
whereas in this paper, we also investigate the lane-changing
behaviour of the vehicles under faults and attacks.

In this paper, we introduce SUFI, a simulation-based fault
injector that is capable of injecting faults into ADAS features
simulated in SUMO. Using SUFI, one can evaluate the ADAS
features by defining variety of traffic scenarios as well as to
measure the impact of the injected faults on the entire traffic.
The paper provides answers to the following questions:

1) To what extent could fault injection experiments be
used to reveal weaknesses of driver assistance functions
modelled in SUMO?

2) To what extent could the behaviour of the surrounding
traffic be affected by injection of faults in a vehicle?

3) Are there fault models that are more effective in reveal-
ing weaknesses of the target systems?

4) To what extent does the fault injection location as well
as the duration in which a system is exposed to faults
reveal weaknesses of the target systems?

5) To what extent could the injection of faults in multiple
locations reveal weaknesses of the target systems that
are not revealed when facing with only one fault?

6) What is the impact of the cooperativeness on the vehicle
behaviour when it is exposed to faults/attacks? Note that,
here, cooperativeness refers to vehicles’ cooperation in
considering the nearby vehicles’ behaviour for lane-
change manoeuvres (see §III-A and §IV-D).



II. BACKGROUND

A. SUMO (Simulation of Urban Mobility)

SUMO [6] is an open-source traffic simulation platform
developed to simulate a wide range of traffic scenarios in
microscopic and macroscopic scales. Microscopic offers the
simulation of traffic in individual vehicle level e.g., vehicle
position and speed, whereas, macroscopic offers the simulation
in traffic flow level e.g, density. SUMO controls the vehicle
behaviour with car-following and lane-changing models. The
former controls the longitudinal behaviour of the vehicle, such
as position, speed, and acceleration, while the latter represents
the lateral behaviour of the vehicle which depends on the
vehicle state and willingness to perform a lane-change.

SUMO allows the user to dynamically interact with the
simulation objects such as vehicles, pedestrians and traffic
lights during the simulation run-time. This is provided by
a library called TraCI (Traffic Control Interface) [12] which
communicates with SUMO via TCP/IP. We chose SUMO
in this study due to its high-portability, fast computation
speed, and inclusion of representative car-following models
for ADAS features.

B. Simulation-based Fault and Attack Injection

Fault injection is an established method used for test and
assessment of dependable computer systems. Fault injection
has also been used to exploit properties such as cybersecurity
[13], [14] through the injection of attacks; this is also known as
attack injection. The“Row hammer” exploit in DDR3 DRAM
[15] is a great example of when bit-flip faults in memory
results in gaining kernel privileges on x86-64 Linux [16]. In
this study, we use the simulation-based fault injection and in-
troduce SUFI (SUMO-based Fault Injector) (see §III-E), where
faults are injected into various driver assistance functions
modelled in SUMO [6]. Simulation-based techniques inject
faults into hardware/software models as opposed to physical
techniques which uses actual physical systems or prototypes.

The simulation-based fault injection technique used in this
paper allows us to design and evaluate traffic scenarios that are
infeasible to build when conducting field testing due to their
life threatening implications. Moreover, the technique allows
us to extend the analysis of the impact of the injected faults
from the target vehicle to the entire surrounding traffic and
traffic flow. The technique is also cost-worthy as thousands of
fault injection experiments could be conducted in a short pe-
riod of time. However, mapping of the results to those obtained
by evaluating real-world ADAS features is tightly connected
to the accuracy of the features modelled in SUMO. Moreover,
SUFI is capable of injecting faults/attacks in application level
and does not make connections to the low-level hardware
details. This is due to the unavailability of accurate models
of the underlying hardware and high evaluation timing cost
that will be introduced by such modellings.

C. Fault and Attack Models

The SUMO-based fault injector (see §III-E) introduced in
this paper is capable of injecting different types of faults and

attacks into the system under test. In this section, we present
some of these fault and attack models. Note that additional
models could be implemented and integrated into the injector.

