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Abstract — In this work we present a technology for 
dynamically introducing fault structures into digital twins 
without the need to change the virtual prototype model. The 
injection is done at the beginning of a simulation by dynamically 
rewiring the involved netlists. During the simulation on a real-
time platform, faults can be activated or deactivated triggered 
by sequences, statistical effects or by events from the real world. 
In some cases the fault structures can even be auto-generated 
directly from a formal specification, which further automates 
the development process for safety-relevant systems. The 
approach is demonstrated at a SystemC/ SystemC AMS virtual 
prototype of a safety-critical sub-systems which runs on a 
dSPACE real-time hardware. 
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I. INTRODUCTION  
Today’s embedded systems often exhibit a great deal of 
complexity. Especially for safety-critical systems the efforts 
for system validation are huge. One of the objectives of the 
ISO standard 26262 is the impact analysis of faults on the 
system behavior. Performing these tests only at the end of the 
design phase might be too late. Early simulation-based testing 
on system level offers a solution.  Simulations are performed 
at an early point in the design process, possibly already in the 
conceptual phase, but also during later stages of the entire 
design flow. For this purpose, system models are used in the 
form of executable specifications. They serve as a reference 
for the implementation as well as a virtual prototype for the 
development of firmware and application software. These are 
typical use cases of system models since they support the 
design process of products significantly. 
 
The concept of digital twins picks up this aspect and augments 
the approach in the sense that digital twins are not only a tool 
for design support, but rather represent the product itself, 
therefore being a part of it. As a consequence, the life span of 
such a digital twin lasts during optimization at the product 
phase as well as over the complete product life cycle. At the 
same time they offer new possibilities of application, for 
instance the construction of entire supply chains by passing on 
the digital twin to partners and customers. In consequence, this 
allows for virtual design and test of complex systems without 
having to disclose in-house know-how and IP. Furthermore, 
the use of digital twins permits virtual examination of the final 
products, which would be either too complex, too dangerous, 
or technically impossible to be done on the real system. 

Special focus is on injection of faults provoking potential 
critical system states. This makes it possible to study the 
impact of faults, to test safety concepts and therefore to 
evaluate the robustness  of a system. Therefore digital twins 
are highly interesting for safety-critical products. However 
while creating digital twins for safety-critical systems, a 
variety of challenges need to be solved. One of the most 
critical challenges is to achieve a sufficiently high simulation 

performance to handle the complexity of the examined 
system. At the same time the level of abstraction needs to be 
chosen constructively to cover the relevant details.  

In general, classical approaches to fault injection for 
evaluating safety concepts can become very tedious since all 
faults have to be integrated into the respective simulation 
models directly, in addition to the fault switching mechanisms 
for activating them. This in turn leads to the issue of mixing 
functional modelling and modelling of test functionalities. 
Functions for fault injection as well as the faults itself, 
however, are part of the test functionalities and should 
therefore not be element of the DUT implementation. 
According to this, in the following we will present an 
approach for dynamical fault injection into digital twins that 
solves this dilemma and is therefore easily applicable for 
safety-critical systems. 

For the creation of a digital twin it is essential to use an 
efficient language for modelling and simulation. From the 
author’s perspective, this is best accounted for by the 
SystemC/ SystemC AMS language. Modelling of a digital 
twin usually is done in an iterative process which starts with 
a specification and a concept phase. In order to support the 
respective use case, it is convenient to provide model 
implementations on multiple abstraction levels for each 
system component and function. To guarantee not only 
efficient flows but also consistency with the requirement 
documents, it is convenient to deploy an automatized 
generation of testbenches, fault injections and model 
conversions. 

II. GENERAL METHODOLOGY 
The focus of this paper is the introduction of an approach for 
dynamical fault injection based on requirement documents 
for the validation of safety concepts for safety-critical 
systems. Thereby a flow will be sketched including: 
 
a) requirement management containing test scenarios for 
evaluation of safety concepts, 
b) a document describing the faults that are to be injected, 
c) the simulation environment, and 
d) dynamical fault injection into the digital twin. 
 

In [1] a new methodology for dynamical fault injection 
was presented, which allows fault injection into arbitrary pre-
existing SystemC/SystemC AMS models during runtime. For 
this, the faults are not part of the DUT model but part of the 
testbench instead. Faults are only injected during the 
execution of test cases for fault simulation, while the DUT can 
remain in its faultless form. This strongly simplifies the 
handling of the DUT and its different fault modes, since the 
nominal design and the failure modes can be stored separately. 
For very complex, hierarchical designs, the injection of 
different fault types and multiple faults scattered over the 
entire design, our approach is the only feasible solution. Often, 



 

fault injection is done during the design phase, where the 
design still changes rapidly. In this paper, we will give a brief 
summary of the methodology. For more details on the 
underlying approach we refer the reader to [1]. Figure 1 shows 
the general principle of our injection approach. 

