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Abstract—Recent studies have shown that technology and voltage scaling are expected to increase the likelihood that
particle-induced soft errors manifest as multiple-bit errors. This raises concerns about the validity of using single bit-flips in fault
injection experiments aiming to assess the program-level impact of soft errors. The goal of this paper is to investigate whether
multiple-bit errors could cause a higher percentage of silent data corruptions (SDCs) compared to single-bit errors. Based on 2700 fault
injection campaigns with 15 benchmark programs, featuring a total of 27 million experiments, our results show that single-bit errors in
most cases either yield a higher percentage of SDCs compared to multiple-bit errors or yield SDC results that are very close to the
ones obtained for the multiple-bit errors. Further, we find that only around 2% of the multiple-bit campaigns resulted in an SDC
percentage that was more than 5 percentage points higher than that obtained for the corresponding single-bit campaigns. For most of
these campaigns, the highest percentage of SDCs was obtained by flipping at most 3 bits. Based on our results, we also propose four
techniques for error space pruning to avoid injection of multiple-bit errors that are either unlikely or infeasible to cause SDCs.

Index Terms—Fault injection, transient hardware faults, single/multiple bit-flip errors, error space pruning, error space clustering.
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1 INTRODUCTION

T ECHNOLOGY and voltage scaling are making integrated
circuits increasingly susceptible to bit-flip errors caused

by radiation-induced transient hardware faults [1], [2].
These errors, commonly known as soft errors, can degrade
system reliability by causing silent data corruptions, or
SDCs (i.e., non-detected output errors), which often lead
to unacceptable or catastrophic system failures. A cost-
effective way of reducing the risk that hardware faults
cause such failures is to introduce software-implemented
error handling mechanisms [3], [4]. A common approach
for evaluating the effectiveness of these mechanisms is to
use Software Implemented Fault Injection (SWiFI). In SWiFI,
the impact of soft errors are emulated by injecting bit-flips
in registers and memory locations accessible by software.

An important challenge in SWiFI techniques is the se-
lection of the fault model, which needs to be both straight-
forward to implement, and representative of real hardware
faults. The single bit-flip model has been a popular engineer-
ing approximation to mimic the impact of particles strikes
in both combinational logic and storage elements (e.g., flip-
flops and S-RAM cells). However, earlier studies have found
that many soft errors that occur in microprocessors manifest
as multiple-bit errors at the application level [5], [6], [7].
This observation has led researchers [5] to question the
validity of the single bit-flip fault model in SWiFI-based
fault injection experiments, for calculating measures such as
error coverage [8], [9] and error resilience [10], [11]. We focus on
error resilience as our dependability measure in this work.
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In this paper, we propose a generic fault model for
emulating the effects of radiation-induced multiple bit-flip
errors in SWiFI experiments. This fault model allows us to
inject multiple bit-flips systematically to provide evidence of
whether such errors have a higher or lower likelihood of
resulting in SDCs compared to single bit-flip errors. Since
our focus is on estimating the error resilience of executable
programs by fault injection experiments, the main question
we answer in the paper is: Does the error resilience of a program
differ significantly between our generic multiple bit-flip model and
the classical single bit-flip model, and if so by how much?

Prior work [11], [12], [13], [14] has studied the impact of
double bit-flip errors on a program, i.e., injecting two errors
in a single word or multiple words. However, few studies
have investigated program-level effects of multiple bit-flip
errors beyond double bit-flips. One challenge in studying
the effects of multiple-bit errors is that the size of the error
space grows exponentially with the number of bit-flips. To
address this challenge, we introduce techniques for error
clustering and error space pruning. Our error clustering tech-
nique divides the error space into several subsets of errors
that can be explored separately in different fault injection
campaigns. The error pruning technique aims to avoid in-
jection of errors that are not relevant for the objective of our
fault injection campaigns. Examples of such errors include
errors that are always detected or always overwritten, or
errors that have a very low likelihood of causing an SDC. To
the best of our knowledge, we are the first to study the effects of
multiple bit-flip errors on programs beyond double bit-flips, using
error clustering and pruning techniques.

This paper makes the following contributions:
• Extends an LLVM (Low Level Virtual Machine)-based

fault injector that injects single bit-flips at the LLVM
compiler’s intermediate code level [15] (§4.1), to inject
multiple-bit errors (§3.3) in a single word (§4.2) as well
as multiple words (§4.3).
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• Performs more than 27 million experiments (§3.5) on 15
benchmark programs (§3.4) and for 182 single/multiple
bit error configurations (§3.3) using two different fault
injection techniques (§3.1).

• Quantifies the maximum (upper bound) number of
multiple bit-flip errors needed to cause pessimistic per-
centage of SDCs (§4.2 and §4.3.2).

• Derives new insights about how the results of single
bit-flip experiments can be used to prune the multiple
bit-flip error space by targeting only a fraction of these
errors, which reveal weaknesses of the programs under
test (in terms of the number of SDCs) that are not
revealed by the single bit-flip model

• Identifies LLVM instructions, as well as bit positions
within the registers used by these instructions, that if
targeted by errors would cause a program crash, which
are not impactful (in terms of the number of SDCs), and
hence be removed from the error space.

2 FAULT MODEL AND BACKGROUND

2.1 Fault Model

We use the bit-flip model to study the effects of soft errors
occurring inside a processor’s core, e.g., in the register
file, ALU, or different pipeline registers, which eventually
manifest as data corruptions in source/destination registers
of an LLVM instruction. The bit-flip model has been used
in other related work, e.g., [3], [16], [17] to model the effects
of soft errors. Unlike these works, our model includes both
single and multiple bit-flip errors.

Similar to prior work [5], [6], we do not consider faults in
memory. However, we do consider memory values getting
corrupted while they are being stored (i.e., storing the
wrong value to memory and reading it back later), as well
as corruption of the values in the memory bus during a
load (and hence the load retrieves an incorrect value). Our
fault model is in line with many other related work in this
area [11], [18], [19], [20]. Note that ECC, which can correct
single bit flips and detect double bit flips in memory, is
incapable of protecting the memory against multiple bit-
flips in the same word (unless Chipkill ECC is used).

2.2 Error Resilience

In this paper, we use error resilience [10], [11] as the depend-
ability metric and define it as the conditional probability
that the program does not produce an SDC after a transient
hardware fault occurs and impacts the program state (i.e.,
similar to work such as [21], [22], [23] it deals with faults
passing the hardware and seen by the software). Error re-
silience is suitable for comparing the soft error vulnerability
of programs. In contrast to error coverage, it can be measured
or estimated for any program regardless of whether the
program is equipped with any fault tolerance mechanisms.

We focus on SDCs in this paper as they are the most
insidious kind of failures; however, other failure types such
as crashes may be just as important in some situation, e.g.,
when the system designer needs to consider the overall FIT
(Failure in Time) rate, which includes both the SDC and
crash rates.

2.3 Related Work

Traditionally, most fault injection studies at the program
level have focused on the single bit-flip model, i.e., injecting
single bit-flips into executing programs. However, recently,
there have been some studies focusing on double bit-flip
model [11], [12], [13]. Lu et al. [11] compare the results of
injecting single bit-flip errors with injecting double bit-flip
errors in a single word and in different words at the LLVM
compiler’s intermediate code level using the LLFI [24] fault
injector. They find that there is not much variation between
the error resilience of the different models. The main focus of
the work is on the fault injection tool rather than a thorough
study of the impact of multiple bit-flip errors. Ayatolahi et
al. [12] compare the single bit-flip model with the double
bit-flip model at the assembly-level code. In their study,
double bit-flip errors are only injected into a single word
(i.e., register or memory location). They also find that the
SDC results obtained for the two fault models are only
marginally different. Adamu-Fika and Jhumka [13] compare
the results of injecting double bit-flip errors in a single
word with those obtained when injecting two single bit-
flips simultaneously into two different words at the LLVM
compiler’s intermediate code level. Similar to the other
two studies, the results of their experiments show that,
on average, the difference between the percentage of data
failures for the two models is marginal. However, they do
not consider the relative positions of the faults injected, nor
do they generalize their findings beyond double bit-flips.