Stuck-at-value In this model, the value stored in a location
is stuck at a certain value. If the value is stuck permanently,
it could be used to model manufacturing defects, such as the
ones in sensors. However, if it is stuck temporarily, it could be
used to model cybersecurity attacks such as the replay attacks
(resending old data), which target freshness, non-repudiation
and integrity of communication data or commands.

Single bit-flip In this model, one of the bits of the value
stored in a target location is flipped. The single bit-flip has
been used in the past for modelling soft errors occurring inside
a processor’s core or different pipeline registers [17], [18],
[19]. In this study, single bit-flip is used to model cybersecurity
attacks such as corrupt message (e.g., jamming attack), which
target the integrity of communication data or commands.

Double bit-flip In this model, we flip two of the bits of the
value stored in a target location simultaneously. The model has
been used in the past e.g., to emulate hardware faults affecting
two bits of an architectural register [20], [19], [21]. Similar
to the single bit-flip model, in this study, the double bit-flip
is used to model cybersecurity attacks such as the jamming
attack, which target the integrity of communication data or
commands. This model is also used to compare the results
obtained for single and double bit-flip injections.

Chain-of-faults In this model, two faults are injected into
two different locations. The first fault is injected into the ego-
vehicle; the second fault is either injected into the ego-vehicle
or in the follower-vehicle (see Fig. 1). This fault is injected
either simultaneously with the first fault or with delays of 3, 5,
and 7 seconds. Chain-of-faults in this study models the failure
of two different units. It is also used to model cybersecurity
attacks such as the delay attack, which target the integrity and
non-repudiation of communication data or commands.

It is also important to model the duration in which a
component is exposed to a fault. To do so, we model transient
and semi-permanent faults. We use transient to model faults
that only appear in the system for one simulation time step in
order to model temporal cybersecurity attacks or unfavourable
weather conditions affecting a sensor temporarily. The semi-
permanent is used to model faults that remain in the system
until the end of a simulation run such as long-lasting cyberse-
curity attacks or complete blockage of a sensor. Note that, we
call this semi-permanent since the system is fault-free in the
beginning of each experiment run as opposed to permanent
faults that remain in the system until it is repaired.

III. EXPERIMENTAL SETUP

A. Models Under Evaluation

1) Car-Following Model: The car-following model repre-
sents the longitudinal behaviour of vehicles in the simulation
environment, where it controls the vehicle with or without a
vehicle in front. Several car-following models are implemented
in SUMO, such as Krauss [22], IDM (Intelligent Driver
Model) [23], Kerner [24], ACC (Adaptive Cruise Control)



[25], and CACC (Cooperative Adaptive Cruise Control) [25].
In this study, we use the ACC [25] and the CACC [25] models
as they are developed to represent the ADAS features, which
are widely used in autonomous vehicles. The primary feature
of these models is using the range sensor’s data e.g., distance
and relative speed, to control the vehicle in traffic.

2) Lane-Changing Model: We use LC2013 [26] model to
represent the lateral behaviour of a vehicle during driving
[26]. Depending on the motivation behind a lane-change
manoeuvre, this model classifies the manoeuvre into four
groups of strategic, cooperative, tactical, and keep right hand
side. In other words, the activation of these manoeuvres are
tightly connected to the defined traffic scenario (e.g., road
shape). In this paper, we focus on the cooperative and tactical
lane-change manoeuvres since they get activated in our traffic
scenario (see §III-B). A vehicle changes its lane to cooperate
with other vehicles in the surrounding traffic. In other words,
the reason for the change of lane is facilitation of lane-change
manoeuvres for other vehicles in the traffic. Whereas, a vehicle
performs a tactical lane-change to avoid driving into or getting
stuck behind another vehicle or to avoid driving in lanes with
certain speed limitation.

