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Abstract. Semi-algebraic abstraction is an approach to the safety veri-
fication problem for polynomial dynamical systems where the state space
is partitioned according to the sign of a set of polynomials. Similarly to
predicate abstraction for discrete systems, the number of abstract states
is exponential in the number of polynomials. Hence, semi-algebraic ab-
straction is expensive to explicitly compute and then analyze (e.g., to
prove a safety property or extract invariants).

In this paper, we propose an implicit encoding of the semi-algebraic ab-
straction, that avoids the explicit enumeration of the abstract states: the
safety verification problem for dynamical systems is reduced to a cor-
responding problem for infinite-state transition systems, allowing us to
reuse existing model-checking tools based on Satisfiability Modulo The-
ory (SMT). The main challenge we solve is to express the semi-algebraic
abstraction as a first-order logic formula that is linear in the number of
predicates, instead of exponential, thus letting the model checker lazily
explore the exponential number of abstract states with symbolic tech-
niques. We implemented the approach and validated experimentally its
potential to prove safety for polynomial dynamical systems.

1 Introduction

Non-linear dynamical systems are characterized by continuous evolution result-
ing from ordinary differential equations containing non-linear polynomials. Prov-
ing safety properties for non-linear dynamical systems is extremely challenging,
and several approaches have been proposed. Semi-automatic deductive verifi-
cation techniques based on theorem proving include proving hybrid programs
using differential dynamic logic [28] or hybrid Cyber Physical System (CPS)
using Hybrid Hoare Logic (HHL) [22]). Among various automatic techniques
(e.g, [32]), an important line of work applies symbolic model checking to ab-
stractions of hybrid systems, both with linear and non-linear dynamics, using
qualitative predicate abstraction ([36]). Unfortunately, the problem with above
techniques is twofold. On one side, the abstractions are often unable to precisely
lift important information, thus resulting in an abstract system that is not strong
enough to prove the property. On the other side, the abstraction computation
may be too expensive to compute, especially in the non-linear case.
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To tackle the first problem, we consider the semi-algebraic decomposition
for dynamical systems of [34], also referred to as LZZ. The idea is to build
an abstraction from a given set of polynomials, partitioning the concrete state
space according to the sign of each polynomial. The abstraction is exact: there is
a transition from an abstract state to another abstract state if and only if there
is (at least) a concrete transition from the two concretizations of the abstract
states. Semi-algebraic decomposition is also appealing because it can be made
more precise adding new polynomials.

The abstraction can be computed by means of logical operations (by repeat-
edly checking the satisfiability of quantifier-free formulas interpreted over the
reals). However, the second problem remains: the explicit computation of the
abstraction is extremely costly, since it requires the enumeration of all possi-
ble transitions between abstract states, that are exponential in the number of
considered polynomials.

Interestingly, an effective use of abstraction is at the core of the most suc-
cessful verification techniques for discrete infinite-state transition systems. The
technique of predicate abstraction [17] was originally adapted for symbolic veri-
fication in [9] and then optimized in [20]. This idea has been further developed
in implicit predicate abstraction [37], that eliminates the burden of an upfront
exponential blowup in the computation of the abstract states by embedding the
abstraction in the symbolic encoding of the transitions. This approach has been
used also in combination with IC3 [6, 1, 7].

In this paper, we propose a new approach to the verification of dynamical
systems with non-linear polynomial dynamics based on the use of semi-algebraic
decomposition. The contributions of the paper are the following:

— We cast the problem of computing and verifying properties of dynamical sys-
tems using the semi-algebraic decomposition in the framework of verification
via implicit predicate abstraction (i.e., a first-order logic characterization of
the semi-algebraic decomposition abstraction). Thus, we apply SMT-based
model checking techniques to prove safety properties of polynomial dynam-
ical systems.

— We define a linear symbolic encoding for the abstraction. Note that the naive
formulation of the predicate abstraction problem (which follows from the
explicit computation approach propsed in [34]) is not effective in practice:
in fact, the number of abstract states is exponential in the total number
of polynomials that define the abstraction, and the encoding requires to
enumerate all the possible pairs of abstract states to check the existence of
an abstract transition. We exploit the properties of the LZZ formulation to
define a coincise encoding that is linear in the number of the polynomials,
hence making the approach feasible in practice.

— We implement and experimentally evaluate the approach. The results show
how the reduction to the verification of discrete infinite-state transition sys-
tems is complementary to reachability analysis techniques and proves cases
that were previously out of reach for the state-of-the-art tools.
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Outline: The rest of the paper is structured as follows: Sec. 2 gives an overview
of the approach with a motivating example; Sec. 3 provides the background def-
initions; Sec. 4 shows the naive encoding of the abstraction, while in Sec. 5 we
derive the linear encoding and define the related implicit semi-algebraic abstrac-
tion; in Sec. 6, we present the experimental results; in Sec. 7, we discuss the
related work and, finally, in Sec. 8, we draw some conclusions and directions for
future work.

2 Overview of the approach

Consider a verification problem (adapted from [23]) on the non-linear dynamical
system with two variables = and ¥, and differential equations & = —2y, y = z2.
We want to prove that the system cannot reach the set of bad states (x + 2)? +
y?—1 <0 (i.e., it never leaves the safe region (z+2)%2+y%—1 < 0) when starting
from the initial set of states x —y — % > 0Axz+2 > 0. Note that although in this
example the evolution of the system is not restricted, our approach can deal with
the more general case in which the evolution can be constrained by an invariant
condition that must always hold. The system is safe and will avoid the set of
bad states (see system’s dynamic in Figure 1).

We can prove that the system is safe by first constructing and then model
checking a discrete semi-algebraic abstraction [34]: given the set of polynomials
A={x—-—y- %, T+ y+ %,x + 2}, the semi-algebraic abstraction partitions
the state space according to the sign ({>,<,=}) of the polynomials in A (an
example of abstract state is the state z +2 > 0Az —y — % < O/\x—l—y—l—% <0
represented as (I) in Figure 1b). There exists a transition from an abstract state
to another one if the two states are neighbors and there exists at least one tra-
jectory of the dynamical system going from one state to the other. The existence
of such condition can be checked using the LZZ algorithm [23], which checks if a
semi-algebraic set 1 is a differential invariant for a polynomial dynamical system
f when its execution is restricted to the domain H (another semi-algebraic set).
The algorithm reduces the invariant check to the satisfiability of the Non-Linear
Real Arithmetic Theory formula LZZ, 7, (Z), where Z is a set of real-valued
variables. We can systematically check if there exists a transition from an ab-
stract state s; to the abstract state sy proving that sy is not invariant when
restricted to the domain s1 V sg (i.e., checking that LZZ_ 7 .,  (Z) is false).