 
Figure 1: Principle of the dynamic fault injection approach 

During the elaboration phase of the fault simulation, runtime 
in-memory connections  in the netlist are disconnected and 
new structures are inserted which allow to switch between 
faultless and faulty behavior. This methodology is applicable 
for all MoCs in SystemC/SystemC AMS, while the respective 
MoC is detected automatically and the corresponding 
injection structure is used. For an easy application by the user, 
a model library is available. This model library contains a 
range of predefined fault models and user templates as well as 
functions for easy usage and a wide spectrum of configuration 
possibilities.  

III. FAULT INJECTION IN THE APPLICATION CONTEXT 
In the following, the dynamical fault injection will be 
demonstrated on a battery management system (BMS) model 
as an example of a highly safety-critical system.  

A. Overview of the BMS 
 

 
 

Figure 2: Toplevel of the digital twin of a safety-critical BMS 

 

Figure 2 shows the top level view of the BMS twin which is 
designed as a heterogeneous system model. The battery cells 
are physical models on the basis of measurements on real 
cells. In the digital twin, they are permanently monitored 
regarding cell voltages and package temperatures by a chain 
of monitoring ICs. In addition, these ICs  are used for the 
activation of balancing and bypassing. They are connected 
with the ECU model through a standard interface. The 
software applications embedded into this model are taken 
from a real battery management ECU. 
 
Furthermore, the ECU model measures the load current which 
is provided by an current metering model. Thereby the load 
current is taken from a real driving cycle. The loads of the 
system model contain uncritical as well as safety-critical 
consumers of an fictitious board net. 

B. The necessity for a safety concept 
In principle a variety of potentially safety-critical faults 

with possibly severe consequences can occur. The designer of 
safety-critical systems therefore is responsible for examining 
which faults have a high probability of occurrence as well as  
impact. On this basis, corresponding counter strategies have 
to be developed and evaluated. 

Examples for potentially safety-critical faults in a BMS 
include: 

• Battery cells run out of specified voltage reach values 
outside of specified temperature ranges 

• Communication channels between monitor ICs and 
the software of the safety concept are disturbed or 
broken  

• Bypass switches are damaged  
 

On closer inspection, the latter two faults concern a double 
fault, since they only become critical in case of an additional 
fault such as the first one. When it comes to inspecting safety 
concepts, the examination needs at first to focus on the impact 
of  single faults. The effort of examining multiple faults 
quickly becomes impractical. Therefore it is reasonable to 
verify the single fault case “Battery cell is running out of the 
specified range” first.  

Now the safety concept has to guarantee compliance with the 
safety requirements at any time. However, some reaction time 
may be allowed. In fact, additional criteria are defined, 
allowing for a short-time violation without risking 
uncontrollable states. The ISO gives clear specifications on 
this, as shown in Figure 3. 

 

 
Figure 3: Fault reaction time as specified in the ISO 26262 standard 
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For example a “fault tolerant time interval” has to be defined. 
Inside of this time interval a fault status shall be detected as 
well as its implications be resolved, leading the system back 
to a safe state. Only then the safety criteria is fulfilled. 
Referring to our example, a global safety goal could serve for 
excluding an overheating of battery cells with the possibility 
of fire or explosion. The safety concepts has to guarantee that 
the sum of “fault diagnostic time“ und “fault reaction time“ is 
less than the “fault tolerant time interval“. This can be 
controlled to some extend by the “diagnostic test interval”, i.e. 
the time period for testing the respective fault. In order to meet 
the requirements, this interval must not be too long. 

In general it is not sufficient to elaborate and implement safety 
concepts. They need to be tested as well. The most efficient 
way for doing so is by using a digital twin in combination with 
an approach for dynamical fault injection. With this approach 
many fault states due to single or multiple faults can be tested. 

Because of the high simulation performance of the digital 
twin, even complex regressions can be performed within a 
reasonable time. 

C. From requirements to faults 
Usually there are different possibilities of how to inject 

faults into a DUT. For instance, for electrical battery faults,  
one can switch virtually between the faultless battery cell 
model and an externally controlled voltage source. The 
original connection between battery cell and connected node 
gets disconnected. Now switchable resistors are inserted, 
allowing for reproduction of the original cell voltage in the 
deactivated fault case while bridging the cell with a voltage 
source connected in parallel in the activated fault case. This is 
illustrated in Figure 4. 

 
Figure 4: Visualization of the bridging fault injection principle into battery 

It should be noted that the red part of the netlist is 
generated only in memory during the simulation run. For the 
description of this fault, there exists a separate form in the 
requirement document which is mapped to the specific test 
case, as indicated in Figure 5. 

 
Figure 5: Definition of the battery fault in the requirement document 

The source code of a SystemC module can be 
automatically generated from the requirement description, as 
shown in Figure 6. This module is instantiated only at 
execution of this particular test case, while for any other test 
case the instance is not generated. 

