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NATURAL HAZARDS

—

Dangers whose origin becomes from nature. =
Examples of natural hazards are hurricanes, =
floods, landslides, etc.

is subject to
MAN-MADE HAZARDS

Dangers whose origin is anthropogenic.
Examples of man-made hazards are terroristic
attacks, crimes, etc.

CRITICAL INFRASTRCUTURE (Cl)

A system which must be constantly
monitored because its destruction or
- interruption of service brings to a
B weakening of the efficiency of a city or
@4 of an entire country

Data Collection

brings to split into
POOR DATA RICH DATA
Data must be integrated thanks to Data can be objectively stored Considering the events as independent is Considering the events as correlated is
expert judgment. thanks to triplets: less complex, but brings to underestimate more accurate, but the cases to consider
This subjective knowledge is (S-' . x_) risk. The method used is the total are a lot:
i Pis Xi d bability: * Unidirectional vs. bidirectional hazard

supported by: . s; > i-th scenario; exceedance probability: /?1 II‘E.C iona ys. idirectiona .a.zar S
* Bayes’ ttl‘{eorem . * p;~> probability of i-th scenario; P(L)ror =1 — 1_[(1 — P, (Lj)) ) chfag/esr;:irvi;IZC;ZZizd probability vs.
* Probability bound analysis « x;=> effect of the i-th scenario. y P

Conditional probability is then used

Depending on the quantity of data available and on the type of interactions, it is possible choosing
the best methodology to use for the single or multi-hazard problem faced

Methodologies

MATHEMATICAL AND STATISTICAL METHODS MACHINE LEARNING TECHNIQUES GRAPHS AND NETWORKS APPROACH

e Bayesian Belief Network (BBN) e Artificial Neural Network (ANN)  Game theory technique
INDICATOR NODES * Support Vector Machine (SVM) * C(lassical complex networks methodology
G B  Boosted Regression Tree (BRT)
so-40 ¢ i o7 oACE NODE » Generalized Additive Model (GAM) o
Z * Genetic Algorithm SRR MOMITORING
R o “m Z_.1  RulesSet Production (GARP)
DESTROVED = 147 * Quick Unbiased Efficient
L?? Statistical Tree (QUEST) R MONITORING
* Logarithmic regression 1000 sk

* Early warning index calculation VEDUMDAWAGE  LITTLE DAMAGE

& Cons

MATHEMATICAL AND STATISTICAL METHODS MACHINE LEARNING TECHNIQUES GRAPHS AND NETWORKS APPROACH

e BBNs work well with few data and capture the ¢ ANNs find amazing results also with poor data and are * Game theory model is easy to build and can be used for
dependencies among variables very good for evaluating correlations more hazards together

 The logarithmic regression gives good results even with * SVM, BRT and GAM sometimes show good performance ¢ Classical complex network requires few data

poor data accompanied by expert opinions for the hazards predicted * Multi-level complex network performs well both with

* The early warning index highlights well the correlations ¢ GARP and QUEST requires a little quantity of data and are small and with large data sets and is able to deal with
among variables very quick methodologies interdependencies among different hazards
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