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I. INTRODUCTION

Embedded electronic systems used in vehicles are becoming
more exposed and thus vulnerable to different types of faults
and cybersecurity attacks. Examples of these systems are
advanced driver assistance systems (ADAS). Failures in these
systems could have severe consequences. Therefore, these
systems should be thoroughly evaluated during different stages
of product development. An effective way of evaluating these
systems is through the injection of faults and monitoring their
impacts on these systems. Fault injection can be conducted
either through the field tests or simulation-based tests. While
conducting field tests could be costly and sometimes life-
threatening [1], [2], simulation-based tests provide a wide
range of advantages, such as adaptation of tests to a variety of
traffic scenarios and avoiding the life-threatening situations.

In this paper, we present SUFI, a simulation-based fault
injector that is capable of injecting faults into ADAS features
(e.g., car-following and lane-changing) modelled in SUMO
(simulation of urban mobility). Using SUFI, we model differ-
ent faults and measure their impacts on the target system. The
results of the fault injection experiments show the effectiveness
of SUFI in revealing weaknesses of ADAS features modelled
in SUMO when targeted by faults and attacks.

II. EXPERIMENTAL SETUP

A. SUFI (SUmo-based Fault Injector)

Fig. 1 presents the architecture of SUFI that uses SUMO [3]
to simulate the traffic and model the ADAS features. Python
scripts are written to specify fault models (see §II-B), fault
locations (see §II-E), fault injection time interval (see §II-D),
and data logging commands. The Python scripts and SUMO
are communicating with each other via TraCI (Traffic Control
Interface) [4] during experiment runs.

B. Fault and Attack Models

SUFI is capable of modelling different types of faults and
attacks such as, (i) stuck-at-value where the content of a
location is stuck at a certain value. If the value is stuck
permanently, it could be used to model manufacturing defects
e.g., in sensors. However, if it is stuck temporarily, it could be
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used to model cybersecurity attacks such as the replay attack.
And (ii) single/double bit-flip where up to two of the bits
stored in a target location are flipped and is used to model
cybersecurity attacks such as corrupt message.

SUFI is also capable of modelling transient and semi-
permanent faults. The former is used to model faults that only
appear in the system for one simulation time step or to model
temporal cybersecurity attacks while the latter is used to model
faults that remain in the system until the end of a simulation
run such as complete blockage of a sensor.

Fig. 1: Architecture of SUFI (SUmo-based Fault Injector)

C. Models Under Evaluation

This study evaluates the longitudinal and lateral behaviours
of vehicles through the injection of faults and attacks into
ACC (Adaptive Cruise Control) [5] and CACC (Cooperative
Adaptive Cruise Control) [5], [6] car-fallowing models as well
as LC2013 [7] lane-changing model.

D. Traffic Simulation Scenario and Time Interval

We use a three-lane road network scenario, where 10
vehicles are driving on the road during a simulation run. The
road’s speed limit is 36 m/s and its length is 750 m. We refer
to the vehicle that is the target of our faults the ego-vehicle.

The total simulation time for the defined traffic scenario
is 42 s and the interval between 11 s and 21 s is the fault
injection time interval as it is very likely for the ego-vehicle
to perform a lane-change within this period, facilitating the
evaluation of the car-following and lane-changing models.

E. Fault Injection Locations

The vehicle behaviour could be affected by injection of
faults in a variety of parameters used by the car-following and



TABLE I: Fault injection results.

Fault Model Duration Non-Effective Crash Negligible Benign Severe Total
LC-assertive parameter (fault injection time interval: 11.0 s – 21.0 s)

Stuck-at-value Semi-permanent 9 0 597 98 1296 2000
Transient 3 0 600 100 1297 2000

Single bit-flip Semi-permanent 1220 20 12 2 26 1280
Transient 1222 20 10 2 26 1280

Double bit-flip Semi-permanent 1843 54 22 7 74 2000
Transient 1842 56 22 5 75 2000

Reaction time parameter (fault injection time interval: 11.0 s – 21.0 s)

Stuck-at-value Semi-permanent 0 0 282 572 146 1000
Transient 0 0 550 450 0 1000

LC-assertive + reaction time parameters (fault injection time interval: 11.0 s – 14.0 s)
Stuck-at-value Semi-permanent 0 0 2703 9697 5100 17500

lane-changing models. The effectiveness of these injections
in manipulating the vehicle behaviour could also be tightly
connected to the defined traffic scenario. In this paper, we
target two parameters in SUMO. The first one is LC-assertive
which shows the eagerness of the vehicle to perform a lane
change and allows us to model sensor faults resulting in
incorrect gap estimations. Here, LC is an acronym for Lane-
Change. The second parameter is reaction time corresponding
to the update time of the vehicle behaviour which allows us
to model a delay attack.

F. Outcome Classifications

We classify the results in five groups by looking into the
deceleration (braking rate) profiles of the vehicles; (i) Non-
effective: the injected fault has no effects on the behaviour
of the vehicles, (ii) Negligible: the recorded maximum decel-
eration is less than or equal to 0.78 m/s2, (iii) Benign: the
recorded maximum deceleration is between 0.78 m/s2 and
5.0 m/s2, (iv) Severe: the recorded maximum deceleration
is greater than 5.0 m/s2, some of which also result in car
collisions, (v) Crash: the simulator crashes after the fault in-
jection. Note that, the braking rate 0.78 m/s2 is the maximum
deceleration recorded in the golden run for the target time
interval (see §II-D) and the maximum comfortable braking
rate and the maximum emergency braking rate are defined as
5.0 m/s2 [8] and 8.0 m/s2 [9], respectively.

III. EXPERIMENTAL RESULTS

Table I shows the results of the fault injection experiments
conducted. The table shows a great number of benign and
severe cases for when the stuck-at-value model is used.
The single and double bit-flip models, on the contrary, are
significantly less effective in causing severe results. The table
also shows that in general, the difference between the results
obtained for the transient and semi-permanent models are
insignificant except for when the stuck-at-value is used when
targeting reaction time parameter.

When analysing the result of fault injection experiment
presented in Table I for the LC-assertive parameter, we learned
that none of the faults injected during the period between 11.0
s and 14.0 s resulted in a severe case. Therefore, we decided
to further investigate this time interval by exposing the system
to faults in both the LC-assertive and reaction time parameters

(see the last line of Table I). The obtained results show the
effectiveness of these faults in revealing system weaknesses
that could not be revealed when targeting a single location.

It is also worth mentioning that, the faults injected, in ad-
dition to affecting the speed profile of ego-vehicle, influences
multiple other nearby vehicles. In fact, for the LC-assertive,
the vehicle behind the ego-vehicle is the one flagging all the
severe cases, whereas for the reaction time, the majority of
the severe cases are flagged by the ego-vehicle.

IV. CONCLUSIONS AND IMPLICATIONS

In this paper, we presented SUFI that allowed us to suc-
cessfully reveal some of the weaknesses of ADAS features
modelled in SUMO through fault injection experiments. The
experiment results show that parameters such as the fault
model, fault location and the duration in which a system is
exposed to faults play an important role in revealing these
weaknesses. As part of the future work, we plan to perform
injections in other locations of the CACC and ACC models and
to model other groups of faults/attacks. Besides, as physical
features of the environment such as the weather condition are
not considered in SUMO, we plan to use simulators such as
CARLA [10] that provides us with modelling of such features.
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