 
Figure 6: Code snippet of the fault injection stimuli module  

When the constructor is called during the elaboration 
phase, the signals get disconnected, the fault models get 
instantiated and the switch functionalities are inserted 
automatically. For doing so, the injection targets as given in 
the requirements document are used, for example via their 
hierarchical paths starting from the top level. It is also possible 
to pass in target vectors, leading to the creation of as many 
fault model instances simultaneously. As an alternative to 
fixed injection targets, the design can be scanned for 
predefines characteristics where an injection is done for every 
match. Further details of this approach can be found in [1]. 

Figure 7 shows a comparison of  results of simulations with 
either nominal, i.e. faultless, or faulty, i.e. with injected faults, 
state. It can be clearly seen how the voltage of single a battery 
cells is reduced as the result of fault activation. Subsequently, 
an undervoltage is detected by the monitor IC and forwarded 
to the controller. The software application containing safety 
mechanisms is capable of recognizing faults and respond to it 
with a small delay. 



 

 
Figure 7: Comparison of faulty and faultless simulation results 

 An injection of a fault structure does not automatically 
imply the activation of the corresponding fault. For doing so, 
there also exist various options. In the test case, fault 
activation functions can be called at specific points in time. 
The fault injection control also allows periodic activations in 
the form of sequences. By including a statistics library [3], 
even pseudo-random activations become possible. The time as 
well as the location of a fault activation can be chosen 
randomly. User-specified distribution functions can be used to 
select fault location and fault time. Moreover, the mean value 
for the time distribution and a fixed value for the fault duration 
can be defined. Reproducible results are assured by the use of 
the same seed values. Figure 8 shows the simulation results of 
the same test case when using different seeds. As a result, 
varying values for the activation of faults in the simulation 
process are obtained. This approach enables a highly realistic 
analysis. 

 

 
Figure 8: Comparison of random fault activation for different seed values 

Additional safety goals for the battery management system are 
related to safety-critical components such as steering or 
braking systems. It is absolutely mandatory to supply a stable 
voltage to these systems at any time during driving, even in 
case of main battery failure.  

A safety requirement derived from this safety goal states that 
whenever the supply voltage drops below a critical level for 
a pre-defined time, the critical consumers shall be 
disconnected from the battery and instead be supplied by a 
backup or emergency battery.  This is shown in Figure 9 as 
an example board net. The input terminal vbat is connected 
with the battery model of Figure 2. It contains line 
impedances as well as several load impedances which are 
uncritical with regard to the system safety. Another load 
impedance whose failure is possibly critical for the system 

function needs to be supplied with voltage under all 
circumstances.  

 
Figure 9: Board net example with critical and non-critical loads 

A safety requirement contains the activation of an emergency 
or backup battery in this case. The corresponding ECU 
application needs to monitor the supply voltage permanently, 
while short-term threshold crossing have to be ignored. 
However, the emergency battery needs to be activated in the 
range of the “fault tolerant time interval” defined for the safety 
goal in the requirements document. 

The Figure 10 shows the simulation result of a test case which 
serves as verification of the safety requirements. It shows a 
strong drop of the supply voltage at the safety-critical 
consumer as a result of the battery fault activation. After fault 
detection by the safety mechanism and activation of the 
emergency supply, the safety-critical system component is 
supplied in the tolerated time interval such that the overall 
system can be transferred into a safe state. 

 
Figure 10: Simulation result for evaluation of fulfilled critical load safety 

goal 

D. Final validation of the physical ECU 
One differentiating feature of a digital twin is its application 
during the entire product life cycle. Therefore safety functions 
have to reexamined after every product patch or consumer 
adjustment. This is not only requested by the requirement 
management but also mandatory for the evaluation of safety 
concepts which are expected to reduce the impact of safety-
critical events on the system behavior. Even though many tests 
are performed as simulations when using a digital twin, it is 
unavoidable to carry out corresponding tests also on the real 
system. Even here, the digital twin can support the process. 
However, for this type of application the digital twin requires 
real-time capability. In that case, it serves as a virtual 
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environment of the real system. An example of such a scenario 
is shown in Figure 11.  Here, the control unit was separated 
from the digital twin of the battery management system and 
included into tests as a real-world component. 

 
Figure 11: HiL scenario for the BMS, based on digital twin connected to 

real BMS-ECU 

The virtual part of the overall system is running on a real-time 
platform. In our case dSPACE real-time hardware has been 
used. By the approach for dynamical fault injection outlined 
in section III.C, it is possible to trigger critical fault states even 
in such a test. For this, the generated test cases for the digital 
twin of the overall system is reused. This allows to obtain 
comparable results, reduces the test effort and provides 
consistency in the complete verification process. With these 
test cases, the safety mechanisms running on the real-world 
control unit can be tested realistically.  

Also in this case the critical battery state has to be detected 
during the “fault tolerant time interval”. In addition, the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bypass for the corresponding cell hast to be activated, in order 
to resolve the critical state and to fulfill the safety goals. 

IV. OUTLOOK 

Future work on this topic will be focusing on the design of a 
convenient, fault-tolerant generation flow from requirement 
document up to emulation. 
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