Furthermore, we can use an algorithm, called LazyReach [34], to compute
the forward set of reachable abstract states starting from the initial states. As
usual, if no abstract states intersect the set of bad states then the system is
safe, and the reachable set of abstract states is a semi-algebraic invariant for
the system. Figure 1b shows the state space of the dynamical system: the initial
and bad states of the verification problem (represented with the green and red
region respectively), the solution of the polynomials from A (represented as
blue lines), and further superimpose the set of reachable abstract states and
transitions (represented as numbered circles and arrows between the circles).
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Fig. 1. Safety verification problem and reachable states of the abstraction for the non-
linear dynamical system & = —2y,9 = z?, bad states (z + 2)> + 3% — 1 < 0 (red
circle), and initial set of states x —y — 3 > 0 Az + 2 > 0 (green region). Figure (a)
shows the verification problem and the system’s vector field. Figure (b) shows the
reachable abstract states and the transitions of the algebraic abstraction (numbered
circles and arrows) computed using LazyReach and the differential invariant (green and
gray regions) obtained from the set of polynomials A = {z —y — o +y+ 1,2+ 2}
(blue lines), computed using Implicit Abstraction. Abstract states represent different
combinations of signs for the abstraction’s polynomials. Examples of abstract states
are D 242 > 0Az—y—1 < 0Az+y+1 <0, z+2>0Az—y—3 =0Az+y+3 <0,
and @z+2>0Az—y—32=0Az+y+1=0

The abstraction shown in Figure 1b is the result after applying LazyReach to
the verification problem.

A main challenge for the LazyReach algorithm is to explicitly enumerate the
reachable states and transitions among them, since their number is exponential
in the number of polynomials A (i.e., the number of total states is already 3|A|).
For the example above, where we have 3 polynomials, the maximum number of
states would be 27, with an even bigger number of transitions (e.g., one must
consider the transition between each pair of neighbouring abstract states). Even
if LazyReach enumerates the reachable abstract states on-the-fly, the explosion
in the number of states and transitions is still a bottleneck. Our implementation
of LazyReach applied to the above example explores a total of 9 states and checks
the existence of 27 transitions, taking about 12 seconds to complete.

A possible solution to tackle the state explosion problem is the DWCL al-
gorithm, proposed in [34].The DWCL algorithm® tries to reduce the number of
abstract states by checking if the sign of a polynomial a € A is invariant, that
is if:

4 We provide the main intuition behind the DWCL algorithm and we refer the reader
to [34] for a detailed exposition.
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— the sign of the polynomial @ does not change in the initial states (i.e., the
predicate a 10, with <€ {<, >, =}, holds for all the initial states); and

— a0 is a continuous invariant for the dynamical system (this can be checked
with LZZ 7 (Z).)

When a predicate a > 0 is a continuous invariant, the algorithm strengthens the
invariant of the dynamical system (by adding a > 0 to the invariants), allowing to
remove a from the set of polynomials A. While the DWCL algorithm may already
find a strong-enough invariant to prove the safety property, the algorithm falls
back to the LazyReach algorithm in the general case to explore the abstract
state space, hopefully with a strengthened invariant domain and a smaller set
of polynomials. In practice, the state-space explosion problem of LazyReach still
exists in the case “not enough” polynomials are sign-invariant, as it happens in
our motivating example. In the example, no polynomials are sign-invariant®: this
means that the DWCL algorithm will not remove any polynomials from the set
A and LazyReach will still suffer from the state-space explosion problem.

The semi-algebraic abstraction is a specific instance of predicate abstrac-
tion [17] of the dynamical system f For discrete-state systems, there exist effi-
cient algorithms to either explicitly compute the abstraction using Satisfiability
Modulo Theory (SMT) solvers [21,20] or to implicitly represent the abstraction
and directly verify a safety property (e.g., implicit predicate abstraction [37]).
Since these algorithms work on a fully symbolic representation of the abstract
state space, they can cope with the state-space explosion due to the number of
predicates of the abstraction. However, applying the same symbolic-state tech-
niques to compute or verify the semi-algebraic abstraction is still challenging,
mainly because it requires to express the transition relation T(X,X’) of the
semi-algebraic abstraction in a first-order logic formula. We can notice that such
transition relation 7' can be directly obtained from the abstraction’s definition®:

32.( V  siX)As(X)A(-LZZ, ﬁ51v52(2))>.

(s1,82)€3

The above transition relation enumerates all the possible pairs of abstract states
and its size is exponential in the number of polynomials in A. The additional
variables Z are copies of the state variables of the system and are used to encode
the LZZ condition. Clearly, even creating such formula is not scalable and hinders
the application of the standard abstraction and verification techniques used for
discrete systems.

While the LZZ algorithm works for semi-algebraic sets (i.e., the candidate
invariant ¢/ and the invariant states H are both arbitrary Boolean combinations

® The differential-cut (DC) and the differential divide-and-conquer (DDC) proof rules
used in DWCL fail for all the polynomials from A, so DWCL would not remove any
polynomial.

5 For clarity, here we do not include additional constraints in the transition relation,
such as the neighborhood relation, which instead we consider later in Section 4.
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of non-linear arithmetic terms), here we apply LZZ to check the existence of a
transition between two abstract states.

Our main contribution, presented in Section 5, is a compact formulation of the
above transition relation that has a size linear in the number of the polynomials
A. The steps to obtain such exponentially smaller transition are:

1. We specialize the LZZ formula ﬁLZZsl’ijlv52 (Z) to encode the existence of
a transition between two abstract states s; and so. The resulting formula is a
disjunction, and each disjunct encodes the necessary and sufficient condition
for a continuous transition to sq to exist, either inside the set s1(Z) or outside
the set —s1(Z). Intuitively, we obtain a specific encoding for checking the
existence of an abstract transition, instead of reusing the LZZ as a “black
box”.

2. We “lift” the above disjunction to the disjunction of all the abstract states,

obtaining the formula:
EIZ.(InsEaspl];(X, X', Z)v OutExplf(X, X' 7)),

where InsFExpl f(X , X', Z) encodes the “inside condition” for all the pairs of
transitions (and similarly for the “outside condition” OutExpl f(X , X', 7)).

3. The formula InsExpl f(X , X', Z) still contains an explicit enumeration on
the pair of abstract states. We show how we obtain an equivalent formula,
InsSymb f(X , X', Z), that encodes the same condition for each polynomial
a € A in the abstraction, obtaining a linear, instead of exponential, encoding.
We apply the same reasoning on OutExplf(X, X', 7).

We then use the concise transition relation of 7' to obtain a symbolic tran-
sition system Sy that implicitly encodes the semi-algebraic abstraction for the
dynamical system f with the polynomials A. Technically, instead of computing
the predicate abstraction, we encode the implicit abstraction [37]. Consequently,
we avoid an expensive quantifier elimination step. We can then verify the safety
property on the transition system Sy using an SMT-based model checking al-
gorithm. We use the algorithm from [5], since Sy contains non-linear arithmetic
formulas. Our approach verifies the example of Figure 1 and finds the continuous
invariant:

1 1 1 1 1
(@-y<gVez-YA@-yzgVrtyz-—g)A(z-yz5Vaety>—7),

which is shown in the union of the green and gray regions in Figure 1b.

