2nd Scientific International Conference on CBRNe SICC Series – 10 – 12 December 2020

A review of single and multi-hazard risk assessment approaches for critical infrastructures protection

Pasino A. ⁽¹⁾, Battista U. ⁽²⁾, De Angeli S. ⁽³⁾, Ottonello D. ⁽²⁾, Clematis A. ⁽¹⁾ ⁽¹⁾ CNR - IMATI, Via De Marini 6, 16149 Genoa, Italy; ⁽²⁾ Stam S.r.I., Via Pareto 8 AR, 16129 Genoa, Italy; ⁽³⁾ Department of *Civil, Chemical and Environmental Engineering, University of Genoa, 16145, Genoa, Italy.*

NATURAL HAZARDS

Dangers whose origin becomes from nature. Examples of natural hazards are hurricanes, floods, landslides, etc.

MAN-MADE HAZARDS

whose origin is anthropogenic. Dangers Examples of man-made hazards are terroristic attacks, crimes, etc.

POOR DATA

CRITICAL INFRASTRCUTURE (CI)

A system which must be constantly monitored because its destruction or interruption of service brings to a weakening of the efficiency of a city or of an entire country

Data Collection

brings to

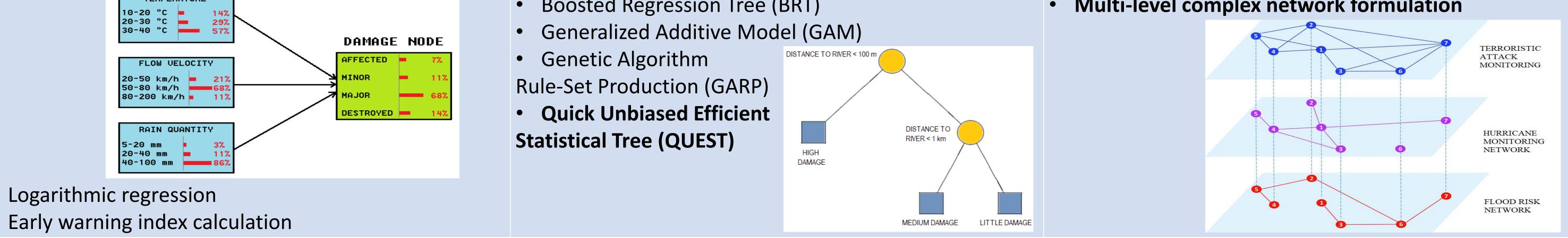
Data must be integrated thanks to less complex, but brings to underestimate more accurate, but the cases to consider thanks to **triplets**: expert judgment. risk. The method used is the total are a lot: knowledge is subjective $\langle s_i; p_i; x_i \rangle$ This exceedance probability: Unidirectional vs. bidirectional hazards supported by: • $s_i \rightarrow i$ -th scenario; Triggering vs. increased probability vs. Bayes' theorem $P(L_j)_{TOT} = 1 - \left[(1 - P_i(L_j)) \right]$ • $p_i \rightarrow$ probability of *i*-th scenario; catalysis or impedance Probability bound analysis $x_i \rightarrow$ effect of the *i*-th scenario. **Conditional probability** is then used Depending on the quantity of data available and on the type of interactions, it is possible choosing the best methodology to use for the single or multi-hazard problem faced Methodologies MATHEMATICAL AND STATISTICAL METHODS MACHINE LEARNING TECHNIQUES **GRAPHS AND NETWORKS APPROACH** • Artificial Neural Network (ANN) Game theory technique **Bayesian Belief Network (BBN)** lacksquare• Support Vector Machine (SVM) Classical complex networks methodology INDICATOR NODES TEMPERATURE **Multi-level complex network formulation Boosted Regression Tree (BRT)** 10-20 °C 💻 14% 20-30 °C 👝 Generalized Additive Model (GAM) DAMAGE NODE TERRORISTIC ATTACK