Compared to the above mentioned studies, in this paper,
we go beyond the double bit-flip model by injecting up to
30 bit-flip errors in single words as well as different words
in each program run. We conduct experiments with two
fault injection techniques, inject-on-read and inject-on-write
(see §3.1), and employ two parameters for controlling the
multiple bit-flip injections (see §3.3) i) the maximum number
of multiple bit-flips to be injected in one experiment (10
variants), and ii) the size of the dynamic window between
consecutive injections (9 variants). In addition, our experi-
ments are conducted on 15 programs from two benchmark
suits (see §3.4). This yields a parameter space that include
2x10x9 = 180 variants of multiple bit-flip injections for each
program. Since the multiple bit-flip error space is extremely
large, we also derive insights on pruning the error space.

There has also been some work targeting multiple in-
puts of software modules to evaluate the robustness of the
module to failures triggered by exceptional inputs [25], [26].
Jiantao Pan [25] introduces a model called dimensionality to
pin-point the number of function call parameters that are
responsible for a failure. The model is used in a subse-
quent work [26] to improve software robustness. However,
compared to our fault model, the dimensionality model has
two main limitations; (i) multiple errors are only introduced
to the parameters of each interface, which may not be
representative of errors that occur in variables used within
the function; (ii) the number of errors that are introduced in
each interface is limited by the number of parameters used.

There are also studies addressing intermittent faults,
which could model multiple-bit errors. Intermittent faults
are those that show up intermittently at the program level.
Rashid et al. [27] build an intermittent fault model at the
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microarchitectural level using stuck-at-last-value and stuck-
at-zero/one models. However, they assume that (i) a mi-
croarchitectural unit may be affected by at most a single
intermittent fault and (ii) at most one microarchitectural unit
may be affected by an intermittent fault. These assumptions
may not hold for transient faults, which is our focus.

Chang et al. [28] evaluate the effect of single bit-flip
faults injected into a microarchitectural model of a processor
at the program level. These faults can manifest as multiple
bit flip errors at the program-level. Their study comes to
a similar conclusion as ours, namely that the SDC proba-
bilities do not change much regardless of whether the fault
manifests as a single or multiple bit flip error. However, their
technique is confined to a single architecture and hardware
platform, while ours is more generic and can capture a wide
variety of hardware platforms and architectures.

Chatzidimitriou et al. [2] analyze the effects of multi-bit
upsets in modern microprocessors, using microarchitecture
level fault injection on six hardware components of an ARM
Cortex-A9 CPU modeled on a Gem5 microarchitectural
simulator. Their study is limited to a maximum injection of
three bit-flip errors in a limited set of spatially adjacent bits
as opposed to the systematic error space exploration done in
our study. Moreover, they use the architectural vulnerability
factor (AVF) to illustrate the results, which does not focus on
SDC as the comparison factor.

2.4 Error Clustering and Error Space Pruning
The size of the error space, (i.e. the total number of injectable
errors) depends on the execution time of the program as
well as the number of bit positions that are reachable for
fault injection. Since even small programs consume and
produce a large number of bits during execution, the error
space becomes too large to explore exhaustively for almost
all programs. This makes it infeasible to conduct exhaustive
fault injection campaigns even for workloads with a fairly
low number of instructions. Therefore, in this paper, we in-
troduce techniques for error clustering and error space pruning
in the context of multiple-bit errors.

The clustering technique we propose divides the error
space systematically into several subsets that can be ex-
plored separately by fault injection. To define the clusters,
we rely on two parameters: (i) the number of bit-flip errors
that could occur during a program run; and (ii) the distance
in time (in terms of the number of dynamic instructions) be-
tween consecutive injections (see §3.3). Using these param-
eters, we form 180 clusters for each program and conduct
multiple bit-flip fault injection experiments for each cluster.

The clustering technique is complemented by error space
pruning techniques aiming to avoid injection of errors that
are not relevant for the objective of our fault injection
campaigns, i.e., to compare the impact of multiple-bit and
single-bit errors. A basic form of error space pruning is
to exclude errors that have a known given impact on a
program, e.g., errors that are always detected or always
overwritten. In our case, we are interested in investigating
differences in the percentage of errors that result in SDCs for
multiple bit-flip errors Vs. single bit-flip errors. To this end,
we propose an approach for step-wise error space pruning
that aims to exclude errors that are “uninteresting”, for
answering a series of inter-related research questions (§3.6).

To address the issue of large error space, prior work has
randomly sampled the error space or used error clustering
[19], [29], [30]. However, the heuristics used are specific
to the single bit-flip scenario. Fault pruning has also been
explored for techniques in the CPU [18] and GPU do-
mains [31]. These techniques leverage similarities in error
propagation across multiple fault sites and/or multiple
threads in the program to prune faults that result in similar
executions or intermediate states. In contrast, our work
leverages the similarities between single and multiple bit
flips in different fault sites to prune the injection space. Yang
et al. [32] extend the fault site pruning of GPU applications
[31] to multi-bit faults. However, they limit themselves to
GPU applications. Further, they do not consider heuristics
for pruning multi-bit faults beyond those for single bit
faults.

Finally, Kaliorakis et. al. [33] propose Merlin, that lever-
ages the observation that faults injected in the same microar-
chitectural structure in an interval of time are likely to have
similar effects on the program execution, and consequently
groups these faults into a single entity. Unlike our work,
Merlin is confined to single bit-flip faults, and works at the
microarchitectural level rather than at the application level.

3 EXPERIMENTAL SETUP

In this section, we first present the different fault injection
techniques used in §3.1. Then in §3.2 and §3.3, we present
the fault injection tool used in the paper and our exten-
sions to it, respectively. In §3.4, we present the benchmark
programs used in our experiments. In §3.5, we present the
design and the outcome classification of the experiments.
Finally, in §3.6, we present the Research Questions (RQs) we
answer in this paper.

3.1 Fault Injection Techniques
In this paper, we conduct our fault injection experiments us-
ing inject-on-read and inject-on-write techniques. Using these
techniques, faults are only injected in live registers, which
eliminate injection of faults with no possibility of activation.
Previous studies (e.g. [34], [35]), have shown that 80-90%
of faults selected by random sampling are not activated.
Examples are faults placed in a register just before the
register is written into (and thus the error is overwritten),
and faults that are injected into unused registers.

3.1.1 Inject-on-read
This technique injects bit-flip errors into registers just before
they are read by an instruction [30], [36], [37]. Using this
technique, Barbosa et al. [30] reduced the error space of
workloads by two to five orders of magnitude compared to
using random sampling in the time and space domains. The
inject-on-read is well suited for emulating errors that occur
when the target register is struck by an ionizing particle (as
opposed to errors that propagate into the target register).

3.1.2 Inject-on-write
In inject-on-write, bit-flip errors are injected into a register
when a new value is written into the register by a machine
instruction [24], [36], [38]. Inject-on-write is suitable for
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emulating soft errors that first occur in other parts of the
CPU than the register file, such as the arithmetic logic units
(ALU), cache memories, translation lookaside buffer (TLB),
etc., and then propagate into a register in the register file.

3.1.3 Limitations
When using program-level error injection, it is desirable to
apply a weight factor that reflects the number faults mod-
elled by each injected error [30], [36], [39]. Unfortunately,
determining such weight factors is a non-trivial task, and
therefore most software-based error injection tools, includ-
ing ours, lack support for deriving weight factors. To what
extent the introduction of weight factors would influence
the results of error injection experiments is an open question
that we leave for future work.

3.2 LLFI Fault Injection Tool
In this paper, we use LLFI [24], an open source fault injector,
that injects faults into the LLVM [15] framework’s interme-
diate code of a program. LLVM is a collection of reusable
compiler tools and components, and allows analysis and
optimization of code written in multiple programming lan-
guages. The key component of LLVM is its intermediate
representation (IR), an assembly-like language that abstracts
out the hardware and ISA-specific information.