3 Preliminaries

In this work, we consider first-order formulas in the theory of non-linear arith-
metic over the reals (NRA). We denote with ¢(X) the formula ¢ containing free
variables from the set X = {z1,...,z,}. We simplify the notation of the formula
#(X) to ¢ when the set X is clear from the context.
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Invariant Verification for Polynomial Dynamical Systems

Safety Verification of Dynamical Systems. Given a set of variables X we write
X = [71,...,2,])T to specify a vector containing all the variables in X ordered
lexicographically. We use the subscript X, to access to the i-th element of the
vector. We focuf on polynomial dy_pamical systems of ordinary differential equa-

tions (ODEs) X = f(X), where X is the vector of first-order derivatives of the

variables X and f(X) is a vector of polynomials (i.e., f;(X) is a polynomial).
The safety verification problem consists of proving that every trajectory of the

- =

dynamical system X = f (X) starting inside the initial set of states 1) and while
being inside the evolution domain constraints H remains inside the safe set of
states ¢. We can write the problem using differential dynamic logic [29] notation:

v [X = f(X) & Hg. (1)

The solution to the intial value problem Zy € R"is a differentiable function
@(Zo,t) : R"1 — R™ such that 4 (o(Zo,t)) = f(¢(Zo,t)). The system is safe if
the following holds:

VZo € Y.¥V7 > 0.(Vt € [0, 7].p(Zo,t) € H) — ¢(Zo,t) € @).

Proving the system is safe amounts to find a formula §(X) such that: i) H Ay —

0,ii) 0 — [X = f(X) & H] 6, and iii) § — ¢. Essentially 0(X) is a continuous
invariant [30] that contains the initial states and that is contained in the safe
states.

LZZ Algorithm [23]. The LZZ algorithm reduces the problem of checking if 6 is
a continuous invariant to checking the validity of the following formula:

LZZy 7 (X)) = (0(X) A H(X) Ang (X)) = Ing 4(X)A (2)

(H0(X)NH(X)NIn_ (X))—>ﬂln_);:9(X))7

0,f.H
fH
where the formula In > _(X) for the ODEs f and the formula + represents the set

of states which will evolve inside the set v for some non-zero time in the future.
Respectively, the formula In_ fv(X ) represents the set of states evolved inside

the set v for some non-zero time in the past, and — f represents the dynamical
system evolving in “reverse”. Note that the construction of the formula Inz_(X)
assumes 7 to be in disjunctive normal form (DNF):

v = \/ /\ a(X) =0,
dedisj(vy) a<i0€pred(d)

where disj() enumerates the disjuncts of a formula v, pred(d) enumerates the
predicates in the disjunct d, and i€ {>,>}7. The formula I“f_y(X) is defined

" Later we also consider predicates p = 0. The construction of Infa:O(X) can be
found in [12].
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as:
Ing (X)=\/ N I (X)) (3)
dedisj(vy) ai0€pred(d)

The formula In Fan<0

derivatives of the polynomial a(X). The i-th Lie derivative L}a of a polynomial
a(X) with respect to the ODEs f is defined recursively as:
0

(X)) encodes the set for a single predicate a i 0 using the Lie

LWq= LWa= LU Yef.
Fae=a Fa Py o af
In fa>o(X ) encodes that the first non-zero Lie derivative of a must be positive

in order for the trajectories of the system to enter the set a > 0 and stay inside
the set for a positive time®(see [23] and [12] for a thorough explanation):

Ing,_o(X)= \/ (/\ L§g>a0AL§;)a>0>, (4)

0<i<Na.; \0<j<i

Ing oo(X)=Ing, ((X)v \/ Lig,)a:o, (5)
0<i<Ng. s

where N 7 is an integer constant and is an upper bound on the minimum integer
number r (called rank) such that L;f)a # 0 (for all z € R"). N, 7 can be

computed using Grobner basis as explained in [23].

In the following, we will only use the fact that the formula Inz_ (X) for the
DNF formula v is the DNF formula where Iny is applied to the predicates (as
shown in Formula (3)).

Semi-Algebraic Abstraction [34]. The semi-algebraic abstraction of the dynami-

cal system X = f()Z) partitions its state space with respect to a set of polyno-
mials A ={ay,...,a,;,}. The abstraction is the (explicit state) transition system
Sa = (3%, Ipa, Ty,a) where:

— 34 ={s = Aep a0 <€ {>,<,=}} is the set of abstract states;

— Ipa={s €3%] s A is satisfiable} is the set of abstract initial states; and

— Tya C 3% x 3% is the abstract transition relation. A transition (s1,s2) € T
if:

e s; is an abstract state adjacent to so. The abstraction exploits the con-
tinuity assumption on f and does not allow the system to transition
directly from a state where a predicate is greater than 0 (e.g., a > 0)
to a state where the same predicate is less than 0 (e.g., a < 0), and
vice-versa. The abstraction does not visit two abstract states containing
predicates with opposite signs, forcing instead to visit the intermediate
state where the predicate is equal to 0.

8 In our implementation we encode In fa>0(X ) using the remainders of the Lie deriva-
tive, as in [12].
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e There exists a continuous trajectory from s; to so. This condition corre-
sponds to checking that the following differential dynamic logic formula
is not valid (i.e. s1 is not a differential invariant when restricting the
evolution domain to s1 V $3):

S1 — [)_(: = f()?) & s1V 82]81,

which can be checked using the sound and complete LZZ algorithm, i.e.
checking the satisfiability of the first-order formula ~LZZ_ = . . (Z)).

Since the number of states 3% is finite we can compute the set of reachable states.
The concretization of this set, 6 contains the initial states and is a differential
invariant. If 6 further implies the safe states 1, then we prove the safety verifi-
cation problem 1. However, the computation of the abstract transition relation
is exponential in the number of polynomials in A because we would need to
enumerate all the possible pairs of transitions (s, s) € 3% x 3%,

Predicate Abstraction.

A symbolic transition system S is a tuple S=(V, I, T), where V is a set of (state)
variables, I(V) is a formula representing the initial states, and T(V,V’) is a
formula representing the transition relation. A state s of S is an interpretation
of the state variables V. A (finite) path m of S is a finite sequence T=sg, 1, . . . , Sk
of states with the same domain and interpretation of symbols in the signature
X such that so |= I and for all 4,0 < i < k, s;,5;,; = T. We say that a state s is
reachable in S iff there exists a path of S ending in s. Given a formula P(V') and
a transition system S, the invariant verification problem, denoted with S | P,
checks if for all the finite paths sg, s1,...,s, of S, for all 4, 0 <i <k, s; = P.

Predicate Abstraction [17] partitions the concrete system S = (V,I,T) ac-
cording to a finite set of predicates P={py, ..., px} in a finite symbolic transition
system: . . R

Sp = (Ve, Ip(Ve), Te(Ve, Vp))

using a new abstract Boolean variable v, for each predicate p (Vp = {v, | v € V'}
is the set of those new variables). The abstraction relation Hp(V, V)= A ,cpvp <
p(V') defines how a set of concrete states is abstracted to the abstract states.
We compute the abstraction of a formula (V') by existentially quantifying the
concrete variables V:

~

Yp(Ve) = 3V.(0(V) A Hp(V, VE)).
Similarly, we compute the abstract transition relation for T'(V,V'):
T\]p(V]p, Vg) =3V, V'.(T(V, V") A Hp(V, V) A Hp(V', Vp)).