B. Traffic Simulation Scenario

An important part of constructing a fault injection setup is
the selection of the workload or stimuli that, in the case of our
paper, is referred to as the traffic simulation scenario. Building
representative scenarios to evaluate the safety of autonomous
vehicles is of great importance. As ADAS features are most
commonly used in highway roads, in this study, we use a three-
lane road network scenario, where 10 vehicles are driving on
the road during a simulation run (see Fig. 1). The road’s speed
limit is 36 m/s and its length is 750 m. We inject most of
the faults into the red vehicle. If this vehicle shifts lane to the
leftmost lane, the blue vehicle becomes the follower vehicle.
In the remaining of this paper, we refer to the red vehicle as
our ego-vehicle and the blue vehicle as our follower-vehicle.
Moreover, the green vehicles are our traffic participants.

C. Fault Injection Time Interval

The total simulation run-time for the defined traffic scenario
is 42 s, where the first 11 s are considered as the time it
takes for all the vehicles to appear in the vicinity of the
target vehicle, which allows us to measure the impact of the
injections on the entire traffic. We chose the time between 11 s
and 21 s as the fault injection time interval. This is because it is
very likely for the ego-vehicle to perform a lane-change within
this period, which allows us to evaluate the car-following and
lane-changing models.

Within the fault injection time interval, the ego-vehicle
is blocked by a slower vehicle, which contributes to the
willingness of the ego-vehicle to overtake the slower vehicle
by performing a tactical lane-change to the left hand side
lane. This lane is however occupied by the follower-vehicle
at this point (see Fig. 1). It is worth noting that, there is no
lane-change manoeuvre in the fault-free (golden) run of the

Fig. 1: Traffic simulation scenario defined.

scenario; thus through the injection of faults, we could monitor
the changes in the willingness of the ego-vehicle in conducting
the manoeuvre.

D. Fault Injection Locations

The vehicle behaviour could be affected by injection of
faults in a variety of parameters used by the car-following
and lane-changing models. However, the effectiveness of these
injections in manipulating with vehicle behaviour is tightly
connected to the defined traffic scenario. Here, effectiveness
refers to the changes in the deceleration profiles of the vehicles
(see §III-F). Therefore, in this paper, we inject faults into
parameters that could affect the longitudinal and lateral be-
haviour of the vehicle. These parameters are LC-assertive, LC-
overtake-right, error state, and reaction time that are detailed
in Table I. Note that, LC is an acronym for Lane-Change.

The LC-assertive and LC-overtake-right parameters are two
of the variables used within the lane-changing algorithm
implemented in SUMO to model lane-changing manoeuvres;
while the error state parameter, used to model errors in
gap and speed estimation, is a variable used within the car-
following algorithm. The reaction time parameter, on the
other hand, is a variable in SUMO which defines the update
frequency of the calculations connected to controlling the
longitudinal and lateral behaviour of vehicles.

Table II presents details about the fault injection models
used. For the LC-assertive parameter, in the stuck-at-value
model, the value selection is performed by sampling the
range (1.0 - 1000.0) with 100 values. For this reason, the
random.randrange function in Python is used which returns a
uniformly selected integer from a given range. The value range
of this parameter in SUMO is real positives where 1.0 refers
to low eagerness to perform a lane-change and 1000.0 refers
to high eagerness. The selection of 1000.0 as the upper bound
is because in our chosen scenario and for each injection time
point, larger values would result in an outcome classification
(see §III-F) that is the same as when 1000.0 is selected. For
the error state parameter, the usage of this parameter when
estimating the gap and speed could allow us to select an
appropriate value range for the fault injection experiments. The
gap and the speed are estimated using the following equations:

estimatedGap=realGap+realGap∗0.75∗errorState

estimatedSpeed=realSpeed+realGap∗0.15∗errorState
(Eq. 1)

Here, 0.75 and 0.15 are headway error coefficient and speed
difference error coefficient, respectively [28]. Note that, the



TABLE I: Description of Fault Injection Locations.