3.3 Extending LLFI for Multiple Bit-Flip Injections
In this work, we have extended LLFI1 to facilitate the
injection of multiple bit-flip errors. LLFI [24] defines single
bit-flip errors as time-location pairs according to a fault-free
execution of a program. The location is a bit position within
an IR-register (i.e., a register defined in the intermediate
representation), while the time corresponds to the execution
of a dynamic IR instruction, which reads from or writes to
the selected IR-register. Thus, we use a two-stage sampling
of the error space, where we first select the target instruction
(time) and then the bit-position to be flipped (location)
within a register that is read or written by an instruction.

To model multiple bit-flip errors, we extend the time-
location parameters by two additional parameters, namely
max-MBF and win-size, which allow us to cluster the error
space into different classes of errors to be able to explore
the error space systematically. The max-MBF parameter
controls the maximum number of bit-flip errors that could
occur in one run of a program. Selecting a certain value,
say 5, as the max-MBF does not necessarily mean that five
errors will be injected in each fault injection experiment.
This is because the program may crash prematurely (after
the first injection, say), causing the remaining faults not to
be injected. The win-size controls the number of dynamic
instructions that should be executed between consecutive
injections. For example, if the win-size is equal to 2, the
dynamic instruction distance between each injection is 2.

As there are no commonly agreed values for these pa-
rameters in the literature, we consider a wide range of
values when studying the impact of multiple bit-flip errors
on programs. These value ranges cover various multiple bit-
flip scenarios temporally, enabling us to perform sensitivity

1. Available at http://github.com/DependableSystemsLab/LLFI

Table 1
Values Selected for the Maximum Number of Multiple Bit-Flip Errors

(max-MBF) and the Dynamic Window Size (win-size) Between
Consecutive Injections.

max-MBF max-MBF win-size win-size
index value index value

m1 2 w1 0
m2 3 w2 1
m3 4 w3 4
m4 5 w4 random between 2-10
m5 6 w5 10
m6 7 w6 random between 11-100
m7 8 w7 100
m8 9 w8 random between 101-1000
m9 10 w9 1000
m10 30

analysis. We use different values for the max-MBF (see Table
1) ranging from 2 to 30. We explain why later in §4.3.1.

For the window size parameter, we select nine win-
size values covering dynamic window sizes from zero to
1000 (see Table 1). A window size of zero implies that the
injections, following the first one, will be performed into
same register as the first one. The rationale behind limiting
the maximum value of this parameter to 1000 is that we
predominantly consider multiple bit-flip errors in software
that are caused by a single transient fault in the processor.
Such faults are likely to affect instructions that are “in-flight”
in the processor’s instruction window (i.e., the set of all
instructions that have been decoded but not yet committed
in a superscalar processor). Typical instruction windows in
modern processors are a few hundred of instructions in
size, and hence 1000 is a reasonable upper bound. Six of
the values selected are constants (0, 1, 4, 10, 100, 1000). The
remaining three values are randomly selected from a range
of 2-10, 11-100, or 101-1000, for better representativeness.

The chosen win-size values could also represent multiple
unconnected transient faults that cause errors in instructions
that are apart from each other by less than 1000 dynamic
instructions. However, it is unlikely that multiple transient
faults occur in a single run of a program, especially within
such short dynamic window sizes as we consider in Table 1.

3.4 Benchmark Programs
We conduct experiments with 15 programs from MiBench
[40] and Parboil [41] benchmark suits, see Table 2. The
programs are selected to enforce diversity in source code
implementation and size, input type/size and functionality.

3.4.1 MiBench Benchmark Suite
This benchmark suite contains programs divided into six
packages representing different application domain of em-
bedded systems: automotive, consumer, network, office,
security, and telecom. We selected 11 programs from these
packages shown in Table 2. MiBench provides two inputs for
each program, small and large. We use the small inputs in our
experiments as the total number of candidate instructions
for fault injection is already significantly large (see Table 2)
allowing us to answer the research questions defined in §3.6.
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3.4.2 Parboil Benchmark Suite
This benchmark suite contains a set of programs repre-
senting scientific and commercial applications. We selected
two programs, bfs and histo, from its base implementation
package, and two programs, sad and spmv, from its CPU im-
plementation package, see Table 2. The table also shows the
total number of dynamic instructions that are candidates for
inject-on-read and inject-on-write, respectively. The number
of instructions available for inject-on-read is higher than for
inject-on-write. This is because some instructions, e.g., the
store instruction, do not have a destination register in the
LLVM IR, and thus inject-on-write cannot be performed.

3.5 Experimental Design and Outcome Classification
We conducted 182 fault injection campaigns for each bench-
mark program. A campaign refers to a set of fault injection
experiments using the same fault model on a given workload,
which is a program running with a given input. Half of
the campaigns used inject-on-read and the other half inject-
on-write. In addition to two single bit-flip campaigns (one
inject-on-read and one inject-on-write), we performed 180
multiple bit-flip campaigns for each program by varying the
parameters max-MBF and win-size shown in Table 1.

Each campaign consists of 10,000 fault injection exper-
iments to obtain tight error bounds. Thus, we perform a
total of 10, 000 ∗ 182 ∗ 15 = 27, 300, 000 experiments. The
error bars shown in the results represent 95% confidence
intervals. The outcome of each experiment is classified into:
• Benign. The program terminates normally and produces

a correct output. Outcomes in this category reflect the
inherent robustness of the target program.

• Detected by Hardware Exceptions. The injected error raises
a hardware exception. Almost all these exceptions cause
the program to crash. Outcomes in this category represent
errors that can potentially be corrected by software-level
or system-level fault tolerance mechanisms. These excep-
tions include segmentation faults (accessing memory words
outside the legal memory boundary), aborts (programs
aborted by themselves or the OS), misaligned memory ac-
cesses (memory accesses are not aligned at four bytes), and
arithmetic errors such as division by zero.

• Hang. The program fails to terminate within a predefined
time, which is set by LLFI to be one or two orders of
magnitude greater than the execution time of the fault-
free run. Errors producing this type of outcomes can be
detected by watchdog timers.

• NoOutput. The program terminates without generating an
output. Errors producing this type of outcomes can be
potentially corrected by re-executing the program.

• Silent Data Corruption (SDC). The program terminates
normally and there is no indication of failure, but the
output is incorrect based on a bit-wise comparison.

The first four outcome categories contribute to a pro-
gram’s error resilience. Out of these, the Benign category
represents the inherent robustness of the program, while
Detected by hardware exceptions, Hang, and NoOutput
categories represent errors that are detected, thus could
potentially be corrected. In the remainder of this paper, we
merge the results obtained for the latter three categories, and
denote them as Detection.

3.6 Research Questions (RQs)
The RQs are motivated by four error pruning techniques we
investigate. The first error space pruning technique deals
with the selection of an upper bound for the max-MBF
parameter, since there is no commonly agreed mapping
model that could be used to reason about the number of
software-level errors due to a hardware transient fault. So
the first RQ deals with the errors that are activated when
multiple errors are injected, and do not result in crashes.
• RQ1. When multiple errors are injected, how many errors

are activated before the program crashes (if it crashes)?
In the second error space pruning technique, we classify

fault injection results with respect to parameters such as
the fault injection technique used (inject-on-read and inject-
on-write), the maximum number of bit-flips injected (max-
MBF), and the dynamic window size between consecutive
injections (win-size), to investigate whether we could fur-
ther prune the error space by finding parameter values that
result in pessimistic percentage of SDCs i.e., conservative
upper-bounds. Thus, we answer the following questions:
• RQ2. Does the single bit-flip error model result in pes-

simistic percentage of SDCs when compared with the
multiple bit-flip error model?

• RQ3. Is there an upper bound to the maximum number
of multiple bit-flips for pessimistic percentage of SDCs?

• RQ4. Is there a maximum dynamic window size that
causes pessimistic percentage of SDCs?

In the third error space pruning technique, we answer
the following question:
• RQ5. Is it possible to find fault injection locations that

are insensitive to multiple bit-flip errors compared to
single bit-flip errors, and exclude them from the multiple-
injection error space?