The above formulation is sufficient to compute the predicate abstraction for an
infinite-state transition system S = (V, I, T') and a set of predicates P. However,
the main challenge in computing the abstraction is to eliminate the quantifiers,
since quantifier elimination is expensive to compute.
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Implicit Predicate Abstraction. Implicit Predicate Abstraction [37] is a model
checking algorithm that avoids computing the abstract version of the initial
states, safety property, and transition relation, insteads it encodes the existence
of a path in the abstract system. It exploits the fact that the abstraction induces
an equivalence relation among concrete states of the system (i.e., two concrete
states are equivalent if they belong to the same abstract state) and that this
relation can be expressed as a quantifier free formula:

EQp(V.V)= N\ p(V) < p(V). (6)

peP

We use the equivalence EQp(V,V) to relate two sets of concrete states and
we encode the problem of reaching a set of target states =P in k steps of the
transition system S as follows:

BMCE = I(VO) A EQ.(VO, V") A
—k—1

A (T(Vh’l,vh)AEQP(Vh,Vh))AT(V VEY A
1<h<k

EQe(VF, V") A (=P(T")).

The formula BMC¥ is satisfiable iff there exists a path in the abstract transition
system Sp of length k starting from the (abstracted) initial states Ip(Vp) and
reaching the (abstracted) bad states = Pp(Vp).

4 Explicit Computation of the Semi-Algebraic
Abstraction

We frame the problem of computing the semi-algebraic abstraction as a predicate
abstraction problem. This formulation allows us to use the standard techniques
to compute or analyze the predicate abstraction for discrete systems.

We consider the invariant verification problem 1) — [X = f ()? ) & Hl¢ as in
Equation (1) and a set of polynomials A = {a4, ..., a;,} for the abstraction. We
construct a symbolic transition system of the semi-algebraic abstraction:

§]P’ = <V]P>’ E[»(VIP’), fIP(VPv V]P€)>7

where the set of predicates of the abstraction isP={a>=<0]a € A A <€ {>,<
,=1}, and the set of abstract variables Vp is defined as in Section 3 (i.e., the ab-
straction contains a Boolean variable v, for each predicates p € P). We similarly
use the formula Hp(X,Vp) to describe the equivalence relation of the concrete
states. The formulas Ip(Vp) and :FP(VP) are the semi-algebraic abstraction of
the initial states 1) and of the unsafe states —¢:

I>(Ve) = 3X.(¢(X) A Hp(X, V), —Pp(Vp) = 3X.(—¢(X) A Hp(X, V&),
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and we obtain the abstraction by existentially quantifying the concrete variables
X. The definition of the abstract transition relation Tp(Vp, V§), which differs
from the encoding of the semi-algebraic decomposition, is:

To(Ve, V¥) = 3X, X'. <N(X, X')YAH(X)AH(X')A (7)

Hp(X,Vp) A Hp(X',VE) AIZTH(X, X, Z))7

where N(X, X’) encodes the adjacent relation between abstract states:

NXX) = A ((a(X) <0 a(X') <0)A(a(X) >0 — a(X') > 0)),
a€A

and Ty (X, X', Z) encodes the existence of a transition in the dynamical system
f for each pair of abstract states (s, s9) € 3%:

(X, X', 2)= \/ (sl(X)ASQ(X’)AﬂLZZShﬁslm(Z)). (8)

(s1,82)€34
Theorem 1. The transition systems Sy and §A are bisimilar.

Corollary 1. Sy |= —\:ﬁ]p(Vp) implies 1 — [)Z = f(X) & H]¢.
Proof (sketch). The proof follow directly from Theorem 1. O

While the encoding of the transition relation fp(Vp, V{) is symbolic, it (and in
particular the sub-formula T (X, X', Z)) explicitly enumerates an exponential
number of abstract pair of states. Clearly, this encoding is not practical and
defeats the purpose of using symbolic techniques to compute the abstraction.

5 Linear Encoding of the Semi-Algebraic Abstraction

Specializing the LZZ formula for checking abstract transitions

The construction of the semi-algebraic abstraction uses the formula ~LZZ_ Fs1Vss (
to encode the existence of a transition from the abstract state s; to the abstract
state s3. We observe that here the LZZ algorithm is applied to formulas with a
specific structure — the abstract states s1(Z) and s2(Z), in contrast to arbitrary
semi-algebraic sets as in the general case of LZ Zy 7 (X)) where the formulas 0
and H are in DNF. Instead, in the case of LZZ_ 7 . (Z), each abstract state
3;(X) assigns a sign to each polynomial a € A and is represented as conjunctions
of predicates s; = a1 >3 0 A ag >y O A ... ay Dy, 0, where ;€ {>,<,=}. We
will write the conjunction representing a state s;(X) as /\ ;,q0es, @(X) > 0. Also

Z)
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note that the evolution domain constraints are also a disjunction of two abstract
states s1 V so.

We specialize the Eq. (2) to the specific case of LZZsl,f,sleQ(Z)' We will
use such specialization to obtain a compact (linear in the number of polynomi-
als) encoding later in the section. Instantiating the formula (2) to the case of
LZZ - (Z), we get:

s1,f,81Vs2

LZZSl’f,SleQ(Z) =
(51(2) A (51(2) V 2(2)) A, o, (2)) = In, (Z))A )
((ﬁsl(Z) A\ (Sl(Z) V SQ(Z)) A\ In—f,sl\/sZ(Z)) — ﬁlnff,sl (Z))

Applying the Boolean identities: (a A (aV 8)) <> a, (-aA(aVp)) < "aAp

—>((s (Z)/\Inf slvw(Z)) —>Inﬁsl(Z))/\ (10)
((ms1(2) A sa(Z) A In_7 e, (Z2)) — ~In g (Z2))
Rewriting the implication and applying De Morgan’s laws:
< (-s1(Z) Vv —Ing 51v§2(Z)\/Inf,sl(Z))/\ (11)
(s1(Z)V —s2(Z) V ﬁlnff,slez(Z) v ﬁlnff’sl(Z))

Expanding the definition of In (Eq. (3)): Inf .z ={Un_z, VIng,)

In_,f Vg = (In Fa \/In_f”@)
= (s1(Z2)V ~(Inp, (Z)V Ing (Z)V Ing, (Z)A (12)
(51(2)V ~52(Z) v ~(In_;. (Z)V In_;. (Z)V ~In_;. (Z)

Applying the Boolean identities: (—(aV 8) V a) + (= V a), (—(aV B) V -a) <
= (=s1(Z)V Ing, (Z)VIng, (Z))\ (13)

(51(2) V =s2(Z) V =In_p  (Z)).
Note that when we expand the definition of Inz_ . (Eq. (12)), the formula
81V 8o is in DNF and that In does not dlbtrlbute over arbitrary Boolean for-
mulas (see [12]). Thus, Formula (13) is equivalent to the initial Formula (9) of
LZZ 7, s,(Z). We then write the negation of the Formula 13 as:

LZZ, iy ve,(Z2) = (s1(Z) Nng  (Z) N=Ing, (Z))V (14)
(ms1(Z) Ns2(Z) Nn_f (Z)).