is subject to

RICH DATA

Data can be objectively stored

INDEPENDENT EVENTS


Considering the events as **independent** is

CORRELATED EVENTS

Considering the events as correlated is

Multi-Hazard Interactions

split into

Pros & Cons

MATHE	EMATICAL AND STATISTICAL METHODS	MACHINE LEARNING TECHNIQUES	GRAPHS AND NETWORKS APPROACH
	work well with few data and capture the lencies among variables	• ANNs find amazing results also with poor data and are very good for evaluating correlations	 Game theory model is easy to build and can be used for more hazards together
-	<i>parithmic regression</i> gives good results even with ata accompanied by expert opinions	• SVM, BRT and GAM sometimes show good performance for the hazards predicted	 Classical complex network requires few data Multi-level complex network performs well both with
	ne <i>early warning index</i> highlights well the correlations • nong variables	 GARP and QUEST requires a little quantity of data and are very quick methodologies 	small and with large data sets and is able to deal with interdependencies among different hazards
• The <i>log</i> interdep	ore complex a <i>BBN</i> , the more data are required garithmic regression does not capture well the pendencies among variables rly warning index calculation requires lots of data	 ANNs perform badly with too many variables and are able to predict one hazard at a time SVM, BRT and GAM can consider one hazard at a time and can show weak results for the hazards predicted GARP and QUEST deals with one hazard at a time 	 Game theory needs expert judgement Classical complex network works with one hazard at a time Multi-level complex network is used only with time series with the same number of elements
International Journa [2] Liu, Z., Nadim, F. for multi-risk assess 9(2), 59-74. [3] Major, J. A. (2002 [4] Ferson, S., & Gi Reliability Engineeri [5] Daskalaki, E., Spi hazard assessment Nonlinear Processes [6] Fleming, K., Parc	 A Abkowitz, M. D. (2011). A methodology for modeling regional terrorism risk. Risk Analysis: An al, 31(7), 1133-1140. Garcia-Aristizabal, A., Mignan, A., Fleming, K., & Luna, B. Q. (2015). A three-level framework sment. Georisk: Assessment and management of risk for engineered systems and geohazards, Advanced techniques for modeling terrorism risk. Journal of Risk Finance, 4(1), 15-24. Advanced techniques for modeling terrorism risk. Journal of Risk Finance, 4(1), 15-24. Different methods are needed to propagate ignorance and variability. System Safety, 54(2-3), 133-144. Diliotis, K., Siettos, C., Minadakis, G., & Papadopoulos, G. A. (2016). Foreshocks and short-term of large earthquakes using complex networks: the case of the 2009 L'Aquila earthquake. S Geophys, 23(4), 241-256. Tolai, S., Garcia-Aristizabal, A., Tyagunov, S., Vorogushyn, S., Kreibich, H., & Mahlke, H. (2016). 	 [8] Van Verseveld, H. C. W., Van Dongeren, A. R., Plant, N. G., Jäger, W. S., & Den Heijer, C. (2015). Modelling multi-hazard hurricane damages on an urbanized coast with a Bayesian Network approach. Coastal Engineering, 103, 1-14. [9] Rahmati, O., Yousefi, S., Kalantari, Z., Uuemaa, E., Teimurian, T., Keesstra, S., & Tien Bui, D. (2019). Multi-hazard exposure mapping using machine learning techniques: A case study from Iran. Remote Sensing, 11(16), 1943. [10] Reed, D. A., Friedland, C. J., Wang, S., & Massarra, C. C. (2016). Multi-hazard system-level logit fragility functions. Engineering Structures, 122, 14-23. [11] Lacasa, L., Nicosia, V., & Latora, V. (2015). Network structure of multivariate time series. Scientific reports, 5, 	 [14] Dubois, D. (2010). Representation, propagation, and decision issues in risk analysis under incomplete probabilistic information. Risk Analysis: An International Journal, 30(3), 361-368. [15] Aven, T. (2015). The concept of antifragility and its implications for the practice of risk analysis. Risk analysis, 35(3), 476-483. [16] Darabi, H., Choubin, B., Rahmati, O., Haghighi, A. T., Pradhan, B., & Kløve, B. (2019). Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. Journal of hydrology, 569, 142-154. [17] Pilkington, S. F., & Mahmoud, H. N. (2016). Using artificial neural networks to forecast economic impact of multi-hazard hurricane-based events. Sustainable and Resilient Infrastructure, 1(1-2), 63-83. [18] Hamadeh, N., Karouni, A., Daya, B., & Chauvet, P. (2017). Using correlative data analysis to develop weather index that estimates the risk of forest fires in Lebanon & Mediterranean: Assessment versus prevalent

Acknowledgments: This work has been cofinaced by Programma Operativo Por FSE Regione Liguria 2014-2020 Under grant GRISK code RLOF18ASSRIC/70/

Alessandro Pasino (Poster Presenter) – CNR-IMATI Via De Marini 6 - 16149 Genoa, Italy 334-9016802 – alessandro.pasino@ge.imati.cnr.it