

Dynamic fault injection into
digital twins of safety-critical systems

Thomas Markwirth, Roland Jancke, Christoph Sohrmann
Fraunhofer IIS/EAS
Dresden, Germany

{Thomas.Markwirth, Roland.Jancke, Christoph.Sohrmann}@eas.iis.fraunhofer.de

Abstract — In this work we present a technology for
dynamically introducing fault structures into digital twins
without the need to change the virtual prototype model. The
injection is done at the beginning of a simulation by dynamically
rewiring the involved netlists. During the simulation on a real-
time platform, faults can be activated or deactivated triggered
by sequences, statistical effects or by events from the real world.
In some cases the fault structures can even be auto-generated
directly from a formal specification, which further automates
the development process for safety-relevant systems. The
approach is demonstrated at a SystemC/ SystemC AMS virtual
prototype of a safety-critical sub-systems which runs on a
dSPACE real-time hardware.

Keywords—Digital Twin, Safety Critical Systems,
Fault injection, SystemC, Verification, Validation, HiL

I. INTRODUCTION
Today’s embedded systems often exhibit a great deal of
complexity. Especially for safety-critical systems the efforts
for system validation are huge. One of the objectives of the
ISO standard 26262 is the impact analysis of faults on the
system behavior. Performing these tests only at the end of the
design phase might be too late. Early simulation-based testing
on system level offers a solution. Simulations are performed
at an early point in the design process, possibly already in the
conceptual phase, but also during later stages of the entire
design flow. For this purpose, system models are used in the
form of executable specifications. They serve as a reference
for the implementation as well as a virtual prototype for the
development of firmware and application software. These are
typical use cases of system models since they support the
design process of products significantly.

The concept of digital twins picks up this aspect and augments
the approach in the sense that digital twins are not only a tool
for design support, but rather represent the product itself,
therefore being a part of it. As a consequence, the life span of
such a digital twin lasts during optimization at the product
phase as well as over the complete product life cycle. At the
same time they offer new possibilities of application, for
instance the construction of entire supply chains by passing on
the digital twin to partners and customers. In consequence, this
allows for virtual design and test of complex systems without
having to disclose in-house know-how and IP. Furthermore,
the use of digital twins permits virtual examination of the final
products, which would be either too complex, too dangerous,
or technically impossible to be done on the real system.

Special focus is on injection of faults provoking potential
critical system states. This makes it possible to study the
impact of faults, to test safety concepts and therefore to
evaluate the robustness of a system. Therefore digital twins
are highly interesting for safety-critical products. However
while creating digital twins for safety-critical systems, a
variety of challenges need to be solved. One of the most
critical challenges is to achieve a sufficiently high simulation

performance to handle the complexity of the examined
system. At the same time the level of abstraction needs to be
chosen constructively to cover the relevant details.

In general, classical approaches to fault injection for
evaluating safety concepts can become very tedious since all
faults have to be integrated into the respective simulation
models directly, in addition to the fault switching mechanisms
for activating them. This in turn leads to the issue of mixing
functional modelling and modelling of test functionalities.
Functions for fault injection as well as the faults itself,
however, are part of the test functionalities and should
therefore not be element of the DUT implementation.
According to this, in the following we will present an
approach for dynamical fault injection into digital twins that
solves this dilemma and is therefore easily applicable for
safety-critical systems.

For the creation of a digital twin it is essential to use an
efficient language for modelling and simulation. From the
author’s perspective, this is best accounted for by the
SystemC/ SystemC AMS language. Modelling of a digital
twin usually is done in an iterative process which starts with
a specification and a concept phase. In order to support the
respective use case, it is convenient to provide model
implementations on multiple abstraction levels for each
system component and function. To guarantee not only
efficient flows but also consistency with the requirement
documents, it is convenient to deploy an automatized
generation of testbenches, fault injections and model
conversions.

