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A review of single and multi-hazard risk assessment approaches for critical 
infrastructures protection

Series

Data Collection Multi-Hazard Interactions

Methodologies

MATHEMATICAL AND STATISTICAL METHODS MACHINE LEARNING TECHNIQUES GRAPHS AND NETWORKS APPROACH

• Bayesian Belief Network (BBN)

• Logarithmic regression
• Early warning index calculation

• Artificial Neural Network (ANN)
• Support Vector Machine (SVM)
• Boosted Regression Tree (BRT)
• Generalized Additive Model (GAM)
• Genetic Algorithm
Rule-Set Production (GARP)
• Quick Unbiased Efficient
Statistical Tree (QUEST)

• Game theory technique
• Classical complex networks methodology
• Multi-level complex network formulation

Pros & Cons

MATHEMATICAL AND STATISTICAL METHODS MACHINE LEARNING TECHNIQUES GRAPHS AND NETWORKS APPROACH

• BBNs work well with few data and capture the
dependencies among variables

• The logarithmic regression gives good results even with
poor data accompanied by expert opinions

• The early warning index highlights well the correlations
among variables

• ANNs find amazing results also with poor data and are
very good for evaluating correlations

• SVM, BRT and GAM sometimes show good performance
for the hazards predicted

• GARP and QUEST requires a little quantity of data and are
very quick methodologies

• Game theory model is easy to build and can be used for
more hazards together

• Classical complex network requires few data

• Multi-level complex network performs well both with
small and with large data sets and is able to deal with
interdependencies among different hazards

• The more complex a BBN, the more data are required

• The logarithmic regression does not capture well the
interdependencies among variables

• The early warning index calculation requires lots of data

• ANNs perform badly with too many variables and are
able to predict one hazard at a time

• SVM, BRT and GAM can consider one hazard at a time
and can show weak results for the hazards predicted

• GARP and QUEST deals with one hazard at a time

• Game theory needs expert judgement

• Classical complex network works with one hazard at a
time

• Multi-level complex network is used only with time series
with the same number of elements

CRITICAL INFRASTRCUTURE (CI)

A system which must be constantly
monitored because its destruction or
interruption of service brings to a
weakening of the efficiency of a city or
of an entire country

NATURAL HAZARDS

Dangers whose origin becomes from nature.
Examples of natural hazards are hurricanes,
floods, landslides, etc.

MAN-MADE HAZARDS

Dangers whose origin is anthropogenic.
Examples of man-made hazards are terroristic
attacks, crimes, etc.

is subject to

brings to

POOR DATA

Data must be integrated thanks to
expert judgment.
This subjective knowledge is
supported by:
• Bayes’ theorem
• Probability bound analysis

RICH DATA

Data can be objectively stored
thanks to triplets:

𝒔𝒊; 𝒑𝒊; 𝒙𝒊
• 𝒔𝒊→ 𝑖-th scenario;
• 𝒑𝒊→ probability of 𝑖-th scenario;
• 𝒙𝒊→ effect of the 𝑖-th scenario.

INDEPENDENT EVENTS

Considering the events as independent is
less complex, but brings to underestimate
risk. The method used is the total
exceedance probability:

𝑃(𝐿𝑗)𝑇𝑂𝑇 = 1 −ෑ(1 − 𝑃𝑖 𝐿𝑗 )

CORRELATED EVENTS

Considering the events as correlated is
more accurate, but the cases to consider
are a lot:
• Unidirectional vs. bidirectional hazards
• Triggering vs. increased probability vs.

catalysis or impedance
Conditional probability is then used

split into
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Depending on the quantity of data available and on the type of interactions, it is possible choosing 
the best methodology to use for the single or multi-hazard problem faced
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