Linear Encoding of the Semi-Algebraic Transition Relation

In the following steps, we revise the formula Ty (X, X', Z) that encodes the ex-
istence of the transitions in the abstraction, still enumerating all possible pairs
of states, using the specialized LZZ encoding from Eq. (14). We substitute the
subformula -LZZ (Z) with the specialized LZZ encoding (Eq. (16)); we

S1 f s1Vsa2
then distribute the conjunction s1(X)As2(X’) over the disjunction present in the

e’



Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems 13
definition of =LZZ_ 7 .. (Z) (Eq. (17)), and then over possible pairs of states
(Eq. (18)). We rename the two disjuncts in Eq. (18) as InsExpl (X, X', Z)
and OutExpl {(X, X', Z)) (Eq. (19)). The formulas InsExpl{(X, X', Z) and
OutExpl f(X» X', 7)) still enumerate explicitly the abstract states. However,
each of these formulas is a conjunction of predicates, application of the In >
operator to a conjunction of predicates, and negations of the application of In P

TA(XaXlaz)i
3z, \| (X)) As2:(X)VA-LZZ 5 . (Z)) (15)
(81,82)€34
Sl(X)/\SQ(X/)/\((Sl(Z)/\ITLf’s (Z)A_\Inf',s (Z))V
=3z \/ < (=s1(2)ns2(DAIn_f., (D)) > (16)
(81,82)€34

(Sl(X)/\SQ(X/)/\Sl(Z)/\ITLf‘)S (Z)/\—‘I’nf‘ﬁ (Z))V
<~—3Z. \/ < ((51(X)/\sz(X’)/\—\sl(Z)AQSQ(Z)AIn_f?SI(Z))) (17)

(s1,82)€3%

\/(S Lsp)E3h (Sl(X)/\SQ(X,)/\Sl/\ITLf-ﬁs (Z)/\—\I’nf-YS (Z))\/
<:>E|Z< \ (il,sg)€3A (81(X)/\S2(X,)/\_‘Sl/\252/\]n—f_,sl(%)) (18)
<=3Z.(InsBxpl (X, X', Z) V Out Ezpl {( X, X', Z)). (19)

We now show how we obtain a formula InsEzpl (X, X "' Z) with a linear
size. We expand the definition of the formula InsFExpl f(X , X', Z) with respect
to the predicates in s; and s3. Recall that each abstract state is a conjunction
of predicates obtained from the set of polynomial A (i.e., s = A, .4 a0,
>, € {>,<,=}) and that we use a >0 € s to enumerate the predicates in s.

InsEapl (X, X', 2) = \/ ( AN aX)=on N a(X)0A (20)

s1,52€34 \ari0€sy a<i0€ so

N\ aZ)on N\ Ing, o (Z2)A

a<0€ sy a<0€ sz
\V ﬂInﬁamo(Z)> :
a<i0E€ s

Inz

f,aNO(Z)

In the above formula, we used De Morgan rules to rewrite the formula = A, _oc,,
as the formula V/ e, ~In 7, (Z). We express the formula InsExpl (X, X', Z)
as an enumeration of the predicates, over the variables X and X', determining
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the abstract states s; and so, instead of the pairs of abstract states:

InsSymbAX, X', 7) = A (a(X) 10 — a(Z) O)/\ (21)
acAxe{>,<,=}
A (alX)0 = Ing o (2))A

acAxe{>,<,=}
\/ (a(X) 10 A (~In ﬁaNO(Z))>.
a€A,xe{>,<,=}
Lemma 1. InsEacplf(X, X', 7Z) and InsSymbf(X, X', Z) are equivalent.

Proof (sketch).

=) We show that p |= InsExpl (X, X', Z) implies pi |= InsSymb#X, X', Z).
Since p |= InsExpl { X, X', Z) we have that p is an interpretation for one of the
disjuncts on the possible pairs of states of InsExplf(X7 X', Z):

N\ aX)=0n A aX)=0n A a(Z)s0n

a<i0E€ s a<i0E€ sy a<i0E€ sy
N Inpeo@n ) —Ing . o(2).
a<i0E€ s2 a<i0€ sy

Hence, there exist two (and exactly two) abstract states si, se, such that u |
51(X) and p |= s2(X’). This means that any predicate a < 0 ¢ s is such that
i b a < (X) and similarly for predicates not in the state sy for the variables
X'’ (recall that, given a polynomial a € A, the possible abstraction predicates
a>0,a <0, and a = 0 are mutually exclusive). We show that u is an in-
terpretation for all the conjuncts in InsSymbz(X, X', Z). We have that p =

Naenpae(> <=} (a(X) >0 — a(Z) 0) since for all a € A, p = a(X) =<0 —
a(Z) <10 (when a € s1 we have p |= a(Z) 10, while when a ¢ s; the implication

trivially holds). Similarly, this happens for A (a(X) 10— a(Z) 0).

acAx<e{>,<,=}
We can see the disjunction: V ey ieqs < oy (a(X) <10 A (_‘I”famo(z))) as:

Vo (aX)sa0n GIng (D)) v\ (a(X) 500 (SIng,0(2))).

a<i0€ sy a<0¢ sy

We have that p satisfies the first disjunct (and hence the whole disjunction)
because when a 10 € s1 we have that 1 =V q0es, 7N F 100(2)-

<) We show that p |= InsSymb#(X, X', Z) implies pu |= InsExpl (X, X', Z).
As before, we notice that are only two predicates s1,s2 such that p = s1(X)
and p | s2(X’) and that all the predicates not in s; and not in sy do not hold
in p. Thus, from p = InsSymbf(X, X', Z) we have that

pE N\ a@)=0n N\ Ing o2 A\ =Ing . o(2).

a€cs; a€ss a€cs;
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Hence, p is a model for at least one of the disjuncts in InsExplf(X, X',Z). O

We provide a detailed proof of the lemma in the Appendix A. We similarly define
the compact encoding of OutE:rplf(X, X', Z):

OutSymb (X, X', 7) = A (a(X) 10— In_ ﬁaNO(Z))/\ (22)

acA<e{>,<,=}

A (a(X’) 10 = a(Z) O)/\
acA<e{>,<,=}

\/ (a(X) 10 A —a(Z) ><10>.
achA,<e{>,<,=}
Lemma 2. OutExpl};(X7 X', Z) and OutSymb]p(X, X', Z) are equivalent.
Proof. The proof of the Lemma 2 is similar to the proof for Lemma 1. a

We now express the transition relation from Eq. (7) in a compact form:

Tymop(Ve, Vi) = 3X, X', <N(X, X')YAH(X)AH(X)A (23)
HA(X, V[p) A HA(X,, VIPC)/\

3Z.(InsSymb (X, X', Z) V OutSymb A X, X', Z))) .

Theorem 2. fp(Vp7VI§) and /I’/SyE)P(V]YP, Vi) are equivalent.

Proof. Follows directly from Lemma 2 and Lemma 1. O

Implicit Semi-Algebraic Abstraction

The abstract symbolic transition system %P(Vp, V) explicitly represent the
finite-state semi-algebraic abstraction. However, computing the transition sys-
tem requires to eliminate the existential quantifiers from the initial states, tran-
sition relation, and safety property formulas. However, the above formula may
contain non-linear real arithmetic terms from the polynomials and the Lie deriva-
tives we compute in In - Explicitly removing the quantifiers does not usually
scale, even when the number of polynomials is small. Instead, we rely on an
implicit encoding of the abstraction, similarly to [37], where we construct a
symbolic transition system:

Stmprp = (X UX U Z,(X) A EQp(X, X),
Trmpp(X, X', Z) N EQp(X', X)),
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where

Trmpp(X, X', Z) = N(X, X' ) NH(X)ANH(X")A (24)
(InsSymb X, X', Z)v OutSymb X, X' 7).

We can prove that Sipmpp = P(X) iff §]p = _‘:}\DP(VP). This way, we can
model check the transition system Srmpp = P to prove a property on the
dynamical system.