Fault injection lo-
cation in SUMO

Definition in SUMO [27] Examples of Faults and Attacks Modelled Default
Value (unit)

Considered
Value Range

LC-Assertive Eagerness of the vehicle to perform a lane-
change by accepting lower front/rear gaps in the
target lane: Required gap amount is divided to
this parameter

(i) sensor fault causing an incorrect gap estima-
tion when changing the lane; (ii) jamming the
sensor causing it not to detect another vehicle

1.0 (-) 1.0 - 1000.0

LC-Overtake-
Right

Likelihood of breaking the right-hand passing
rules in asymmetric roads; overtaking from right
is prohibited for speeds higher than 60 km/h

(i) sensor fault causing an incorrect gap/speed
estimation when changing the lane; (ii) jamming
the sensor causing it not to detect another vehicle

0.0 (-) 0.0 - 1.0

Reaction Time Update time of the vehicle state (speed, posi-
tion, etc.)

Jamming the ECU or perception units when they
send or receive data, causing the system to react
with a delay

0.1 (s) 0.1 - 5.1

Error State Error in gap and speed estimation for the car-
following model (see Eq. 1)

(i) sensor fault causing an incorrect gap/speed
estimation when following a vehicle; (ii) jam-
ming the sensor causing it not to detect a vehicle

0.0 (-) 1.0 - 100.0

TABLE II: Description of the chosen Fault Injection Models and implementation details.

Fault injection lo-
cation in SUMO

Fault Injection
Models used
(see §II-C)

Value selection Experiment number

LC-Assertive

Stuck-at-value 100 values are randomly selected in range 1.0 - 1000.0 100 ∗ 20 = 2000
Single bit-flip 64 values are selected by flipping one bit each time 64 ∗ 20 = 1280
Double bit-flip 100 values are selected by flipping two bits each time (repetitiveness avoided) 100 ∗ 20 = 2000
Chain-of-faults As a first fault, its value selection is the same with the abovementioned stuck-

at-value, and single bit-flip models
100 ∗ 25 ∗ 7 = 17500
64 ∗ 25 ∗ 7 = 11200

LC-Overtake-Right
Stuck-at-value 100 values are selected in range 0.0 - 1.0 with interval 0.01 100 ∗ 20 = 2000
Single bit-flip 64 values are selected by flipping one bit each time 64 ∗ 20 = 1280
Double bit-flip 100 values are selected by flipping two bits each time (repetitiveness avoided) 100 ∗ 20 = 2000

Reaction Time Stuck-at-value 50 values are selected in range 0.1 - 5.1 with interval 0.1 50 ∗ 20 = 1000
Chain-of-faults As a second fault, 25 values are selected from range 0.1 - 5.1 with interval 0.2 -

Error State Stuck-at-value 100 values are selected in range 1.0 - 100.0 with interval 1 100 ∗ 20 = 2000

error state parameter could take positive and negative values.
After monitoring the simulations, we confirmed that the nega-
tive values cause the vehicle to perform an emergency braking,
thus effectively revealing the weaknesses of the ADAS features
modelled in SUMO. Therefore, here, we limit the value range
to positive values between 1.0 and 100.0, where the selection
of 100.0 as the upper bound is because in our chosen scenario,
larger values would result in an outcome classification (see
§III-F) that is the same as when 100.0 is selected.

The experiment numbers indicated in Table II refer to the
multiplication of the selected values and injection time steps
(e.g., 20 time steps between 11 s and 21 s with an interval of
0.5 s). For the chain-of-faults, there are two fault locations.
For the first fault, the value selection is kept the same (100
for the stuck-at-value and 64 for the single bit-flip), while for
the second fault, 25 values are selected in range 0.1 - 5.1
with interval 0.2. Note that for the chain-of-faults model, the
time period between 11.0 s and 13.5 s are considered for the
injections (7 time steps with an interval of 0.5 s).