We add a fourth error space pruning technique, for
identifying instructions as well as bit positions that could
be the target of the pruning. We then answer the following
RQs.
• RQ6. Are there specific instructions that could be candi-

dates of further pruning?
• RQ7. Are there specific bit positions within the registers

used by the instructions that could be pruned?

4 EXPERIMENTAL RESULTS

In this section, we present detailed classifications of fault
injection results with respect to the parameters, max-MBF
and win-size as well as the type of fault injection technique
used. These classifications help us quantify the differences
between candidate values that can be chosen for each pa-
rameter, which allows us to answer the RQs in §3.6.

4.1 Single Bit-Flip Model
Fig. 1 shows the outcome classification results with the
single bit-flip model. Fig. 1a and Fig. 1b show the results
for when inject-on-read and inject-on-write fault injection
techniques are used, respectively. Recall that the Detection
category is the sum of the Hang, NoOutput and Detected
by Hardware Exception categories. The percentage of ex-
periments classified as Hang and NoOutput is insignificant
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Table 2
Selected Benchmark Programs

B
en

ch
m

ar
k

Package Program (LoC)

Total number of candidate

Description & Input
instructions for fault injection

inject-on-read inject-on-write

M
iB

en
ch

automotive

basicmath (178) 3,683,881 2,964,600 Performs mathematical calculations such as cubic equation
calculation and square root calculation on a set of constants.

qsort (35) 2,615,557 2,214,245 Implements the Quick Sort algorithm on a list of words.
susan corners(1700) 2,449,209 2,088,322 Finds corners of a black & white image of a rectangle.
susan edges(1700) 5,188,476 4,413,577 Finds edges of a black & white image of a rectangle.

susan smoothing(1700) 62,752,639 49,105,460 Smooths a black & white image of a rectangle.

telecomm
FFT (215) 5,313,377 4,526,716 Performs Fast Fourier Transformation on an array of data.
IFFT (215) 5,423,988 4,620,938 Performs reverse FFT on an array of data.

CRC32 (107) 28,746,216 23,270,737 Implements the 32-bit Cyclic Redundancy Check on a sound
file.

network dijkstra (133) 67,617,629 54,495,536
Uses Dijkstra’s algorithm to find the shortest path between
pairs of nodes constructed from an adjacency matrix repre-
sentation graph.

security sha (188) 30,609,559 25,726,389 Implements the well known SHA (secure hash algorithm),
generating a 160-bit digest from an ASCII text file.

office stringsearch (340) 161,533 114,835 Searches for words in phrases using case insensitive compar-
ison.

Pa
rb

oi
l base

bfs (592) 113,582,521 94,021,100

Uses the breadth-first search algorithm to compute the
shortest-path cost from a single node to every reachable node
in an irregular graph of uniform edge weights derived from
the map of New York.

histo (610) 678,224,521 566,829,877 Computes a 2-D saturating histogram with a maximum bin
count of 255 of the default input set.

cpu
sad (944) 648,604,565 510,295,230 Calculates the sum of absolute differences in the default input

set.

spmv (619) 11,003,882 8,965,172
Computes the product of a sparse matrix with a dense vector.
We select the small input, which is a sparse matrix in coordi-
nate format.

(less than 0.3%), and hence most of the experiments in the
Detection category were detected by hardware exceptions.

Fig. 1 shows that there is significant variations between
the SDC results obtained for different programs, ranging
from less than 5% for the susan corner, susan edge, dijkstra,
stringsearch, histo and spmv programs to up to around 75%
for sha. Fig. 1 also shows that overall, the SDC percentage
when using the inject-on-write technique is higher than that
when using the inject-on-read technique. A similar trend
was also observed by Sangchoolie et al. [36]. The reasons
for this difference are (i) the type of data-items stored in
source/destination registers as well as (ii) the number of
times that these registers are accessed throughout the execu-
tion of the program. Registers could hold data-items of dif-
ferent types such as memory addresses, data variables, and
control information. Errors injected in memory addresses
are mostly detected by hardware exception mechanisms,
causing a higher percentage of crashes and hence lower
percentage of SDCs [10], [36]. Both source registers and des-
tination registers could hold a memory address, however, an
address may be read multiple times after it is written into.
This increases the probability of an error being injected into
an address when using the inject-on-read technique, which
would eventually result in a lower percentage of SDCs
for the results obtained using the inject-on-read technique
compared to the inject-on-write technique.

4.2 Multiple Bit Flips in the Same Register

Fig. 2 shows the classification of fault injection results when
the multiple injections are performed into the same instruc-
tion (i.e., register). In other words, the dynamic window size
(win-size) value is zero, and only the max-MBF parameter is
varied from 1 (the leftmost bar) to 30 (the rightmost bar). The
goal is to understand how much the max-MBF parameter
alone contributes to the percentage of SDCs.

Fig. 2a and Fig. 2b show the results for when inject-on-
read and inject-on-write fault injection techniques are used,
respectively. The leftmost result bar for each benchmark pro-
gram represents the percentage of SDCs when only a single-
bit error is injected, while the other result bars correspond
to the percentages of SDCs caused by different numbers of
multiple bit-flip errors ranging from 2 to 30.

Fig. 2 shows that, similar to the results obtained in
previous work [12], [42], for the majority of the programs,
the SDC results obtained for the single bit-flip model is
either pessimistic, or very close to the ones obtained for the
multiple bit-flip model. This is because an increase in the
number of injected bit-flips also results in an increase in the
likelihood that detection mechanisms are raised, reducing
the percentage of SDCs. This is explained further in §4.3.3.

However, for basicmath and CRC32 programs, the SDC
percentages for the single bit-flip model are significantly
lower (especially when using the inject-on-write) than for
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(a) inject-on-read (b) inject-on-write

Figure 1. Fault injection outcome classification for campaigns using single bit-flip model. The Detection category refers to the sum of Detected by
Hardware Exception, Hang and NoOutput categories. The error bars indicate 95% confidence intervals.

(a) inject-on-read (b) inject-on-write

Figure 2. Percentage of SDCs for injecting different number of errors into the same instruction/register (i.e., win-size = 0). The leftmost and rightmost
bars, for each program, represents the percentage of SDCs when injecting 1 and 30 errors, respectively. The error bars indicate 95% confidence
intervals.

those obtained for the multiple bit-flip model, and hence
the single bit-flip model does not yield pessimistic SDC
results for these programs. The reason for this is that single
bit-flip errors injected into these programs results in a low
percentage of Detections compared with the other programs
(Fig. 1). This means that a high number of errors remained
undetected and hence were classified as either SDC or
Benign for these programs. Therefore, when targeting these
programs with multiple bit-flip errors, it is more likely for
the result of the experiment to be classified as SDC (as
opposed to Detection), thereby causing a higher percentage
of SDCs for the multiple bit-flip model.

For qsort and susan-corner programs, the single bit-flip
model results in a higher and thereby a more pessimistic
percentage of SDCs compared to the multiple bit-flip model,
except for when max-MBF = 30. However, it is unlikely that
these number of bits are affected by a single fault; this con-
figuration (max-MBF = 30) is mainly selected for answering
RQ1. Therefore, for qsort and susan-corner programs also,
the single bit-flip model provides us with a pessimistic
estimate of the percentage of SDCs caused due to multiple
bit-flip injections.

RQ2-Answer: For the majority of the benchmark pro-
grams, the results obtained for the single bit-flip model
is either pessimistic or very close to the ones obtained for
the multiple bit-flip model for bit-flips in the same register
(i.e., win− size = 0).