Theorem 3. Sipup E P(X) iff Se = ﬁ:FIF’(VP)

6 Experimental Evaluation

Research Questions

We evaluate the performance of our approach (Implicit Abstraction) for the
verification of invariant properties on the semi-algebraic abstraction of dynamical
systems. Implicit Abstraction first encodes the semi-algebraic abstraction in a
transition system (as we show in Section 5), and then model checks the invariant
on the transition system with an off-the-shelf model checker. Our experiments
aim to answer the following research questions:

RQ 1: How does Implicit Abstraction compare with the LazyReach algorithm [34],
which explicitly enumerates the reachable states of the abstraction?

RQ 2: How does Implicit Abstraction compare with the DWCL algorithm [34],
which applies a divide-and-conquer strategy to reduces the number of polyno-
mials in the abstraction?

Experimental Setup

We implemented the construction of the implicit abstraction transition system
in Python using PySMT [11] to manipulate formulas, and SymPy [24] for poly-
nomial manipulation and Grobner bases computation (i.e., to compute the Lie
derivatives’ ranks). We verify the implicit abstraction transition system with
the model checking algorithm for symbolic transition systems with NRA con-
straints from [5], which uses the MathSAT [8] SMT solver and incrementally
over-approximates the non-linear arithmetic formulas with formulas in the theo-
ries of linear arithmetic and uninterpreted functions. We implemented both the
LazyReach and the DWCL algorithms in the same Python tool. Our implemen-
tation of DWCL can use different backends to decide the satisfiability of NRA
formulas, namely MathSAT, the z3 SMT solver [26], or Mathematica [18].

We consider 90 invariant verification problems for dynamical systems from
the KeyMaera X theorem prover [10]. These problems are a superset of the
ones used in [34] and are used in the Applied Verification of Continuous and
Hybrid Systems (ARCH) competition [25]. We obtain a total of 180 benchmark
instances using, for each problem, two sets of polynomials for the semi-algebraic
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abstraction. The first set contains all the factors of the righ-hand side of the
ODEs; the second one extends the first by including also the Lie derivatives of
the polynomials. The latter set induces an abstraction that is more precise but
also has a larger state-space.

We evaluate the performance of the algorithms Implicit Abstraction, LazyReach,
and DWCL to solve the above verification problems. The underlying problem re-
quires to decide the satisfiability of NRA formulas, and the decision procedures
for this problem are efficient for different subset of problems. For this reason
we further evaluate different configurations of the LazyReach and DWCL al-
gorithms using three different solvers for NRA formulas (MathSAT, 28, and
Mathematica). We remark that using a different SMT solver in the model check-
ing algorithm, which we use in Implicit Abstraction, is more difficult because the
solver is tightly integrated in the tool implementation.

We run the Implicit Abstraction, LazyReach, and DWCL algorithm on all the
180 benchmark instances with a time out of 100 seconds, and we measure the
execution times to either prove (safe result) or find an abstract counterexam-
ple (unknown result) for each instance. An archive containing the necessary to
reproduce the experiments is available online at omitted for double blind review.

Results

RQ 1 - Implicit Abstraction vs. LazyReach. From the cumulative plot in Fig-
ure 2, we see that Implicit Abstraction almost always outperforms LazyReach.

From the cumulative plot in Figure 2a we see that Implicit Abstraction signif-
icantly outperforms LazyReach on safe instances. For better readability, in the
plot we only show the (virtual) portfolio algorithm running each configuration
of LazyReach, Virtual Best LazyReach, obtaining by considering the best run
time among the different configurations of LazyReach using different backend
solvers. Virtual Best LazyReach solves a total of 42 safe instances, while Implicit
Abstraction solves 100 safe instances. The scatter plots shown in the first row of
Figure 3 confirms the same intuition (note that the safe instances represented
as blue circles are mostly in the lower-right triangle of the plot).

Figure 2b shows the cumulative plot when verifying unknown instances. Note
that the total number of unknown instances in the benchmarks are much smaller
than the safe ones (combining the results of all the algorithms we have 123
safe instances, 19 unknown instances, and 38 still unsolved instances). From
Figure 2b, we see that the performance of Implicit Abstraction is comparable
with LazyReach, solving a total of 8 instances and 11 instances respectively.

RQ 2 - Implicit Abstraction vs. DWCL. From the cumulative plots in Figure 2,
the Virtual Best DWCL solves 37 more instances than Implicit Abstraction. How-
ever, we also see from Figure 2 that the global Virtual Best solves more instances
and is faster than Virtual Best DWCL. In fact, Implicit Abstraction is orthogonal
to DWCL and is comparable to DWCL when fixing either Mathematica or z3
(Implicit Abstraction solves 108 instances, DWCL Mathematica solves 109, and
DWCL 23 solves 114).
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The scatter plots in the second row of Figure 3 compare Implicit Abstraction
with DWCL MathSAT, DWCL Mathematica, and DWCL 23. From these plots,
we see that there are several instances that are solved by only one of the two
algorithms compared in each plot. While we see similar data when comparing
Implicit Abstraction with Virtual Best DWCL (always in the scatter plots of Fig-
ure 3), the number of instances solved uniquely by Implicit Abstraction seems
smaller. We get a more precise picture of the complementarity of Implicit Ab-
straction, DWCL Mathematica, and DWCL 23 from the diagrams in Figure 4,
where we can clearly see that Implicit Abstraction is orthogonal to both DWCL
Mathematica and DWCL z3. From the diagram, we see that when using a differ-
ent backend (i.e., Mathematica or z3) DWCL solves a different set of instances.
This difference in performance using Mathematica and 23 is not surprising since
Mathematica and 23 uses different algorithms to solve formulas in NRA.

We further notice that Implicit Abstraction uses the MathSAT SMT solver
in the backend, and from our experiments (see again Figure 3) DWCL MathSAT
performs quite poorly compared to both DWCL Mathematica and DWCL 2z3.
While naively replacing MathSAT in the model checking algorthm we use [5]
would not provide a significant performance improvement, it is reasonable to
think that investigating a tighter integration with either 23 or Mathematica could
improve the model checking performance. However, we believe this integration
to be beyond the scope for this paper, where we enable the use of symbolic model
checking techniques to analyze the semi-algebraic decomposition.

—=— Implicit Abstraction
s —— Virtual Best
----- Virtual Best DWCL

= Virtual Best LazyReach

----- DWCL z3

————— DWCL Mathematica
--e-- DWCL MathSAT
—=— Implicit Abstraction

A\
—
~
3

100 o
§ —— Virtual Best 8 15.0
€ | virtual Best DWCL 5
*g g0 - Virtual Best LazyReach 212,5 //
° b 4
(9%
>
S 60 5100
n n
2 o
o
2 5 715
2 40 L o
€ £
E 2 50
20 0 pF
""""" 2.5
0
10° 10! 102 103 10° 101 10?2
Total time Total time
(a) Safe instances (b) Unknown instances

Fig. 2. Plots the total number of instances (on the y axis) in function of the cumulative
time (in seconds, on the x axis) took by Implicit Abstraction, LazyReach, and DWCL
to solve (a) safe and (b) unknown instances. The comparison includes the results of
LazyReach and DWCL using different (MathSAT, 23, and Mathematica), as well as
virtual portfolios combining the best results obtained by a given algorithm when run
with multiple backends. We omit some configurations in (b) to improve readability.
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Fig. 3. Scatter plots comparing the run time (in seconds) of Implicit Abstraction (on
the y axis) with LazyReach (first row, on the x axis) and DWCL (second row, on the x
axis). Blue circles represent safe verification problems. Red crosses are instances where
the algorithm found an abstract counterexample. When Implicit Abstraction runs for
more than the 100 seconds time out, we plot the instance on the vertical line marked
as to, and similarly for LazyReach and DWCL on the horizontal line.