II. GENERAL METHODOLOGY
The focus of this paper is the introduction of an approach for
dynamical fault injection based on requirement documents
for the validation of safety concepts for safety-critical
systems. Thereby a flow will be sketched including:

a) requirement management containing test scenarios for
evaluation of safety concepts,
b) a document describing the faults that are to be injected,
c) the simulation environment, and
d) dynamical fault injection into the digital twin.

In [1] a new methodology for dynamical fault injection
was presented, which allows fault injection into arbitrary pre-
existing SystemC/SystemC AMS models during runtime. For
this, the faults are not part of the DUT model but part of the
testbench instead. Faults are only injected during the
execution of test cases for fault simulation, while the DUT can
remain in its faultless form. This strongly simplifies the
handling of the DUT and its different fault modes, since the
nominal design and the failure modes can be stored separately.
For very complex, hierarchical designs, the injection of
different fault types and multiple faults scattered over the
entire design, our approach is the only feasible solution. Often,

fault injection is done during the design phase, where the
design still changes rapidly. In this paper, we will give a brief
summary of the methodology. For more details on the
underlying approach we refer the reader to [1]. Figure 1 shows
the general principle of our injection approach.

Figure 1: Principle of the dynamic fault injection approach

During the elaboration phase of the fault simulation, runtime
in-memory connections in the netlist are disconnected and
new structures are inserted which allow to switch between
faultless and faulty behavior. This methodology is applicable
for all MoCs in SystemC/SystemC AMS, while the respective
MoC is detected automatically and the corresponding
injection structure is used. For an easy application by the user,
a model library is available. This model library contains a
range of predefined fault models and user templates as well as
functions for easy usage and a wide spectrum of configuration
possibilities.

III. FAULT INJECTION IN THE APPLICATION CONTEXT
In the following, the dynamical fault injection will be
demonstrated on a battery management system (BMS) model
as an example of a highly safety-critical system.

A. Overview of the BMS

Figure 2: Toplevel of the digital twin of a safety-critical BMS

Figure 2 shows the top level view of the BMS twin which is
designed as a heterogeneous system model. The battery cells
are physical models on the basis of measurements on real
cells. In the digital twin, they are permanently monitored
regarding cell voltages and package temperatures by a chain
of monitoring ICs. In addition, these ICs are used for the
activation of balancing and bypassing. They are connected
with the ECU model through a standard interface. The
software applications embedded into this model are taken
from a real battery management ECU.

Furthermore, the ECU model measures the load current which
is provided by an current metering model. Thereby the load
current is taken from a real driving cycle. The loads of the
system model contain uncritical as well as safety-critical
consumers of an fictitious board net.

B. The necessity for a safety concept
In principle a variety of potentially safety-critical faults

with possibly severe consequences can occur. The designer of
safety-critical systems therefore is responsible for examining
which faults have a high probability of occurrence as well as
impact. On this basis, corresponding counter strategies have
to be developed and evaluated.

Examples for potentially safety-critical faults in a BMS
include:

• Battery cells run out of specified voltage reach values
outside of specified temperature ranges

• Communication channels between monitor ICs and
the software of the safety concept are disturbed or
broken

• Bypass switches are damaged

On closer inspection, the latter two faults concern a double
fault, since they only become critical in case of an additional
fault such as the first one. When it comes to inspecting safety
concepts, the examination needs at first to focus on the impact
of single faults. The effort of examining multiple faults
quickly becomes impractical. Therefore it is reasonable to
verify the single fault case “Battery cell is running out of the
specified range” first.

Now the safety concept has to guarantee compliance with the
safety requirements at any time. However, some reaction time
may be allowed. In fact, additional criteria are defined,
allowing for a short-time violation without risking
uncontrollable states. The ISO gives clear specifications on
this, as shown in Figure 3.

Figure 3: Fault reaction time as specified in the ISO 26262 standard

Monitoring IC Battery model

ECU model

For example a “fault tolerant time interval” has to be defined.
Inside of this time interval a fault status shall be detected as
well as its implications be resolved, leading the system back
to a safe state. Only then the safety criteria is fulfilled.
Referring to our example, a global safety goal could serve for
excluding an overheating of battery cells with the possibility
of fire or explosion. The safety concepts has to guarantee that
the sum of “fault diagnostic time“ und “fault reaction time“ is
less than the “fault tolerant time interval“. This can be
controlled to some extend by the “diagnostic test interval”, i.e.
the time period for testing the respective fault. In order to meet
the requirements, this interval must not be too long.