4.3 Results When Targeting Bits of Multiple Registers
In this section, we consider multiple bit-flips in multiple
registers accessed by different instructions. To control the
distance between consecutive injections, we choose the dy-
namic window sizes (win-size) that are greater than zero
from Table 1. We first attempt to bound max-MBF by
studying the number of errors that are activated when max-
MBF=30 (§4.3.1). We find that only a small fraction of these
bit-flips are activated before the program crashes, making it
unnecessary to select higher values for max-MBF. However,
as the error space is still large, we search for max-MBF/win-
size pairs in the space that cause pessimistic percentage of
SDCs (§4.3.2). Finally, we investigate whether the single bit-
flip fault injection results can help prune the multiple bit-flip
error space (§4.3.3).
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4.3.1 Number of Activated Errors
Fig. 3 shows the distribution of the number of activated bit-
flips before causing a program to crash, up to 30 bit-flip
errors. The reason for selecting such a high value (max-
MBF=30) is to find the portion of errors that would remain
undetected and can hence be pruned. The results presented
here include all win-size values shown in Table 1.

Fig. 3 shows that 5 activated errors are enough to cause a
program to crash in more than 96% (78%) of the experiments
using inject-on-read (inject-on-write) techniques. Further-
more, 3% and 14% of the inject-on-read and inject-on-write
experiments, respectively, managed to activate six to ten
errors. And finally, only around 1% of the inject-on-read
experiments and 8% of the inject-on-write experiments had
more than 10 activated errors. Thus, we see that an upper
bound of 10 errors for max-MBF is sufficient to capture the
majority of fault injection outcomes, and hence can be used
to bound the value of max-MBF. As expected, the errors that
remain undetected would most likely result in SDCs.

RQ1-Answer: Around 99% of inject-on-read and 92% of
inject-on-write experiments had at most 10 activated er-
rors.

4.3.2 Max-MBF/win-size Pairs that Cause Pessimistic Per-
centage of SDCs
Fig. 4 and Fig. 5 show the SDC results for the experiments
targeting bits of multiple registers using the inject-on-read,
and inject-on-write techniques, respectively. Both figures
show that when increasing the number of errors, the general
trend for the SDC results is declining, regardless of the value
of win-size. We further study each technique in detail below.

4.3.2.1 Inject-on-read Technique: Fig. 4 shows the
SDC results for the experiments targeting bits of multiple
registers using the inject-on-read technique. The 95% confi-
dence intervals for these results are ±0.19 for dijkstra and
±0.97 for sha. In 13 programs, the percentage of SDCs
caused due to the single bit-flip model is higher than or
almost the same as (i.e., difference less than one percentage
point) the ones caused due to the multiple bit-flip model.
However, for CRC32 and stringsearch, there are multiple
bit-flip campaigns that result in a higher percentage of
SDCs. Even for these 2 programs, the percentage of SDCs
in the single bit-flip model is only 2 percentage points lower
than the multiple bit-flip model that causes the highest
percentage of SDCs. Thus, the single bit-flip model provides a
pessimistic upper-bound on SDCs for most of the programs.

It is interesting to note that even when the single bit-flip
model does not result in pessimistic SDC results, two errors
are enough to result in the highest (most pessimistic) percentage
of SDCs, regardless of the value of win-size selected (see
Table 3). The value of this observation is that in the case
of the inject-on-read technique, there is no need to perform
experiments with more than two bit-flip injections to obtain
pessimistic estimate of the error resilience of a system.

Fig. 4 also shows that except for a couple of programs
such as CRC32 and susan-smoothing, there is not much vari-
ation between the percentage of SDCs obtained for different
win-size configurations. In other words, when studying the

Table 3
Configurations that Resulted in the Highest Percentages of SDCs,

Among all Multiple Bit-Flip Error Campaigns.

Program
inject-on-read inject-on-write

max- win-size max- win-size
MBF MBF

basicmath 2 100 3 1
qsort 2 100 3 1

susan corner 2 1000 4 1
susan edge 2 1000 3 1

susan smoothing 2 1000 3 1
FFT 2 1 2 1
IFFT 2 1 2 1

CRC32 2 100 2 100
dijkstra 2 4 3 4

sha 2 10 2 1
stringsearch 2 RND(2-10) 2 4

bfs 2 1000 2 1000
histo 2 RND(2-10) 6 1
sad 2 1000 2 4

spmv 2 1000 2 RND(11-100)

impact of multiple bit-flip errors on programs, the win-size
parameter does not matter much for the SDC percentages.
However, Table 3 shows the win-size configurations that
caused the highest percentage of SDCs, among all multiple-
bit error campaigns. We can see that when using the inject-
on-read technique, higher window sizes are more likely to result
in the highest percentage of SDCs. This is because a high
percentage of data-items targeted by errors when using
the inject-on-read technique are memory addresses, which
tend to be read more times than other types of data-items.
Injecting errors into memory addresses are mostly detected
by the exception mechanisms (see Fig. 1a). Thus, multiple
injections into registers that are within a small window are
more likely to result in an address corruption that raises
an exception, thereby resulting in a higher percentage of
Detections than when consecutive errors are injected into
registers that are within a larger window.

Result summary (inject-on-read technique):
RQ2-Answer: The single bit-flip model provides a pes-
simistic upper-bound on SDCs for most of the programs.
RQ3-Answer: Two errors are enough to cause the highest
percentage of SDCs.
RQ4-Answer: Window size does not have much effect on
the percentage of SDCs.

4.3.2.2 Inject-on-write Technique: Fig. 5 shows the
SDC results for the experiments targeting bits of multiple
registers using the inject-on-write technique. The 95% con-
fidence intervals for the results presented here are between
±0.26 for dijkstra and ±0.97 for sha. From the figure, we can
see that the single bit-flip model results in a pessimistic estimate
of the percentage of SDCs for only around half of the programs.
In the other half, the percentage of SDCs are 2 (dijkstra)
to 17 (basicmath) percentage points lower for single bit-flip
errors than for the multiple bit-flip configurations that cause
the highest percentages of SDCs. The high percentage of



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (DOI: 10.1109/TDSC.2020.3043023) 9

(a) inject-on-read (b) inject-on-write

Figure 3. Distribution of the number of activated errors before causing a program to crash, given that max-MBF is equal to 30.

Figure 4. SDC results for experiments targeting bits (from 1 to 30) of multiple registers using the inject-on-read technique. Here the RND (α, β)
refers to a randomly selected value between α and β.

Figure 5. SDC results for experiments targeting bits (from 1 to 30) of multiple registers using the inject-on-write technique. Here the RND (α, β)
refers to a randomly selected value between α and β.

difference for basicmath can again be explained using Fig.
1, where injecting single bit-flip errors in basicmath result

in the lowest percentage of Detections. This in turn leads to
higher percentage of SDCs.
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The results of our multiple bit-flip campaigns show that
three errors are sufficient to cause the highest percentage of SDCs
for 114 out of 120 program/win-size pairs (corresponding to
95% of the pairs). Out of these 114 pairs, 93 and 21 of them
correspond to when the max-MBF is equal to two and three,
respectively. Out of the 120 program/win-size pairs, there
are also five cases where four errors are needed to cause the
highest percentage of SDCs; however, compared to when
three errors are injected, these cases only result in at most
one percentage point of higher percentage of SDCs, which
is not a significant difference. The only exception is the histo
program using the window size of one, where six errors are
needed to cause the highest percentage of SDCs.

Comparing Fig. 4 and Fig. 5 suggests that depending
on the fault injection technique used, different numbers of
errors need to be injected into the system to produce a
pessimistic estimate of the SDC percentages. However, ag-
gregating the results from both techniques suggest that injecting
3 errors is sufficient to result in the highest percentage of SDCs.

Fig. 5 also shows that for many of the programs, the
win-size parameter has a significant effect on the percentage
of SDCs when using the inject-on-write technique (unlike
the inject-on-read technique). Further, according to Table 3,
when using the inject-on-write technique, lower window sizes
are more likely to result in the highest percentage of SDCs,
which is different from what we observed for the inject-on-
read technique. This is because the inject-on-write technique
targets a higher percentage of data variables, and thereby
a lower percentage of address variables, compared to the
inject-on-read technique. Errors injected into data variables
mostly result in outcomes in the Benign or SDC categories.
Thus, injecting multiple bit-flips within a small window size
is more likely to cause an SDC, as there is less opportunity
for an error to be masked before the next injection; thus, we
can choose smaller window sizes for pruning.