7 Related work

In this work, we focus on the (unbounded time) safety verification problem for
polynomial dynamical systems. Such problem is relevant when proving safety for
hybrid programs [28] with Keymaera X [10] or for hybrid CPS with the HHL
Prover [38]. Our reduction to transition systems may be used as sub-procedure
in both theorem provers to automate the search of a continuous invariant.
There exist different techniques to prove safety properties for polynomial
dynamical systems (see e.g., [13]): barrier certificates [31,19], first integrals [15],
and Darboux Polynomials [16]. All these techniques are orthogonal to semi-
algebraic abstraction, and can be used to find invariant polynomials to restrict
the abstract state space. Pegasus [35] implements all the above techniques, the
LazyReach, and DWCL algorithms. Our algorithm can be integrated in Pegasus.
The LZZ [23] procedure has been originally proposed to synthesize a continuous
invariant. Instead, we use the LZZ procedure to encode the abstract transition
relation, and then we prove a safety property in the abstraction. We also provide
a specialized encoding of LZZ to check the existence of abstract transitions.
The semi-algebraic abstraction [34] is a qualitative abstraction [36,39]. In
this work, we propose a different algorithm to verify semi-algebraic abstractions
that allows us to explore the abstract state-space symbolically, in contrast to
the LazyReach algorithm [34]. In principle, our technique is orthogonal to the
DWCL algorithm [34], since we could replace LazyReach, which is used in DWCL
as a sub-routine, with our approach (i.e., model check the implicit abstraction).
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DWCL Mathematica DWCL 73 DWCL Mathematica ... DWCL z3

Implicit Abstraction Implicit Abstraction Implicit Abstraction

(a) All the instances (b) Safe instances (c¢) Unknown instances

Fig. 4. Diagrams representing the distribution of unique instances solved combining
different algorithms (DWCL Mathematica, DWCL 23, and Implicit Abstraction). Each
set, displayed as a dotted circle enclosed by a dotted line, represents the set of instances
solved with one algorithm. The number shown in each partition is the number of
instances solved uniquely by the sets forming the partition. For example, the central
partition (i.e, the intersection of all the sets) of the diagram (a) shows that DWCL
Mathematica, DWCL 28, and Implicit Abstraction solved the same set of 141 instances.

Relational abstraction [33] abstracts the dynamical system’s trajectories with
a discrete transition relation, reducing the verification problem on the continuous
system to a verification problem on the discrete system. The implicit encoding
of the semi-algebraic abstraction can be seen as an instance of relational ab-
straction, where a trajectory of the dynamical system is mapped to a sequence
of abstract transitions (similarly to what happen with relational abstractions for
time-sampled systems in [40, 3]). Since relational abstractions can be composed
with each other (e.g., see [27]), we can strengthen the implicit semi-algebraic
abstraction encoding with a relational abstraction. This composition is useful
in the case the semi-algebraic abstraction cannot easily capture the system’s
behavior (e.g., a precise relation of the time elapsed in a transition [27]).

Predicate abstraction [17] is a commonly used abstraction techniques to verify
infinite-state systems. Several symbolic techniques [20, 21, 4] focus on the efficient
computation of the predicate abstraction. In principle, we can also use those
technique to explicitly compute the semi-algebraic abstraction. However, the
up-front, explicit computation of the abstraction is a bottleneck and can be
avoided with implicit predicate abstraction [37] when the goal is to verify a
safety property on the abstract system. We use implicit abstraction to obtain
an implicit encoding of the semi-algebraic abstraction. The transition system of
the semi-algebraic abstraction contains NRA formulas (the polynomials can be
non-linear or the Lie derivative of the polynomials are non-linear). While there
are few algorithms and tool that can verify such transition systems (e.g., [5]),
our technique is agnostic to the underlying model checking algorithm.

8 Conclusions and Future Work

In this paper, we addressed the safety problem of polynomial dynamical systems.
We built on the LZZ algorithm to define a symbolic encoding of the abstraction
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based on a set of polynomials. The encoding is linear in the number of polynomi-
als and can be used to implicitly represent the abstraction without the need of
enumerating the abstract states, enabling the use of SMT-based model checking
techniques. The experimenal evaluation showed that the approach is promising
and complementary to existing techniques solving a number of new instances.
The main directions for future works are, on one side, refining the abstraction
discovering new polynomials that are able to remove spurious abstract counterex-
amples, and, on the other side, the application of the approach to hybrid systems
where the continuous dynamics depends on the discrete state of the system.
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A  Proofs

Theorem 1. The transition systems Sy and §A are bisimilar.

Proof. The proof shows that there exists a bisimulation relation R C 34 x 2V
for the transition systems Sy and Sp. In the following, we further assume that
the assignments to the 2'% rule out inconsistent states in the semi-algebraic
abstraction. That’s it, if p = a > 0, with e {<,>,=}, we also enforce the
constraints in the abstraction relation that exactly one of the variables vy,
Va<0;Va=0 is true. We omitted this encoding detail in the paper’s exposition,
but this can be added to the definition of Hp(X, V) (without this encoding, Sp
would simulate Sy).
The bisimulation relation is

R= (s = A axo0, A m»«o)

acA<e{>,<,=} acA<e{>,<,=}
The realation R is such that:

— Vsy € I35 € Ip(Ve), and Vsg € Ip(Vp).3sq € If 4.
Suppose s1 = A\ cp e (s <,=3 @>0 € I 4. Since s1 = ¢ (from the defini-
tion of Iy 4), we have that 3X.(s1(X) A Hp(X, Vp)) = Ayca me(>,< =} Va0
from the definition of Hp(X, Vp).

Suppose sy € fp(Vp). For each polynomial p € A we have that exactly one
Vapao 18 true. We further know that so = 3X.((X) A Hp(X, Vp)).

Let s1 = {a<x0]a € Aand vgq | $1}- $1 Is such that s1(X) | ¢(X).
Following the equalities in Hp(X, Vi), we can show that (s1,s2) € R.

— V(s1,s2) € R it holds that:

1. if (s1, s7) € T4 then there exists (sq, s5) € To(Ve, V§) such that (s), s5) €
R.
(s1,51) € Ty 4 if 51 is adjacent to 8§ and 3IX.-LZZ

817.7?)31\/8’1 (Z)) SO7 the
formula Ty (X, X', Z)

51(X) A1 (X)A~LZZ, ¢ (2)

is satisfiable, and also the N(X, X') formula is satisfiable (N(X, X’) just
encodes that a predicate cannot change sign from > to < without being
equal to 0 first, and similarly for changing sign from < to >).
Thus, there exists a so, s, = Tp(Ve, V#) (see the definition of (7)), and
sh is such that (s}, s4) € R, from the definition of Hp(X, Vp)).