In general it is not sufficient to elaborate and implement safety
concepts. They need to be tested as well. The most efficient
way for doing so is by using a digital twin in combination with
an approach for dynamical fault injection. With this approach
many fault states due to single or multiple faults can be tested.

Because of the high simulation performance of the digital
twin, even complex regressions can be performed within a
reasonable time.

C. From requirements to faults
Usually there are different possibilities of how to inject

faults into a DUT. For instance, for electrical battery faults,
one can switch virtually between the faultless battery cell
model and an externally controlled voltage source. The
original connection between battery cell and connected node
gets disconnected. Now switchable resistors are inserted,
allowing for reproduction of the original cell voltage in the
deactivated fault case while bridging the cell with a voltage
source connected in parallel in the activated fault case. This is
illustrated in Figure 4.

Figure 4: Visualization of the bridging fault injection principle into battery

It should be noted that the red part of the netlist is
generated only in memory during the simulation run. For the
description of this fault, there exists a separate form in the
requirement document which is mapped to the specific test
case, as indicated in Figure 5.

Figure 5: Definition of the battery fault in the requirement document

The source code of a SystemC module can be
automatically generated from the requirement description, as
shown in Figure 6. This module is instantiated only at
execution of this particular test case, while for any other test
case the instance is not generated.

Figure 6: Code snippet of the fault injection stimuli module

When the constructor is called during the elaboration
phase, the signals get disconnected, the fault models get
instantiated and the switch functionalities are inserted
automatically. For doing so, the injection targets as given in
the requirements document are used, for example via their
hierarchical paths starting from the top level. It is also possible
to pass in target vectors, leading to the creation of as many
fault model instances simultaneously. As an alternative to
fixed injection targets, the design can be scanned for
predefines characteristics where an injection is done for every
match. Further details of this approach can be found in [1].

Figure 7 shows a comparison of results of simulations with
either nominal, i.e. faultless, or faulty, i.e. with injected faults,
state. It can be clearly seen how the voltage of single a battery
cells is reduced as the result of fault activation. Subsequently,
an undervoltage is detected by the monitor IC and forwarded
to the controller. The software application containing safety
mechanisms is capable of recognizing faults and respond to it
with a small delay.

Figure 7: Comparison of faulty and faultless simulation results

 An injection of a fault structure does not automatically
imply the activation of the corresponding fault. For doing so,
there also exist various options. In the test case, fault
activation functions can be called at specific points in time.
The fault injection control also allows periodic activations in
the form of sequences. By including a statistics library [3],
even pseudo-random activations become possible. The time as
well as the location of a fault activation can be chosen
randomly. User-specified distribution functions can be used to
select fault location and fault time. Moreover, the mean value
for the time distribution and a fixed value for the fault duration
can be defined. Reproducible results are assured by the use of
the same seed values. Figure 8 shows the simulation results of
the same test case when using different seeds. As a result,
varying values for the activation of faults in the simulation
process are obtained. This approach enables a highly realistic
analysis.

Figure 8: Comparison of random fault activation for different seed values

Additional safety goals for the battery management system are
related to safety-critical components such as steering or
braking systems. It is absolutely mandatory to supply a stable
voltage to these systems at any time during driving, even in
case of main battery failure.

A safety requirement derived from this safety goal states that
whenever the supply voltage drops below a critical level for
a pre-defined time, the critical consumers shall be
disconnected from the battery and instead be supplied by a
backup or emergency battery. This is shown in Figure 9 as
an example board net. The input terminal vbat is connected
with the battery model of Figure 2. It contains line
impedances as well as several load impedances which are
uncritical with regard to the system safety. Another load
impedance whose failure is possibly critical for the system

function needs to be supplied with voltage under all
circumstances.