Result summary (inject-on-write technique):
RQ2-Answer: The single bit-flip model does not result in
pessimistic percentage of SDCs for half of the programs.
RQ3-Answer: Three errors are enough to cause the highest
percentage of SDCs in 95% of the program/win-size pairs.
RQ4-Answer: Lower window size values are more likely
to result in the highest percentage of SDCs.

4.3.3 Sensitivity of Fault Injection Locations to Multiple Bit-
Flip Errors
In this section, we investigate whether the results obtained
for a single bit-flip campaign can be used to prune the
multiple bit-flip error space. Our goal is to avoid injecting
any multiple bit-flips errors where the first bit-flip results
in an SDC (if it is injected as a single bit-flip error). The
rationale for this type of pruning is that we want to focus
the multiple bit-flip campaigns on errors that transform the
outcome of the first bit-flip from Benign or Detected to an
SDC. This process is explained in Fig. 6.

In Fig. 6, ts, tb and td correspond to when a single bit-
flip error is injected into a specific location in the program,
resulting in SDC, Benign or Detection, respectively. All
other transitions correspond to when multiple bit-flip errors
are injected starting from the same program location, and

Figure 6. State diagram showing transitions between different outcome
categories due to the injection of multiple-bit errors.

change the result of the single bit-flip outcome. For example,
tb−s refers to a change in the fault injection result from Be-
nign to SDC due to the injection of a multiple bit-flip error.
Fig. 6 shows two transitions where injecting additional bit-
flip errors into the program changes its result from Benign
or Detection to SDC, thereby decreasing its resilience:

• Transition I (td−s). Injecting a single bit-flip error into a
location results in the Detection category, but injecting
multiple bit-flip errors changes the result to an SDC.

• Transition II (tb−s). Injecting single bit-flip error into
a location results in the Benign category, but injecting
multiple bit-flip errors changes the results to an SDC.

To find the likelihood of the above transitions, we con-
duct two fault injection campaigns for each program, one
for each fault injection technique. To get the worst-case
estimates, we use the max-MBF/win-size pairs that caused
the highest percentage of SDCs when conducting multiple
bit-flip fault injection campaigns (see Table 3). We choose the
location of the first error of each multiple bit-flip experiment
from those chosen for the single bit-flip model. We do not
consider the ts−s transition as we only consider cases that
would add to the number of SDCs (i.e., pessimistic percentage).

Table 4 shows the results. From the table, we can see
that Transition I is very unlikely (in most cases below 1%),
especially with the inject-on-read technique. Therefore, we
can prune the multiple bit-flip error space by excluding
those locations that would result in the Detection category
or an SDC under the single bit-flip model. In fact according
to the results presented in Fig. 1, these locations include
around 50-100% of the inject-on-read and 27-100% of the
inject-on-write single bit-flip experiments, which is a signif-
icant reduction in the error space. However, there is much
more variation when it comes to the likelihood of Transition
II, and its value ranges from 0% to 81%, and hence these
locations cannot be ignored.

RQ5-Answer: We can prune the multiple bit-flip error
space by injecting the first error of each experiment only
into locations that if targeted by a single bit-flip error
would result in Benign outcomes, as these are the loca-
tions that are likely to add to the number of SDCs under
multiple bit-flips.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (DOI: 10.1109/TDSC.2020.3043023) 11

Table 4
Likelihood of Transition I and Transition II.

Program
inject-on-read inject-on-write

Tran. I Tran. II Tran. I Tran. II
basicmath 1.1% 31.9% 0.6% 58.3%

qsort 0.7% 13.4% 0.4% 29.5%
susan corner 0.1% 1.2% 0.1% 4.1%
susan edge 1.2% 0.6% 0.9% 0.8%

susan smoothing 0.3% 14.6% 0.8% 34.6%
FFT 0.4% 25.6% 4.1% 23.4%
IFFT 0.5% 23.6% 3.6% 26.0%

CRC32 0.8% 48.1% 0.6% 81.8%
dijkstra 0.0% 3.1% 0.2% 2.9%

sha 1.0% 0.0% 2.2% 0.0%
stringsearch 0.1% 7.7% 0.2% 15.7%

bfs 0.2% 10.7% 0.8% 19.2%
histo 0.1% 5.2% 0.2% 19.6%
sad 12.9% 2.9% 14.9% 2.1%

spmv 0.1% 1.1% 0.1% 1.5%

4.3.4 Identification of Instructions and Bit Positions for
Pruning
In this section, we describe how the multiple bit-flip error
space can be pruned by analysis of the results of the multiple
bit-flip campaigns. Pruning an error refers to the cases
where the outcome of an error is classified as Detection
without conducting an experiment. Our goal is to identify
instructions that if targeted by an error would cause an early
crash, which is when the program under test crashes before
we are able to inject the number of injections specified in
the experiment. The early crash cases correspond to around
20 million experiments, which is around 75% of the total
number of experiments conducted. Therefore, pruning of
the multiple bit-flip error space with regards to the early
crash cases could significantly reduce the time and effort
needed to test systems using fault injection campaigns.

Connecting the injection of an error in a specific instruc-
tion to the reason behind an early crash is challenging as
there are several factors contributing to the early crash.
We explain the challenge using Fig. 7. This figure shows
a code Snippet from the FFT program where three errors are
planned to be injected in the source registers of shl, load
and store instructions. The program crashed before LLFI
was able to inject the third error into the store instruction.
However, it is not clear if the early crash is caused by the
first error alone, the second error alone, or jointly by both.

An earlier study [27], has found that the dominant effect
of an injected error is to cause a program crash soon after
its injection, which indicates that large crash distances are
infrequent. Therefore, in our analysis of early crash, we
assume that the cause of the early crash is the injection
of the error in the last instruction that precedes the crash.
In other words, in the case of the example given in Fig. 7,
it means that according to our assumption the injection of
the error in the load instruction is the reason behind the
early crash. This assumption allows us to study the results
of the experiments, and identify the instructions that were
responsible for these early crashes. These instructions then
can be pruned.

Figure 7. A code Snippet of the FFT program where errors are planned
to be injected in the marked instructions.

Figure 8. Instructions that contributed the most to the total number of
early crashes.

Fig. 8 shows six LLVM IR instructions that caused the
highest percentages of early crashes. In general, there are 39
and 37 types of instructions that, if subjected to a bit-flip,
resulted in an early crash for the inject-on-read and inject-
on-write campaigns, respectively. Fig. 8 illustrates that only
a few of these instructions have significantly contributed to
the total percentage of early crashes. In the case of the inject-
on-read campaigns, more than 90% of the total number of
early crashes are caused as a result of injections in four
instructions, namely the getelementptr, load, sext, and
store instructions. Similarly, in the case of the inject-on-
write campaigns, more than 90% of the total number of early
crashes are caused as a result of injections in five instruc-
tions, namely the alloca, getelementptr, load, sext,
and zext instructions. By leveraging these early crashes (90%),
and combining it with the aggregate percentage of crashes (75%),
one can prune about 67% of the injections overall for multiple bit-
flip injections. However, because the prediction is not perfect,
there is a small amount of inaccuracy introduced.

RQ6-Answer: Around 75% of the experiments resulted in
early crashes; hence can be removed from the error space.
For the inject-on-read campaigns, more than 90% of the
early crashes are caused as a result of injections in four out
of 39 instructions, namely getelementptr, load, sext,
and store. As for the inject-on-write campaigns, more
than 90% of the early crashes are caused as a result of
injections in five out of 37 instructions, namely alloca,
getelementptr, load, sext, and zext.
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Table 5
LLVM IR instructions contributed the most to the number of early crashes. Note: these instructions may not have direct assembly code analogues.