2. if (s1,5)) € Tp(Vp, Vi) then there exists (s2, s5) € Tt a such that (s}, s5) €
R.
We can prove this direction similarly as the previous case.

Lemma 1. InsEa:plf(X, X', Z) and InsSymb]p(X7 X', Z) are equivalent.
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Proof. We prove that the formulas InsExplf(X, X', Z) and InsSymbf(X, X' 7Z)
are equivalent.

=) We prove that = InsExplf(X, X', 7Z)— InsSymbf(X, X', 7Z)

We show that a model p of InsExpl (X, X', Z) (i.e., u(X, X', Z) |= InsExpl (X, X', 7))
is also a model for InsSymbf(X, X', 7Z) (le, (X, X', 2) InsSymb];(X7 X', 7)).

Since p is a model for InsE;vplf(X7 X', Z), then there’s a disjunct in InsE;vplf(X, X', 7)
such that u | InsEmplf(X, X', 7), there are two s1,s2 € 3* such that:

N\ aX)=on A a(X)0A N a(Z)=0n N Tng (2N

a<0€ sy a<i0€ s2 a<i0€ s a<i0€ s2

VoI (2))

a<0€ sy

We have that = InsSymb X, X', Z), since:

L1 Avensmesenmy (a(X) 500 = a(2) 520).
Consider a predicate a € A;<e {>, <, =}:
— When g = a(X) >0 then a < 0 € s7 (this is because p | a(X) > 0 if
and only of a <10 € s7).
Then we have both that u = A ,.q0es, @(X) < 0and = A oe,, a(Z) <0,
and so p = a(X) <0 — a(Z) = 0.
— When p = —a(X) > 0, then we trivially have that u = a(X) <0 —
a(Z) 0.
2 1 E Naenpeeioieny (0(X7) 590 = Ing (7))
We can prove this case in a similar way to the above one.
3. 10 Vaenme(semy (a(X) >0 A (~In f—»ﬂNO(Z)))

Since 1 = Agpqoes, @(X) >0 and p = Vo oe,, 7N 0 0(Z), then there
exists a a <10 € s1 such that p = a0 and p = -Iny _ (2).

f,a0

Thus, it’s also the case that u = a0 A ﬂlnf’aNO(Z), implying

pkE Vo (a(X) 0N (Ing,(2))
acA<e{>,<,=}

<) We prove that = InsSymbf(X, X' 7Z)— InsEacplf(X, X', 7).

— We first show that u |= s1(X) A so(X’), for some sy, s9 € 3%,
e 1 is a complete assignment to the variables X, X', Z and for all a € A it
is the case that u = a0 exaclty for one e {<, >,=}. Thus, we have
that s1 = {a <0 | p = a(X) =0} and that p = A q0e,, a(X) 0.
e Similarly, we have that s = {a < 0 | g E a(X’) > 0} and p |=
Aapaoes, a(X") < 0.

— By hypothesis we have that 1 = A cp e (> < o (a(X) >0 — a(Z) < O).
Since p = A\ jpqoes, @(X) b0, then it follows that p = A q0es, a(Z) 0.
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— We similarly show that p = A (Z). This follows from

a<i0€ s2 Inf,ade

A (a(X’) 10 — InfaMO(Z)>
acAxe{>,<,=}

and g = A gpaoes, A(X') 0.

~ We have that = Vo e (o.cy (a(X) 10 A (~In ﬁaNO(Z))).

So, there exists at least a predicate a 10, a € A and e {>, <,=}, such
that p = a(X)<OA (mInz__(Z)).

f,ar<i0
We show that a > 0 € s1. Assume by absurd that @ > 0 € s1, meaning

u— | a(X) > 0. Then, it means that there must exists a predicate a >’
0 € s1 such that >z’ and that p = a(X) <’ 0, because p is a complete
assignment and for each a € A exactly one among a(X) > 0, a(X) = 0,
and a(X) < 0 holds. Clearly, this contradicts p = a(X) < 0 (because
pEaX)x<' 0= p- Ea(X) 0.

Since we have that = a(X) < 0A (-Inz

Fapa0(Z)) and a0 € s1, we have
that K ': \/aNOEsl _\Inf,apqo(z)'

In the above we showed that:

pE N\ aX)eon N\ aX)on N\ oa@)<0n N\ Ing . o0(Z)A

a<0€ sy a<i0€ sa a<i0€ sy a<i0€ sz

V' oI (2))

a<0€ s

for some s1, 52 € 3%, hence showing that p = InsEapl o(X, X', Z).

Lemma 2. OutExpl};(X7 X', Z) and OutSymb]p(X, X', Z) are equivalent.

Proof. We can prove that the formulas OutExplf(X, X', Z) and OutSymbf(X, X', 7Z)
are equivalent as for Theorem 1 a

Theorem 3. Spmpp = P(X) iff Sp = ——Pp(Vp).

Proof. Following standard results on bounded model checking, it is easy to prove
that Sp = == Pp(Vp) iff the following formula is satisfiable for some k:

BMCE = Ip(V2) A Ngeier, TE(VE, VEHY) A=Pp(VE)
_ Thanks to Theorem 2, this is equivalent to:
(V) A No<ici Toympp(VE: Ve 1) A ~Pr(VE)
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Expanding the definition of the formulas yields the following:
IX.((X) A Hp(X, VE))A

L ¢ <N(X, XYANH(X)AH(X')A
0<i<k
Hy (X, Vi) A Ha (X, VETHA

3Z.(InsSymb X, X' Z)Vv OutSymb X, X', Z))) A

AX.(~6(X) A Hp(X, ViF))

After renaming quantified variables, removing quantifiers, and using the def-
inition of Trpp,p, we obtain the following equisatisfiable formula:

(V(X°) A Hp(X°, V)N

A (Ho(X' V) A Hu (XL VY A T o (X, X7, Z))A
0<i<k

(~(X") A Hp(X", VE))

Note that 3Vp, Vy.(Hp(X, V) AHp(X, V§)) is equivalent to EQp(X, X). Thus,
the previous formula is equisatisfiable to:

Y(XO) A EQp(X°, X)A

N (EQe(X XY A Ty (X, X7, 2))A
0<i<k
—k
—¢(X")
This is exactly the BMC encoding of Sy, p and thus is satisfiable if and
only if SImpl,]P’ b& P(Y) O

B Additional Plots
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DWCL z3
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Fig. 5. Scatter plots comparing the run time (in seconds) of different algorithms. The
blue circles represent safe verification problems, while the red crosses represents in-
stances where the algorithm found an abstract counterexample. When an algorithm
runs for more than the time out (set to 100 seconds) we plot the instance on the
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Fig. 6. Plots showing the total number of instances (on the y axis) in function of the
cumulative time (in seconds, on the x axis) took by Implicit Abstraction, LazyReach,
and DWCL to solve (a) safe and (b) unknown instances. The comparison includes
the results of LazyReach and DWCL when using different solvers (MathSAT, 23, and

Mathematica), as well as virtual portfolios combining the best results obtained by a

given algorithm when run with multiple backends. The black solid line ( Virtual Best)
represents the portfolio approach where all the algorithms run in parallel, while the
black dashed line represents the portfolio approach where all the DWCL configurations

run in parallel.