E. SUMO-based Fault Injector (SUFI)

In this paper, we present SUFI1(see Fig. 2), which is a
simulation-based fault injector where faults are injected into
various driver assistance functions modelled in SUMO (see

1https://github.com/RISE-Dependable-Transport-Systems/SUFI

§II-A). The injector is written using Python scripts. The
scripts allow us to implement the fault models (see §II-C)
and specify the fault injection locations (see §III-D) and fault
injection time interval (see §III-C) as well as to conduct data
logging. On the other hand, SUMO acts as a server to execute
commands. The Python scripts and SUMO are communicating
with each other via TraCI (Traffic Control Interface) [12].

Fig. 2: Architecture of SUFI - SUmo-based Fault Injector

F. Outcome Classifications

In this paper, we recorded all microscopic data such as
speed, deceleration, delay, and trajectory of each vehicle for all
fault injection experiments. However, we only use the decel-
eration parameter (braking rate) to measure the effectiveness
of the fault injection experiments and classify them into one



of the classes presented in this section. Deceleration is chosen
as previous studies for analysing the rear-end accidents show
that at least 83% of the rear-end crashes are caused as a result
of the lead vehicle’s deceleration or stop [29].

To evaluate the impact of the injected faults, we monitored
the behaviour of all vehicles for each experiment. However, we
only chose the most vulnerable vehicle-behaviour to classify
the result. Therefore, it should be noted that the considered
vehicle-behaviour to classify the result may differ in each
experiment. Note that, the braking (b) rate 0.78 m/s2 is the
maximum deceleration recorded in the golden run for the
target time interval (see §III-C) and the maximum comfortable
braking rate and the maximum emergency braking rate are
defined as 5.0 m/s2 [30] and 8.0 m/s2 [31], respectively.

• Non-effective The injected fault has no effects on the
behaviour of the vehicles and the simulation ends with
no indication of failures.

• Negligible The injected fault has modified the behaviour
of at least one of the vehicles. The change of behaviour
is however negligible as the recorded maximum deceler-
ation is less than or equal to 0.78 (b ≤ 0.78 m/s2).

• Benign The injected fault has modified the behaviour of
at least one of the vehicles, leading to a deceleration value
greater than 0.78 m/s2. The safety implications of the
change is considered to be benign as it does not lead to a
deceleration value greater than the maximum comfortable
braking rate (0.78 m/s2 < b ≤ 5.0 m/s2).

• Severe The injected fault has modified the behaviour of
at least one of the vehicles, leading to a deceleration
value greater than the maximum comfortable braking rate
(5.0 m/s2 < b ≤ 8.0 m/s2), some of which also result
in car collisions. Note that, we classify car collisions in
this group since we consider any emergency braking to be
severe even if it does not cause a car collision. Moreover,
according to our observations, all collisions start with an
emergency braking.

• Crash The simulator crashes after the fault injection.
Note that, these crashes do not correspond to car col-
lisions, which are classified as severe (see above), and
instead are connected to a failure caused in the simulator.

IV. EXPERIMENTAL RESULTS

A. Effectiveness of the Fault Models in Revealing the System
Weaknesses

Table III shows the results of the fault injection experiments
conducted. The table shows a great number of severe cases
for when the stuck-at-value model is used to inject faults
into the LC-assertive parameter. The single and double bit-flip
models, on the contrary, seem to be significantly less effective
in causing severe results when the LC-assertive parameter
is targeted. The results of injections in this parameter also
show that the bit-flip models could result in a simulation
crash. Our observations revealed that these crashes are caused
when targeting the second highest significant bit of the LC-
assertive parameter, which changes the value of the parameter
to “infinity” that is unacceptable for SUMO.

Table III also shows that when targeting the LC-overtake-
right parameter, the stuck-at-value model is significantly more
effective (when compared with the other fault models) in caus-
ing benign results. Moreover, the table shows that the stuck-at-
value model was effective in causing benign or severe results
when targeting the error state and reaction time parameters.