Instruction Overview of the instructions
Number of
source registers
targeted

Number of des-
tination regis-
ters targeted

alloca

Allocates memory on the stack frame of the currently executing function,
to be automatically released when this function returns to its caller. Sample
instruction:
%2 = alloca i32, align 4

1 1

getelementptr

Gets the address of a subelement of an aggregate data structure and performs
address calculation. It can also generate a vector of such addresses and does not
access memory. Sample instruction:
%2 = getelementptr inbounds i8** %1, i64 1

1-3 1

load Reads from memory. Sample instruction:
%2 = load i32* %1, align 4

1 1

sext
Takes a value to cast, and a type to cast it to and sign extends the value to the
type. Sample instruction:
%2 = sext i1 %1 to i32

1 1

zext
Takes a value to cast, and a type to cast it to and zero extends the value to the
type. Sample instruction:
%2 = zext i1 %1 to i32

1 1

store Writes to memory. Sample instruction:
store i32 0, i32* %i, align 4

2 0

In the remainder of this subsection, we present data on
how individual bits of these instructions contribute to the
early crashes. To better understand the results presented,
Table 5 shows high-level details about the structure of the six
LLVM IR instructions under investigation. It also shows the
number of source and destination registers targeted by the
inject-on-read and inject-on-write campaigns respectively.

4.3.4.1 Identification of sensitive bits that lead to
early crash in inject-on-read campaigns: We investigate four
instructions as they contributed the most to the total number
of early crashes: load, getelementptr, store, and sext
contributed to around 60%, 14%, 13%, and 3% of the total
number of early crashes, respectively.

Fig. 9 shows the likelihood of an early crash for bits tar-
geted in load instructions. The figure shows the difference
between the sensitivity of the lowest 17 bits (on average
around 26%) of the register targeted compared with the
remaining 47 bits (on average around 93%). This indicates
that the error space can be significantly pruned by removing
majority of the bits in load instructions from the error space
while classifying them as Detected in the results.

The high sensitivity of the most significant 47 bits in
resulting in early crashes is because the register holds a
memory address. Injecting into these bits adds to the likeli-
hood of a program crash or the injected error to be detected
by mechanisms such as invalid memory access and illegal
instruction. This is due to the format in which bits are stored
in the register, where injections in higher significant bits
result in memory addresses that are likely to be significantly
large. Same conclusions are drawn in prior work [12].

Fig. 10–12 shows the likelihood of an early crash for
different bits of the registers targeted in getelementptr
instructions. Note that, in the inject-on-read campaigns,
there are between one to three potential registers (depend-
ing on the program under evaluation) in a getelementptr
instruction that could be targeted to faults (see Table 5).
The graphs presented in Fig. 10–12 illustrate the results of
injections in these registers separately. These figures show

that except very few cases, higher significant bits are signif-
icantly more likely to result in early crashes. In other words,
the sensitivity of the lowest 17 bits and the highest 47 bits to
causing an early crash is on average around 24% and 72%.

In general, the getelementptr instruction is used to
get the address of a subelement of an aggregate data struc-
ture. Errors in the higher significant bits of an address,
say bit 16 and higher, has in general a high likelihood of
being detected by a hardware exception and hence caus-
ing a crash. However, compared to the results presented
for the load instruction (see Fig. 9), injections in source
registers of the getelementptr are less likely to cause
an early crash. This is because the getelementptr in-
struction only performs address calculation and does not
access memory. Assuming that most errors are activated
when the memory is accessed using the erroneous address
calculated by the getelementptr instruction, it is less
likely for injections in the getelementptr instruction to
cause an early crash compared to injections in the load
instruction. However, regardless of this comparison, Fig. 10–
12 show that a significant number of bits in registers used by
the getelementptr instruction could serve as indicators
for pruning the multiple bit-flip error space. That is, any
multiple bit-flip errors that target these bits are assumed to
be detected, and hence there is no need to inject these errors.

Fig. 13–14 show the likelihood of an early crash for errors
in the source registers of store instructions. For inject-on-
read, a store instruction has two source registers that are
potential injection targets (see Table 5). The 1st register holds
an address or a data variable to be stored in memory, while
the 2nd register holds a memory address at which to store
the content of the 1st register.

Fig. 13–14 show that errors injected in the two registers
have quite different outcomes. In fact, for the first potential
register, Fig. 13 shows that the highest 32 significant bits
only result in a slightly higher percentage of early crashes
(on average around 28% as compared to around 7% for the
lowest 32 significant bits). On the other hand, the results



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (DOI: 10.1109/TDSC.2020.3043023) 13

Figure 9. Likelihood of an early crash for different bit positions in the source register of load instructions (inject-on-read).

Figure 10. Likelihood of an early crash for different bit positions in the 1st source register of getelementptr instructions (inject-on-read).

Figure 11. Likelihood of an early crash for different bit positions in the 2nd source register of getelementptr instructions (inject-on-read).

Figure 12. Likelihood of an early crash for different bit positions in the 3rd source register of getelementptr instructions (inject-on-read).

obtained for the second potential register (Fig. 14) illustrate
that the 47 highest significant bits are significantly more
sensitive to early crashes (on average, around 93% as op-
posed to around 12% for the lowest 32 significant bits). This
indicates that the error space could be significantly pruned
by removing the majority of the bits in the 2nd source
register of store instructions from the error space (while
classifying them as Detected in the outcome classification).

The variation between the results obtained for the two
registers targeted in the store instruction is due to the type

of data they hold. As discussed earlier (see §4.3.2.1) as well
as in previous studies [36], [42], it is much more likely for an
injected error to cause an early crash if the type of the data
targeted is a memory address rather than a data variable.

Fig. 15 shows the likelihood of an early crash for differ-
ent bits of the source register of the sext instruction. The
figure shows that in general, the 10 highest significant bits
are very sensitive in causing an early crash, whereas the
lowest 6 insignificant bits are very insensitive in causing an
early crash. It is interesting to note that similar to the results
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Figure 13. Likelihood of an early crash for different bit positions in the 1st source register of store instructions (inject-on-read).

Figure 14. Likelihood of an early crash for different bit positions in the 2nd source register of store instructions (inject-on-read).

presented in Fig. 9 and Fig. 14, the sensitivity of the different
bits of the sext instruction to causing an early crash follows
a bi-modal distribution, i.e., a specific bit is either highly
unlikely or highly likely to cause an early crash.

RQ7-answer (inject-on-read technique):
load instruction: The 47 most significant bits of source
registers show a high likelihood of causing an early crash
(on average around 93%). These errors are therefore poten-
tial candidates for pruning.
getelementptr instruction: Except few cases, higher
significant bits are significantly more likely to cause early
crashes. The sensitivity of the lowest 17 bits and the highest
47 bits to causing an early crash is on average around 24%
and 72%, respectively.
store instruction: The sensitivity of the 1st source regis-
ters in causing an early crash is significantly lower than the
2nd registers. Moreover, the likelihood of an error injected
in the 47 most significant bits of the 2nd registers is on
average around 93%; thus these bits could be removed
from the error space while being classified as Detected.
sext instruction: The sensitivity of the different bits of the
sext instruction to causing an early crash follows a two-
level step function, i.e., for each program under evaluation,
a specific bit is either not sensitive or significantly sensitive
to causing an early crash.

4.3.4.2 Identification of sensitive bits causing early
crash in inject-on-write campaigns: We investigate 5 in-
structions as they contributed the most to the total number
of early crashes: getelementptr, load, sext, zext, and
alloca contributed to 37%, 34%, 8%, 6%, and 5% of the
early crashes, respectively.

Fig. 16 shows the likelihood of an early crash for
different bits of the destination register targeted in
getelementptr instructions. The figure shows that the 17
highest significant bits are significantly more likely to result

in early crashes (on average around 78% as opposed to 21%
for the 17 lowest significant bits). As mentioned in §4.3.4.1,
the getelementptr instruction is used to get the address
of a sub-element of an aggregate data structure. Therefore, it
performs address calculation, which is why errors in higher
significant bits contributed the most to the early crashes.

Fig. 17 shows the likelihood of an early crash for differ-
ent bits of the register targeted in load instructions. The
figure shows that in most cases, the highest significant bits,
starting from bit 32, are significantly more likely to result in
early crashes (on average around 52% as opposed to around
15% for the 32 lowest significant bits). The increase in the
higher percentage of early crashes starts from bit 16 and
becomes more pronounced when moving from bit 31 to 32.
In fact, the sensitivity of the 16 lowest significant bits to
causing a crash is only around 5%, while the sensitivity is
on average around 25% for bits 17 to 31.