Figure 9: Board net example with critical and non-critical loads

A safety requirement contains the activation of an emergency
or backup battery in this case. The corresponding ECU
application needs to monitor the supply voltage permanently,
while short-term threshold crossing have to be ignored.
However, the emergency battery needs to be activated in the
range of the “fault tolerant time interval” defined for the safety
goal in the requirements document.

The Figure 10 shows the simulation result of a test case which
serves as verification of the safety requirements. It shows a
strong drop of the supply voltage at the safety-critical
consumer as a result of the battery fault activation. After fault
detection by the safety mechanism and activation of the
emergency supply, the safety-critical system component is
supplied in the tolerated time interval such that the overall
system can be transferred into a safe state.

Figure 10: Simulation result for evaluation of fulfilled critical load safety

goal

D. Final validation of the physical ECU
One differentiating feature of a digital twin is its application
during the entire product life cycle. Therefore safety functions
have to reexamined after every product patch or consumer
adjustment. This is not only requested by the requirement
management but also mandatory for the evaluation of safety
concepts which are expected to reduce the impact of safety-
critical events on the system behavior. Even though many tests
are performed as simulations when using a digital twin, it is
unavoidable to carry out corresponding tests also on the real
system. Even here, the digital twin can support the process.
However, for this type of application the digital twin requires
real-time capability. In that case, it serves as a virtual

Battery
Cell
Voltages

Battery
Cell
Voltages

Fault
activations

Fault activ.

environment of the real system. An example of such a scenario
is shown in Figure 11. Here, the control unit was separated
from the digital twin of the battery management system and
included into tests as a real-world component.

Figure 11: HiL scenario for the BMS, based on digital twin connected to

real BMS-ECU

The virtual part of the overall system is running on a real-time
platform. In our case dSPACE real-time hardware has been
used. By the approach for dynamical fault injection outlined
in section III.C, it is possible to trigger critical fault states even
in such a test. For this, the generated test cases for the digital
twin of the overall system is reused. This allows to obtain
comparable results, reduces the test effort and provides
consistency in the complete verification process. With these
test cases, the safety mechanisms running on the real-world
control unit can be tested realistically.

Also in this case the critical battery state has to be detected
during the “fault tolerant time interval”. In addition, the

bypass for the corresponding cell hast to be activated, in order
to resolve the critical state and to fulfill the safety goals.

IV. OUTLOOK

Future work on this topic will be focusing on the design of a
convenient, fault-tolerant generation flow from requirement
document up to emulation.

V. ACKNOWLEDGEMENTS
This work has received funding from the ECSEL Joint
Undertaking (JU) under grant agreement No 876852.
The JU receives support from the European Union’s Horizon
2020 research and innovation programme and
Austria, Czech Republic, Germany, Ireland, Italy, Portugal,
Spain, Sweden, Turkey.

REFERENCES
[1] T. Markwirth, P. Ehrlich, and D. Matter, “Dynamic Fault Injection

Library Approach for SystemC AMS”, DVCon Europe, October 2016
[2] C. Ziebert, A. Melcher, B. Lei, M. Rohde, H.J. Seifert, M. Gulbins, T.

Markwirth, J. Haase, “A Table-driven Li-Ion Battery Model for a BMS
Development Platform – Modeling, Measurements, Implementation
and Validation”, European Battery Hybrid and Fuel Cell Electric
Vehicle Congress, Geneva, March 2017

[3] T. Markwirth, J. Haase, K. Einwich; “Statistical Modeling with
SystemC-AMS for Automotive Systems”, FDL’08; 2008

[4] G. Pachiana et al., “Automated traceability of requirements in the
design and verification process of safety-critical mixed-signal
systems”, DVCon US 2021, to be published

	I. Introduction
	II. General methodology
	III. Fault Injection in the application context
	A. Overview of the BMS
	B. The necessity for a safety concept
	C. From requirements to faults
	D. Final validation of the physical ECU

	IV. Outlook
	V. Acknowledgements
	References