RQ1 and RQ3-Answer: Fault injection is successfully
used to reveal weaknesses of driver assistance functions
modelled in SUMO. The stuck-at-value fault model is
more effective in causing severe results when compared
with bit-flip models.

B. Importance of the Fault Injection Location and Duration

Table III shows that the LC-assertive parameter is more vul-
nerable than the LC-overtake-right when it comes to resulting
in severe results. However, after monitoring the simulation run
when targeting the LC-overtake-right parameter, we learned
that the ego vehicle attempts to change its lane close to the end
of the simulation run time. This means that a longer simulation
run time could have also resulted in a greater number of severe
cases for when LC-overtake-right is targeted. This shows the
importance of designing representative traffic scenarios when
using fault injection experiments. Table III also shows that
all the faults injected into the error state and reaction time
parameters are effective. The majority of the faults have in
fact classified as benign or severe.

Table III also reveals the impact of the duration in which the
target models are exposed to the faults (see §II-C). The number
of severe cases obtained shows that the difference between the
results obtained by the transient and semi-permanent models
are insignificant except for when targeting the reaction time
parameter. This is an interesting result obtained as prior to
conducting the experiments, one could assume that the semi-
permanent model should be much more effective in causing
severe results due to the fact that the system under test is
exposed to the faults over a longer period of time compared
for when the transient fault model is used.

RQ4-Answer: The fault injection location plays an
important role in revealing the weaknesses of driver
assistance functions modelled in SUMO. Moreover, the
duration in which a system is exposed to a fault is
insignificant in causing a severe failure in most of the
target locations, except for the reaction time parameter.

C. Impact of the Injected Fault on the Surrounding Traffic
Behaviour

The results of our experiments show that the faults injected,
in addition to affecting the speed profile of the target vehicle,
influences the speed profile of multiple other nearby vehicles.
In this section, we look into both benign and severe cases
presented in Table III to identify the vehicles that have been



TABLE III: Experiment results (stuck-at-value and bit-flip models) for when the cooperativeness of the ego-vehicle is enabled.

Fault Model Duration Non-Effective Crash Negligible Benign Severe Total
LC-assertive parameter

Stuck-at-value Semi-permanent 9 0 597 98 1296 2000
Transient 3 0 600 100 1297 2000

Single bit-flip Semi-permanent 1220 20 12 2 26 1280
Transient 1222 20 10 2 26 1280

Double bit-flip Semi-permanent 1843 54 22 7 74 2000
Transient 1842 56 22 5 75 2000

LC-overtake-right parameter

Stuck-at-value Semi-permanent 0 0 25 1975 0 2000
Transient 620 0 207 1173 0 2000

Single bit-flip Semi-permanent 1260 0 11 9 0 1280
Transient 1260 0 3 17 0 1280

Double bit-flip Semi-permanent 1937 0 33 30 0 2000
Transient 1943 0 7 50 0 2000

Reaction time parameter

Stuck-at-value Semi-permanent 0 0 282 572 146 1000
Transient 0 0 550 450 0 1000

Error state parameter

Stuck-at-value Semi-permanent 0 0 0 1998 2 2000
Transient 0 0 300 1700 0 2000

affected the most by the injected faults. The inclusion of
benign cases in our analysis is due to the low number of severe
cases caused when injecting faults into the LC-overtake-right
and error state parameters.

For the LC-assertive parameter, the follower-vehicle is the
one flagging all the benign and severe cases. For the LC-
overtake-right parameter, however, the ego-vehicle flagged
these cases. For the reaction time parameter, 94.6% of all cases
were flagged by the ego-vehicle and 5.4% were flagged by
other vehicles in traffic except the follower-vehicle. Moreover,
99.8% of the cases were flagged by the ego-vehicle and 0.2%
by the other vehicles when targeting the error state parameter.

RQ2-Answer: Faults injected into a vehicle could
significantly influence the behaviour of the target vehicle
or other vehicles in traffic. Therefore, the impact of the
injected fault to the entire traffic should be taken into
account when classifying the fault injection results.