The register targeted in inject-on-write campaigns may
hold memory addresses, which are significantly sensitive in
causing an early crash, especially if the bits targeted are one
of the highest 47 significant bits. This is why the percentage
of early crashes in Fig. 17 are higher for bits 17 to 63 (espe-
cially starting from bit 32). Moreover, the load instruction’s
register targeted in the inject-on-write campaigns may also
hold a data variable, which is significantly less sensitive
than a memory address. This is why the load instruction
registers in inject-on-write campaigns are significantly less
sensitive than those in inject-on-read campaigns.

Fig. 18 shows the likelihood of an early crash for dif-
ferent bits of the register targeted in the sext instructions.
The figure shows that in most cases, the highest significant
bits (starting from bit 17) are significantly more likely to
result in early crashes (on average around 56% as opposed
to 16% for the 17 lowest significant bits). Further, for some
of the programs, the likelihood of the highest 3 significant
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Figure 15. Likelihood of an early crash for different bit positions in the source register of sext instructions (inject-on-read). Note that fft, ifft, crc32,
and histo programs are removed from the graph as they experienced no to insignificant injections in their sext instructions.

Figure 16. Likelihood of an early crash for different bit positions in the destination register of getelementptr instructions (inject-on-write).

Figure 17. Likelihood of an early crash for different bit positions in the destination register of load instructions (inject-on-write).

bit of the register targeted causing an early crash is close to
0. This is likely because the highest significant bit is often a
sign bit. The instruction performs a sign extension of a value
to a specified type by copying the sign bit of the value until
it reaches the bit size of the type specified.

Fig. 19 shows the likelihood of an early crash for dif-
ferent bits of the destination register targeted in zext
instructions. Note that, basicmath, dijkstra, qsort, sha, and
spmv programs are removed from the graph as there were
either no or very few injections in the destination registers
of zext in these programs. Also note that, in the case of the
susan-corner, susan-edge and susan-smoothing programs,
the target register was a 32-bit register. For these programs,
the sensitivity of the 13 lowest significant bits is on average
around 2%. For the other programs, although the general
trend is that higher significant bits are more likely to cause
early crashes, the bit position corresponding to the starting
of the high sensitivity bits is program-dependent. The figure
also shows that for these programs, the highest 2-3 signifi-
cant bits have low likelihood of causing early crashes.

Fig. 20 shows the likelihood of an early crash for differ-

ent bits of the register targeted in alloca instructions. The
figure shows that in general, injections in higher significant
bits starting from bit 17 are more likely to cause an early
crash (on average, around 41% as opposed to around 11%
for the 17 lowest significant bits). However, there are a
few programs that exhibit fluctuations depending on the
different bits targeted. Note that in this instruction, memory
is allocated and a pointer is returned. Therefore, the register
targeted holds a memory address. Depending on whether
this register is read, the injected error may or may not be
activated, which is the likely reason for the fluctuations.

Similar to the results from inject-on-read campaigns, the
results obtained for the inject-on-write suggest that there
is not much variation between the sensitivity of the higher
significant bits to causing an early crash, for different in-
struction/program pairs. This means that by knowing the
failure mode of one of these bits, the error space could be
further pruned by removing the other high significance bits.

In summary,the inject-on-read campaigns are more likely
to cause an early crash compared to inject-on-write cam-
paigns. This is likely because in the case of inject-on-read,
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Figure 18. Likelihood of an early crash for different bit positions in the destination register of sext instructions (inject-on-write). Note that fft, ifft,
crc32, and histo programs are removed from the graph as they experienced no or insignificant injections in their sext instruction.

Figure 19. Likelihood of an early crash for different bit positions in the destination register of zext instructions (inject-on-write). Note that basicmath,
dijkstra, qsort, sha, and spmv programs are removed from the graph as they experienced no or insignificant injections in their zext instruction.

Figure 20. Likelihood of an early crash for different bit positions in the destination register of alloca instructions (inject-on-write).

the activation occurs at the same time as the injection,
whereas for the inject-on-write campaigns, the activation
only occurs when the erroneous register/content is read.
Therefore, for inject-on-write campaigns, the erroneous reg-
ister may not be read or be overwritten, which reduces the
likelihood of the injected error to cause an early crash.

RQ7-answer (inject-on-write technique):
getelementptr instruction: The highest 47 significant
bits of source registers show on average around 78% of
sensitivity to causing an early crash and could be removed
from the error space while being classified as Detected.
load instruction: The registers targeted could hold a
memory address or a data variable. The 47 highest sig-
nificant bits of the ones holding a memory address could
be removed from the error space while being classified as
Detected as they are significantly more sensitive in causing
an early crash.
sext instruction: Except few cases, the 47 highest signif-
icant bits are significantly more likely to result in early
crashes (on average around 56% as opposed to 16% for the

lowest 17 significant bits).
zext instruction: Although the general trend is that higher
significant bits are more likely in causing early crashes,
the bit position corresponding to the starting of the high
sensitivity bits is program-dependent.
alloca instruction: In general, injections in the 47 highest
significant bits are more likely to result in an early crash
(on average around 41% as opposed to around 11% for
the 17 lowest significant bits). The registers targeted hold a
memory address and if this register is not read, the injected
error will not be activated.

5 SUMMARY AND CONCLUSIONS

In this paper, our goal was to study the impact of multiple-
bit errors in programs and to find ways to explore and
reduce the multiple-bit fault injection space (error space).
This is important as previous studies [5], [6], [7] have shown
that soft errors often manifest as multiple-bit errors at the
software level, and hence we need efficient methods to inject
multiple-bit errors in software and evaluate their effects.
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Prior work had considered at most two bit-flips, and did not
cover the entire space of multiple-bit errors. We performed a
comprehensive analysis of the parameter space of multiple
bit-flips to identify which parameters affect the SDCs for a
program. Our findings are:
• The SDC results of the single bit-flip model are close to

the results for the multiple bit-flip model (except for 2%
of the multiple bit-flip campaigns which result in an SDC
percentage that was more than 5 percentage points higher
than that obtained for the corresponding single bit-flip
campaigns) across the majority of programs and param-
eter values, with a few exceptions. This holds regardless
of whether the multiple bit-flip injections are in the same
register or in different registers. This is because an increase
in the number of injected faults also results in an increase
in the likelihood that exceptions are raised (see Table 4),
thus reducing the percentage of SDCs.

• With the above said, the single bit-flip model is not
sufficient to establish conservative upper bounds on the
SDC results (i.e., pessimistic percentages of SDCs) un-
der multiple-bit errors. However, for most programs, the
pessimistic percentage of SDCs for the multiple-bit error
model is achieved under relatively few multiple-bit errors
(2 errors with the inject-on-read technique, and 3 errors
with the inject-on-write technique).

• The dynamic window size parameter value does not mat-
ter much when the inject-on-read technique is used, but
it matters when the inject-on-write technique is used. In
the latter case, the highest percentage of SDCs is achieved
when the window size is low, i.e., less than 5 dynamic
instructions in most cases.

• Only a very small fraction of single bit-flip errors that
result in Detection lead to SDCs under multiple bit-flips
in which the starting location is the same as the single
bit-flip error. Therefore, to maximize the SDCs uncovered
by multiple bit-flip injections, one needs to inject only
into the program locations in which single bit-flip error
injections led to benign outcomes.

• Around 75% of the total number of experiments con-
ducted had resulted in early crashes, which can be re-
moved from the error space as they do not lead to SDCs.
More than 90% of the total number of early crashes
are caused as a result of injections in registers used by
instructions getelementptr, load, sext, zext store,
and alloca. By leveraging these early crashes (90%), and
combining this result with the aggregate percentage of
crashes (75%), 67% of the injections can be pruned for
multiple bit-flip injections. Further, most of the higher
significant bits of registers used by these instructions can
be pruned as injecting errors in them will likely cause
early crashes.
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