D. Impact of the Cooperativeness Feature on the Fault Injec-
tion Results

Cooperative behaviour in traffic is the ability of the vehicle
to consider the nearby vehicles behaviours when controlling
itself. This behaviour can have positive impacts on traffic
quality such as enhancing the road safety, reducing the traffic
congestion and improving the traffic efficiency. However, what
are the safety implications of using the cooperativeness feature
in the presence of faults? In order to better understand the
impact of cooperativeness on the vehicle behaviour that is
exposed to faults, we performed another set of experiments on
the ADAS features while disabling the cooperativeness of the
ego-vehicle. The results are presented in Table IV, which could
be compared with those obtained when the cooperativeness
was enabled (see Table III).

When comparing Table III and Table IV, we observed
that disabling the cooperativeness feature of the ego-vehicle
for when targeting the LC-assertive parameter result in a
higher number of severe cases for the stuck-at-value model
and a lower number of severe cases for the bit-flip models.
After analysing the results, we learned that disabling the
cooperativeness feature results in a smaller gap to the lead
vehicle on the target lane, which consequently resulted in the
bit-flip model to be less effective in causing the ego-vehicle to
perform a lane-change. We also observed that for the reaction
time parameter, the number of severe cases are lower for when
the cooperativeness is disabled, while the number of severe
cases is higher when the error state parameter is targeted. This
variability of the results shows that the cooperative feature of
vehicles influences the fault injection results differently for
when targeting different locations.

RQ6-Answer: The cooperativeness feature could sig-
nificantly jeopardise the system safety. Therefore, this fea-
ture would need to be thoroughly evaluated with respect
to faults and attacks when designing and implementing
advanced driver assistance systems.

E. Effectiveness of the Chain-of-Faults Model

When analysing the result of fault injection experiments
for the LC-assertive parameter, we learned that none of the
faults injected during the period between 11.0 s and 14.0 s
resulted in a severe case. Therefore, we decided to further
investigate this interval using the chain-of-faults model. This
way, in addition to injecting two simultaneous faults, we can
model attacks such as the delay attack and evaluate the target
system for cases in which the second fault is injected 3,
5, and 7 seconds after the injection of the first one. Note
that, the 7 seconds delay is selected as the upper bound to
be able to inject the second fault within the injection time



TABLE IV: Experiment results (stuck-at-value and bit-flip models) for when the cooperativeness of the ego-vehicle is disabled.

Fault Model Duration Non-Effective Crash Negligible Benign Severe Total
LC-assertive parameter

Stuck-at-value Semi-permanent 5 0 0 300 1695 2000
Transient 5 0 0 300 1695 2000

Single bit-flip Semi-permanent 1240 20 0 3 17 1280
Transient 1240 20 0 3 17 1280

Double bit-flip Semi-permanent 1883 55 0 13 49 2000
Transient 1882 57 0 10 51 2000

LC-overtake-right parameter

Stuck-at-value Semi-permanent 2000 0 0 0 0 2000
Transient 2000 0 0 0 0 2000

Single bit-flip Semi-permanent 1280 0 0 0 0 1280
Transient 1280 0 0 0 0 1280

Double bit-flip Semi-permanent 2000 0 0 0 0 2000
Transient 2000 0 0 0 0 2000

Reaction time parameter

Stuck-at-value Semi-permanent 0 0 689 184 127 1000
Transient 0 0 1000 0 0 1000

Error state parameter

Stuck-at-value Semi-permanent 0 0 0 20 1980 2000
Transient 0 0 1900 100 0 2000

TABLE V: Experiment results for chain-of-faults (all faults are semi-permanent).

First Target Parameter: Second Target Parameter: Classification of Fault Injection Results
LC-Assertive Reaction Time

Fault Model Target
Vehicle

Fault Model Target
Vehicle

Non-
effective

Crash Negligible Benign Severe Total

Simultaneous Injection

Stuck-at-value Ego 0 0 2703 9697 5100 17500
Ego Stuck-at-value Follower 0 0 4000 3000 10500 17500

Single bit-flip Ego 0 175 2135 7103 1787 11200
Follower 0 175 4108 4642 2275 11200

3 seconds delay

Stuck-at-value Ego 0 0 8000 5800 3700 17500
Ego Stuck-at-value Follower 0 0 6700 6000 4800 17500

Single bit-flip Ego 0 175 2172 7253 1600 11200
Follower 0 175 5011 5306 708 11200

5 seconds delay

Stuck-at-value Ego 0 0 12900 4100 500 17500
Ego Stuck-at-value Follower 0 0 9100 8100 300 17500

Single bit-flip Ego 0 175 3915 5392 1718 11200
Follower 0 175 1698 9321 6 11200

7 seconds delay

Stuck-at-value Ego 0 0 15000 2500 0 17500
Ego Stuck-at-value Follower 0 0 14600 2900 0 17500

Single bit-flip Ego 0 175 5302 4564 1159 11200
Follower 0 175 272 10753 0 11200

interval i.e., in between 11-21. Table V shows the experiment
results for the chain-of-faults model where the first faults target
the LC-assertive parameter and the second ones target the
reaction time parameter. The results show that the injections
cause several severe cases. However, Table V shows that the
injection time of the second fault is important when it comes to
influencing the system behaviour. Moreover, the table reveals
that injecting the second fault into the follower-vehicle usually
has a higher impact than when injecting into the ego-vehicle.

RQ5-Answer: The chain-of-faults is an effective model
to reveal the weaknesses of the driver assistance functions
modelled in SUMO. The effectiveness could vary depend-
ing on the time between the first and second injection.

V. CONCLUSIONS AND IMPLICATIONS

In this paper, we present SUFI, a simulation-based fault
injector that is capable of injecting faults and attacks into
ADAS features such as car-following and lane-changing mod-
els, simulated in SUMO. Integrating a high detailed and high
speed traffic simulator like SUMO in SUFI allows us to
construct and evaluate complex traffic scenarios as well as
to analyse the impact of the faults/attacks on the entire traffic.

Through conducting 283 840 experiments, we successfully
revealed some of the weaknesses of ADAS features modelled
in SUMO and showed that simulation-based fault injection is
an effective way to evaluate system safety. The fault injection
results show that parameters such as the fault model and fault
location play an important role in revealing weaknesses of
ADAS features modelled in SUMO. However, the duration



in which a system is exposed to faults is, for most target
locations, insignificant in causing severe failures. Moreover,
the results show that by targeting multiple components to
faults/attacks, something that is very likely to be explored by
an attacker, we can reveal weaknesses of the system that could
not be revealed when only one component is targeted. The
results also show the importance of analysing the effect of the
injected faults on the entire traffic. Moreover, the results show
that cooperative feature of the target vehicle has a high impact
on the effectiveness of the fault injection experiments.

The results obtained also show clear dependencies between
the results and the parameters used to setup a traffic simulation
scenario. Examples of these parameters are the number of road
lanes, speed limit and length of the road (simulation run time)
as well as features of the vehicles (braking ability, acceleration,
etc.) and driving scenario (sinusoidal, braking, etc.). We en-
courage practitioners to take scenario parameters into account
when building their setup for simulation-based fault and attack
injection, as they could significantly influence the effectiveness
of the faults/attacks in revealing the weaknesses of the system
under test. This has motivated us to put one of our future
focuses on the selection of traffic scenarios covering a wide
range of real-world situations.

As part of the future work, we also plan to perform
injections in other locations of the CACC and ACC models
as well as to model other groups of faults/attacks. Besides, as
physical features of the surrounding environment such as the
weather condition are not taken into account in SUMO, we
plan to use simulators such as CARLA [7] that provides us
with modelling of such features.
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